X.Zhang, L. Xiang, J. Wang, P. Zhu, D. W. K. Ng, and X. Gao, “Hybrid Precoding for mmWave
Massive MIMO with Finite Blocklength,” in IEEE Transactions on Wireless Communications,
vol. 73, no. 8, pp. 6379-6395, Aug. 2025, Dol: 10.1109/TCOMM.2025.3529244.

©2025 IEEE. Personal use of this material is permitted. = However, permission to
reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this works must be obtained from the IEEE.




Hybrid Precoding for mmWave Massive MIMO
with Finite Blocklength

Xuzhong Zhang, Graduate Student Member, IEEE, Lin Xiang, Member, IEEE,
Jiaheng Wang, Senior Member, IEEE, Pengcheng Zhu, Member, IEEE,
Derrick Wing Kwan Ng, Fellow, IEEE, and Xiqi Gao, Fellow, IEEE

Abstract—Hybrid digital-analog precoding is essential for bal-
ancing communication performance, energy efficiency, and hard-
ware costs in millimeter wave (mmWave) massive multiple-input
multiple-output (MIMO) systems. However, most existing designs
rely on the Shannon capacity and assume infinite blocklengths,
which are impractical for emerging applications, such as massive
machine-type communications, operating with finite blocklength
(FBL). To address this gap, this paper pioneers a novel hybrid
precoding design for mmWave massive MIMO in the FBL regime.
We meticulously optimize hybrid precoding based on both the
weighted sum-rate (WSR) and the max-min fairness (MMF)
criteria, while fulfilling the transmit power budget and users’
minimum rate requirements. Both continuous and discrete phase
shifters are considered for analog precoding. The formulated
optimization problems are highly challenging to solve due to the
nonconvex objective functions and nonconvex constraints. These
challenges are further intensified by the nonconcave FBL rate
function and the intricate coupling between analog and digital
precoders. By proposing novel problem transformation and
decomposition techniques, we reformulate the original complex
problems into forms solvable with the penalty dual decomposition
(PDD) method. We then develop two efficient iterative algorithms
with parallel, and even closed-form variable updates, and guar-
anteed convergence to solve the WSR and MMF optimization
problems, applicable to both continuous and discrete phase
shifters. Simulation results show that our proposed hybrid pre-
coding designs significantly outperform several baseline schemes,
especially those adopting the Shannon capacity and infinite
blocklength. Additionally, our proposed optimization algorithms
enable hybrid precoding exploiting discrete phase shifters with
limited quantization resolution (e.g., 3-bit) to closely match the
performance of fully digital precoding in FBL scenarios.
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I. INTRODUCTION

Millimeter wave (mmWave) massive multiple-input
multiple-output (MIMO) offers a promising solution to satisfy
the escalating demand for ultra-wide frequency bandwidth
in future communication systems [I1]-[5]. By exploiting
large antenna arrays with compact sizes at the base station
(BS), mmWave massive MIMO can substantially mitigate
multi-user interference and enhance both spectral and energy
efficiency. However, the conventional fully digital precoding
architecture, which involves connecting each antenna to a
dedicated radio frequency (RF) chain, is rendered impractical
for mmWave massive MIMO due to the associated prohibitive
hardware costs and substantial RF power consumption.
To strike an effective balance among system performance,
hardware cost, and energy consumption, hybrid digital-analog
precoding has emerged as a viable solution for realizing
mmWave massive MIMO systems [1], [2], [5]-[19]. In this
innovative architecture, digitally precoded baseband signals
are up-converted to the carrier frequency through a limited
number of RF chains and subsequently processed through a
linear network of adjustable phase shifters, constituting the
analog precoder.

To enhance the performance of mmWave massive MIMO
systems, hybrid precoding optimization is of paramount im-
portance and has been extensively explored in the literature
[6]-[19]. For instance, the authors in [6]-[13] proposed several
hybrid precoding designs to maximize spectral efficiency for
different practical scenarios. Also, in [14], a hybrid precoding
scheme was tailored to maximize the minimum user rate in
a cache-enabled mmWave system. The energy efficiency of
hybrid precoding was evaluated in [15], [16]. Additionally, hy-
brid precoding was optimized for transmit power minimization
while ensuring users’ signal-to-interference-plus-noise ratio
(SINR) requirements in [17]-[19].

Despite the extensive efforts devoted, most of the afore-
mentioned works [7], [8], [10], [14], [16], [18], [19] assume
using continuous phase shifters with infinite resolution in the
analog precoder for tractability. However, such phase shifters
are prohibitively expensive. In contrast, practical and more
affordable phase shifters typically feature limited resolution,
specified by a discrete set, which significantly complicates the
hybrid precoding optimizations. Specifically, to handle discrete
phase shifters, a commonly adopted method involves first con-
figuring the hybrid precoder for infinite resolution, followed by
quantizing the analog precoder into discrete values. Unfortu-



nately, this heuristic approach often leads to poor performance
or infeasible solutions to the design optimization problem,
especially when the phase shifters are of low resolution [9]. To
overcome this limitation, hybrid precoding designs tailored to
discrete phase shifters are crucial and have been investigated
in [6], [9], [15], [17].

Meanwhile, most existing hybrid precoding designs, such
as those in [6]-[16], assume an infinite blocklength (IBL)
and evaluate performance based on the Shannon capacity.
However, practical systems often operate under finite or even
limited blocklengths, where the transmissions are generally
not error-free and cannot achieve the Shannon capacity [20].
For example, mmWave massive MIMO has recently been
increasingly adopted in latency-sensitive communications to
enable timely status updates and transmission of control com-
mands in Internet-of-Thing (IoT) networks, massive machine-
type communications (mMTC), and tactile internet [21]-[23].
These applications typically rely on short packets to reduce
transmission latency, significantly deviating from IBL assump-
tions. Consequently, hybrid precoding designs based on IBL
would lead to poor performance in these practical scenarios.
In addition, most FBL services impose stringent minimum
rate requirements [24], [25], which are often neglected in
current hybrid precoding research. Therefore, it is imperative
to rethink the optimal hybrid precoding design for mmWave
massive MIMO that accommodates users’ quality-of-service
(QoS) requirements and supports phase shifters of varying
resolutions in the FBL regime.

Recently, the finite blocklength (FBL) regime has emerged
as a critical area for precoding design and optimization [26]-
[36]. For instance, path-following algorithms were employed
n [26], [27] to optimize precoders for maximizing the users’
minimum FBL rate. Also, resource allocation for orthogonal
frequency division access (OFDMA) downlink multiple-input
single-output (MISO) with FBL was studied in [28]. Further-
more, addressing users’ QoS requirements, the authors in [29]
explored several FBL precoding optimizations to maximize
the weighted sum rate (WSR), minimum user rate, and energy
efficiency, which were solved utilizing the uplink-downlink
duality. Moreover, low-complexity precoding design for mas-
sive MIMO multi-group multicasting in the FBL regime was
examined in [30]. Additionally, FBL precoding designs for
rate-splitting multiple access (RSMA) were investigated in
[31]-[33], and RIS-aided FBL systems were further explored
in [33]-[35]. However, most existing FBL precoding designs,
such as [26]-[35], focused exclusively on the fully-digital
architecture and their results cannot be directly applied to
hybrid precoding for mmWave massive MIMO due to the
complex coupling of digital and analog precoders. While
recent research [36] examined hybrid precoding in the FBL
regime, its approach is heuristic and does not address users’
QoS requirements. To the best of our knowledge, no prior work
has yet explored hybrid precoding optimizations with users’
QoS constraints in the FBL regime, for either continuous or
discrete phase shifters.

To fill in this gap, this paper aims to introduce a novel hybrid
precoding design for mmWave massive MIMO in the FBL
regime. Given that WSR and max-min fairness (MMF) have

been widely considered in hybrid precoding designs in the IBL
regime [6], [10]-[14], we also adopt them as our optimization
objectives in the FBL regime. Specifically, WSR-based designs
aim to maximize the (weighted) sum-rate by prioritizing users
with better channel conditions (after applying appropriate
weights), making them ideal for applications emphasizing
system throughput, such as video streaming and augmented
reality [24], [37]. In contrast, MMF-based designs maximize
the minimum data rate among users, thus prioritizing users
with poorer channel conditions. Although this approach may
reduce overall system throughput, it is crucial for fairness-
oriented applications such as autonomous vehicle networks
and industrial IoT applications [23]. Therefore, it is essential
to consider both metrics for balancing system throughput and
user fairness, as well as addressing the diverse requirements
of next-generation wireless applications.

However, due to the nonconvex nature of the FBL rate
function, hybrid precoding optimization problems under the
FBL WSR and MMF criteria are significantly more chal-
lenging to solve than their IBL counterparts. Existing works
[6]-[8], [15] suggested a heuristic hybrid precoding design
using the commonly adopted matrix approximation (MAP)
method [6], [7], which avoids directly addressing the complex
hybrid precoding optimization problem by instead minimizing
the Euclidean distance between the hybrid precoder and the
fully digital precoder obtained with the solutions in [29], [30].
However, this approach often fails to satisfy the users’ QoS
requirements and exhibits poor performance, especially with
low-resolution phase shifters, as will be shown in Section V.
In contrast, this paper presents the first algorithms that directly
solve the complex hybrid precoding optimization problems in
the FBL regime with guaranteed convergence. Additionally,
our hybrid precoder designs support both continuous and
discrete phase shifters. We are interested in answering the
following fundamental question: how many bits of quantization
are required by hybrid precoding with discrete phase shifters,
to achieve a performance comparable to that of fully-digital
precoding in FBL systems? To address these research goals,
we have made the following technical contributions in this

paper:

o We formulate hybrid precoding optimization problems
for mmWave massive MIMO in the FBL regime under
the WSR and MMF criteria, while considering the BS’s
power budget, users’ QoS constraints, and both continous
and discrete phase shifters. The formulated problems
are nonconvex and rather challenging to solve. These
complexities are exacerbated by the complex FBL rate
function and the intricate coupling between digital and
analog precoders.

o Through innovative problem transformation and decom-
position techniques, we reformulate the original complex
WSR problem into a more tractable form that facilitates
the implementation of the penalty dual decomposition
(PDD) method [38]. Building upon this foundation, we
propose a computationally-efficient algorithm with guar-
anteed convergence to address the nonconvex WSR prob-
lem tailored for mmWave massive MIMO, accommodat-



ing both continuous and discrete phase shifters.

o The WSR solution cannot be directly applied to the
nonconex, nonsmooth MMF problem due to its more
intricate structure. As a remedy, we further extend the
problem transformation and decomposition techniques to
effectively reformulate the MMF problem and propose
another efficient algorithm employing the PDD method
[38], which is specially designed for mmWave massive
MIMO and compatible with both continuous and discrete
phase shifters.

o Simulation results demonstrate that our proposed hy-
brid precoding designs achieve the best performance
among several considered benchmarks, especially those
employing Shannon capacity as the performance met-
ric. Furthermore, even with the minimal number of RF
chains needed to support multi-user communication, our
optimization algorithms enable hybrid precoding with
discrete phase shifters (e.g., 3-bit resolution) to achieve
FBL performance closely approaching that of fully digital
precoding.

In the remainder of this paper, we introduce in Section II
the adopted system model and formulate the WSR and MMF
hybrid precoding design optimization problems in the FBL
regime. In Sections III and IV, we propose low-complexity
hybrid precoding designs for the WSR and MMF problems,
respectively. Simulation results are presented in Section V, and
finally, conclusions are drawn in Section VI.

Notations: Throughout this paper, vectors and matrices are
denoted in bold lower-case and capital letters, respectively.
CN*1 and CN*M denote the sets of complex vectors of
length N, and complex matrices of size N x M, respectively.
M{z} denotes the real part of complex number z. 3 = /—1
denotes the imaginary unit. [A]; ; denotes the (¢, j)-th entry
of matrix A. Iy and 15 denote an N x N identity matrix and
the all-one column vector of length N, respectively. (- )7, (-)*,
(-)H, and ()T denote transpose, complex conjugate, Hermi-
tian transpose, and pseudo-inverse of a matrix, respectively. |- |,
I l2> I Il o> and ||- ||z denote the absolute value of a complex
scalar, Euclidean norm of a vector, infinity norm of a vector,
and Frobenius norm of a matrix, respectively. vec(-) denotes
the vectorization function. Q(x) is the Q-function defined as
Qz) = \/%f;o exp(—t?/2)dt. Q7*(-) is the inverse Q-
function, i.e., Q(Q~!(z)) = z. x ~ CN(a,R) means that
x is a circular symmetric complex Gaussian random vector
with mean a and covariance matrix R > 0.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the downlink (DL) of a single-cell mmWave
multi-user massive MIMO system, where a BS equipped with
N; transmit antennas and N, < N; RF chains serves K
single-antenna users (X < N,).! The users are indexed
by set K 2 {1,...,K}. The BS adopts a fully connected
hybrid analog and digital precoding architecture [6], [15] to

UA recent study [34] investigated joint transceiver and RIS design in a multi-
cell MIMO system, where each multi-antenna BS transmits multiple streams
to each multi-antenna user. Exploring the joint design of hybrid transmit
precoding and receiver combining in mmWave massive MIMO systems in
the FBL regime is an intriguing direction for future research.

facilitate efficient FBL transmission and reduce the hardware
complexity and energy consumption. Thereby, the data streams
intended for the users are precoded at the baseband exploiting
digital precoders wi, € CN-*1 k € K, before being up-
converted to the carrier frequency in the RF chains and
further processed by an analog precoder F € CNt*Nr_In this
paper, we consider that the analog precoder is implemented
exploiting one of the following types of phase shifters:

o Continuous phase shifters, which have an arbitrary bit
resolution such that

[F],, € Fe 2 {exp (1930 € [0,2n]} Vi js (1)
o Discrete phase shifters, which are uniformly quantized
with k-bit resolution and thus

[F], ;€Fp={exp (52" "mm)|m =0,...,2"~1}. (2)

Note that F¢c and Fp define a unit-circle manifold and its

discretized set, respectively, both belonging to nonconvex sets.

Let s ~ CN(0,1) be the data symbols intended for user

k and E{s}s;} = 0,Vj # k. Moreover, let hy, € CN**! be

the channel vector between the BS and user k. By employing

hybrid precoding at the BS, the received signal of user k is
given by

yk = hf Fwys, + Z#k hiFw;s; + ny, 3)

where ny ~ CN(0,03) is the additive white Gaussian noise
(AWGN) at user k with zero mean and variance O’,%. We
assume that the BS possesses full and perfect knowledge of
the channel state information (CSI) [9], [10], [14], [16]-[19],
[26], [27], [29], [31], [32].2 Then, the received SINR of user
k is BT Fawy 2
i = ol 4)
i B FWil? +0f

To lower the communication latency, the BS adopts an
FBL N for signal transmission, as in typical mMTC and IoT
applications [21]-[23]. Consequently, the users cannot decode
the messages in an error-free manner [20]. Assume that user k&
requires a specific block error rate (BLER) ¢ > 0 for reliable
communication. Under this requirement, the achievable data

rate of user k in nats/s/Hz is approximately given by [20]

R(yk, W) = In(1 + ) — De/V (), ®)
where ¥ = Q7 (ex)/VN > 0, V(yx) = 1 — (1 + )72
is the channel dispersion. The second term in (5) denotes a
reduction in the achievable data rate to ensure the required
BLER ¢, whose value decreases with N. As N — oo, the
second term vanishes such that the FBL rate (5) approaches
the Shannon capacity In(1 4 ).
In wireless networks, the WSR and the MMF are two
key performance metrics having been widely employed in the
literature for hybrid precoding design with IBL [6], [10]-[14].

2By assuming perfect CSI, we aim to explore the theoretical performance
limits of mmWave massive MIMO hybrid precoding in the FBL regime. In
time-division duplex (TDD) systems, the BS can acquire DL CSI through
uplink (UL) training by leveraging the reciprocity between UL and DL
channels. However, with the hybrid precoding architecture, the BS cannot
directly access the outputs from individual antenna elements; instead, it can
only access the channels through a linear network of phase shifters, which
effectively compresses the received signal. Therefore, to estimate UL CSI,
the BS can employ compressed-sensing (CS) techniques, such as orthogonal
matching pursuit (OMP) [39], [40], approximate message passing (AMP)
algorithm [41], and sparse Bayesian leaning (SBL) [42].



To facilitate hybrid precoding design in the FBL regime, in this
paper, we adopt both metrics but modify them leveraging the
FBL rate (5). For given BLER {ek}le and blocklength N,
the resulting WSR and MMF hybrid precoding optimization
problems are formulated as:

K
P; : Ivr%/af?( Zk:l wr R (Y, V) (6a)

K
s.t. Zk:l |Fwy||3 < P, (6b)
[FL,] € ‘F7Vi7j7 (6C)
R(vk, V%) > Rk, Vk € K, (6d)

and

Py : max min R(vk, Ok) @)

s.t. (6b), (6¢), (6d),

respectively, where W £ [wy, ..., wg] € CNV"*K is the dig-
ital precoder matrix and wy, > 0 is the weight assigned to user
k. In problems P; and P5, we jointly optimize both digital and
analog precoders to maximize the WSR and the minimum rate
achievable among the users under the given BLER {ek}kl,{zl
and blocklength N, respectively, while satisfying the same set
of constraints. In particular, constraint (6b) limits the transmit
power of the BS by a maximum budget P. Also, (6¢) defines
the set of allowed phase shifts for continuous and discrete
phase shifters by F € {Fc, Fp}, respectively.® Finally, (6d)
requires a minimum FBL rate R, > 0 for each user k.*

Note that the objective functions of problems P; and P,
are nonconcave, and even the complex FBL rate (5) by
itself is nonconcave with respect to (w.r.t.) the SINR ~; and
the precoders {W,F} [29]. Besides, the objective function
of Py is nonsmooth. Meanwhile, constraints (6b)-(6d) are
nonconvex sets. Furthermore, the analog precoder F is coupled
with the digital precoder W in the objective functions and
constraints (6b) and (6d). As such, it is extremely challenging
to optimally solve P; and P5. To the best of our knowledge,
the complexities in handling the FBL rate have prevented P,
and Py from being investigated in existing literature.

In fact, the penalty dual decomposition (PDD) method
[38] provides an appealing approach to address nonconvex
nonsmooth problems with coupling constraints. Based on the
PDD method, we develop two computationally efficient algo-
rithms to solve IP; and Py, which are applicable for handling
both continuous and discrete phase shifters. This enables to
assess the performance gaps between them, cf. Section V, and
characterize the quantization granularity needed for practical
implementation of analog precoder in the FBL regime, to
balance performance and implementation costs. Moreover, the

3In this work, we focus primarily on hybrid precoding design in the
FBL regime with continuous and discrete phase shifters. Exploring additional
features of mmWave communications, such as low-resolution analog-to-digital
(ADC) and digital-to-analog converter (DAC), non-ideal power amplifiers
(PA), and wideband systems [4], [S], in hybrid precoding optimization with
FBL is a promising direction for future research.

4In problems P; and P2, the minimum rate Rk may vary among users, as
they may have heterogeneous service demands in practice. In such scenarios,
eliminating the QoS constraint (6d) from problem P2 would generally lead to
a different optimal solution than the original problem. However, if all users
require an identical minimum rate constraint, (6d) can be omitted in problem
Py without altering the optimal solution, provided that Po is feasible.

design variables can be optimized in a BCD manner with
efficient and even closed-form solutions to lower the com-
putational complexity while providing theoretical guarantees
for achieving the KKT solutions of P; and P, under mild
conditions.

In the following, we start with tackling the nonconvex
smooth problem P; in Section III, exploiting the proposed
algorithm based on PDD. We then extend the PDD method to
address the nonconvex nonsmooth problem Py in Section IV.

III. WSR HYBRID PRECODING DESIGN
In this section, we address the hybrid precoding opti-
mization problem P; for maximizing the WSR. To achieve
this, we first reformulate P; into a particular form where
the optimization variables are coupled solely in the equality
constraints. We then formulate its AL problem and handle P,
with the PDD approach.

A. Transformation of Problem Py
We first tackle the nonconvexity in constraint (6d). Note that
for given 93 > 0, the FBL rate R(+x,¥)) is a monotonically
increasing function of the received SINR -y, in the effective
SINR regime where R(7yx, Yr) > 0 [29], [30]. Therefore, there
exists a unique solution 4, > 0 satisfying R(7x,9s) = Rg,
which can be obtained adopting a typical bisection search.
Then constraint (6d) can be equivalently rewritten as
Ve = Y, Yk € K. ®)
Although (8) is still nonconvex, as will be shown below, it
is much more convenient to address than (6d) due to the
elimination of the complex FBL rate function from (6d).
Next, we reformulate the coupling inequality constraints
(6b) and (8). Note that these coupling constraints prevent
solving problem P; directly with BCD-type algorithms, such
as the block successive upper-bound minimization (BSUM)
method [43]. Such algorithms are prone to becoming trapped
in inefficient solution points, deteriorating the system perfor-
mance. To resolve the coupling between analog and digital
precoders in constraints (6b) and (8), we introduce the fol-
lowing optimization auxiliary variables
qi; =hi"Fw; Vi, j € K, ©)
di = Fwy,VEk € K. (10)
Then constraints (6b) and (8) can be equivalently rewritten as
IDIIE < P, (1)
Qi (qr) £ %(Z#k|qhi|2+0;€)—|Qk,k|2§07W€ e K, (12)
respectively, where D 2 [dy,...,dg] € CN*K ¢, £
(qkﬁl, c. 7qk7K)T S (CKXI, and Qé[ql, c. ,qK}T € CExK,

Capitalizing on the above transformation techniques, prob-
lem PP; can be equivalently reformulated as

K
Ps : willaX | Zk:l weR (Y (ar), Ix)
s.t. (6¢),(9),(10),(11),(12),

where ; (qi) = |Qk,k’2/ak(qk) and ak(‘lk)ézi#kMk,i‘QﬁL
o?. Note that P is a nonconvex optimization problem with
coupled optimization variables only in the equality constraints
(9) and (10). In the remainder of this section, we apply the
PDD method [38] to address problem Ps.

(13)



To this end, let z; ; and u, be the Lagrangian multipliers
associated with constraints (9) and (10), respectively. The AL
problem of P5 for a penalty parameter p > 0 is formulated as

Py : W{IFI‘,a(s(,D Lw(W,F.Q,D; Z,U) (14)

s.t. (6¢),(11),(12),
with «
Lw(W.F.QD;ZU)2 Y wiR(ik(ar) V)

1 H 2 1 2
—;pIIQ—H FW+pZHF—%HD—FW+pUIIF, (15)

where H £ [hy,...,hg] is the channel matrix. Moreover,
{W.,F,Q,D} and {Z,U} define the sets of primal and dual
optimization variables, respectively, with [Z];; £ z;; and
U £ [uy,...,ug]|. Here, the dual variables are distinguished
from the primal variables using italicized fonts.

The PDD method [38] tackles problem Ps via a nested loop
structure. Thereby, the inner loop focuses on optimizing the
primal variables by solving the AL problem P4, while the
outer loop updates the dual variables and the penalty factor.
Notably, the primal variables in P, can be further divided
into three blocks, i.e., the auxiliary variables {Q,D}, the
digital precoding matrix W, and the analog precoder F, where
different blocks are not coupled in the constraints. However,
due to the presence of nonconvex constraints (6¢) and (12),
the subproblems involving Q and F are still nonconvex. This
prevents solving P, adopting the classical BCD method.

To overcome this challenge, we solve P4 using the BSUM
approach [43] below, which iteratively updates a block of
variables using majorization-minimization (MM) or successive
convex approximation (SCA) [44] while keeping the other
variables fixed at each iteration. By leveraging the decompos-
able structure of P4, we derive a low-complexity solution that
can tackle the nonconvex constraints. Details on solving P4 are
provided in Section III-B, while the comprehensive solution
for P3 or P; is postponed to Section III-D. For clarity, we
adopt t and n to indicate the indices for the outer and inner
loop iterations, respectively. Additionally, p(*), U, and z®
denote the values of p, U, and Z in the ¢-th outer iteration,
and W& Ftn) Qtn) and D®™) denote the values of
W.F,Q, and D in the n-th inner iteration within the ¢-th
outer iteration.

B. Solving the AL Problem Py

In this subsection, we derive a BSUM algorithm for solving
the AL problem P, in the n-th inner iteration within the ¢-th
outer iteration. By capitalizing on the decomposable structure
inherent in problem P4, we derive efficient, and in several
instances, closed-form solutions to optimize the variables,
facilitating scalable hybrid precoding for mmWave massive
MIMO systems.

1) Optimization of Digital Precoder W

For given F(t:) Q®™) and D®™) optimizing W at the
inner iteration n reduces to solving the following uncon-
strained convex optimization problem

min [DO — FOOW 4 0T 02

+ QU™ —HIFEIW + o0 ZOI (16)

By setting the first-order derivative of the objective function
to zero, the optimal solution of (16) is given by

. {D(t,n) + p(t)U(t) + H(Q(t,n) + p(t)Z(t))} a7

2) Optimization of Analog Precoder F
The optimization of F at the inner iteration n, given
Wt Q) and D™ can be expressed as
min ||D(t’") —_Fwnth p(t)U(t)”]%
F

+ ||Q(t,n) _ HHFw(t,n+1) + p(t)Z(t)”l%
s.t. (6¢).
Notably, constraint (6¢) is nonconvex for both continuous and
discrete phase shifters, rendering the solution of problem (18)
challenging. To address this obstacle, we first reformulate
problem (18) as
min - Fyp(F) £ Tr {F7AFC} — 2R {Tr(F"B)} (19)
s.t. (6¢),
where A = Iy, + HHY,

B= (D(tﬂ“b)+p(t)U(t)+H(Q(tT“L)er(t)Z(t)))(Vv(tanﬂ))H7 (20)
and C = W(t*”“)(W(t’"H))H. The matrices A and C are
all positive semidefinite. Then, problem (19) can be solved
using a BCD algorithm as in [6]. Particularly, let F' be the
initial value of the analog precoder F. We then update [F]
based on F via the following quadratic programming

. 2 =
1[%1]111] aHF]M} —2%{b* [F], ;}
s.t. [F], ; € F.
In (21), the first term in the objective function can be ignored,

because @ is a constant whose value depends on F and
|[F] i, j|2 = 1 for both continuous and discrete phase shifters,
cf. (1) and (2). Besides,

b=I[A],; [F],.[C],, - [AFC], . +[B],;. (22)
By employing the BCD algorithm, each ‘subproblem (21) can
be solved with a closed-form solution, which is given by

[F; ;= exp(sarg (b)),

(18)

(2]

2

(23)
and

[F}:J =arg max SR{INJ* [F]w}’

[F]z i €FD
for the continuous and discreteJ phase shifters, respectively. The
procedure for solving problem (18) is outlined in Algorithm
1. For continuous phase shifters, Algorithm 1 is guaranteed to
converge to a stationary point of the problem (18) [6], [43].
On the other hand, in the case of discrete phase shifters, the
objective function of problem (18) is monotonically decreasing
in Algorithm 1. Moreover, as the objective function of problem
(18) is bounded below by zero, the convergence of Algorithm
1 is guaranteed.

3) Optimization of Auxiliary Variables {Q,D}

Given W+ and F(t7+1) | {Q D} can be optimized
separately and solved in parallel. In particular, the optimization
of D at inner iteration n can be written as

Il’lljin |D — Pt Dw Entl) o pOU®) 12

24)

(25)
st. |D|5 < P,



Algorithm 1 Proposed Algorithm for Solving (18)

1: Initialize m = 1, F™), ® = AF("™C, set tolerance ¢,
and the maximum number of iterations N,

2: repeat

3 F= F<m>

4 for (i,j) € {1,...,N;} x {1,...,N, } do

5: Compute b=[A ]” [F]” [C]m. —~[AFC]M + [B]i,j’

6 Compute = = exp(jarg(b)) and z =
argmax[p]i,jeﬁiﬁ{ b* [F]”} for the continuous

and discrete phase shifters, respectively,

7 ©=0+ (r - [FLJ) [A].; [Cl;,..
8 (Fl; ;
9:  end for
10 FtHD —=F m=m+1,
11: until !FW,F (F(m))_FW’F(F(m—l)) |/’FW7F(F(m_1))| <eq

or m > Nj"#*.
12: return F("),

::1;"

Algorithm 2 Proposed Algorithm for Solving Problem (28)

. Initialize m = 0, q(m) q,(:’”), set tolerance €5 and the
maximum number of iterations N3™**.
repeat
Update q,(c m+1)
m=m+1,
until | Fyq, (qgn))fFW,qk (qi,mfl))| <eg orm > Nipax,

return q,(Cm

according to Theorem 1,

A

whose optimal solution is given by [45]
P
D* = min VP ,1
|[FEn+ D)W (tnt1) — p(t)U(t)HF
. (F(tm+1)w(t~,n+1) _ p(t)U(t))_

It remains to optimize Q at inner iteration n via solving the
following problem

HlaX E

2 (t
s.t. (12).
Problem (27) can naturally divide into K independent sub-
problems, where subproblem k is expressed as
max Fwq, (ar) £ wr R (ar), Ix)

<t>Z!qw “hfFE w0017 (08a)
kek

s.t. Qr(ar) <0. (28b)
Due to the nonconvex FBL rate function and nonconvex
constraint (28b), solving the above problem is prohibitively
challenging. In the following, we derive a majorization-
minimization (MM)-type algorithm [44] to obtain an effective
solution of problem (28). First, we establish a concave sur-
rogate function to approximate R (%4 (qx), 7)) while keeping

the nonconvex constraint intact.

Lemma 1. For any feasible q;m)

(26)

ka A (ar), Ik)

) HQ HHF(t n+1)W(t 7L+1) + p(t)Z(t) ||2 (27)

satisfying constraint (28b),

a lower bound of R(’Ayk (qk) ﬁk) is given by:
R(%(Qk) Vi) > Ry (a, q;, (m. ))

2 sy R (0f7) qk,i}—c;m’zilqu,ﬁ 29)
where R, (qk7 q; )) is a concave function satisfying
OR, (ar,ay™) _ 33(%(Qk),79k) 30)
qr.i o Oqri o
ar=qy ar=qy
and R(’?k (qi,m)),ﬁk) =R, (ql(cm),q,gm)) In (29), a,(cm) is a

constant whose value depends on qk according to (31) at

the top of next page, where By (q\™) = ay,(q\™) + 9k HiE
2q,<¢",1) ifi =k
R e
by = o (q™) g™ 2
k, 20ax (af™ ) af; otherwise,

al™ \/V ™) ’

c(m)_ ’q(m) . 9, ( (m)) -0
k (m) (m)
O‘k(qk )Bk(qk )

Proof. Please refer to [30], [33], [35]. ]

By replacing R(4x(qk),9r) with Ek(qk,qém)) in the
objective function, problem (28) naturally separates into a
sequence of subproblems given as follows:

Hém wkck )Z|qk |27wk29%{ g’z)

Zlqki—hHF“”“) B @017 (34)

ka}

2 (f)

s.t. (28b).
Although (34) is still nonconvex due to nonconvex constraint
(28b), we derive its optimal solution in closed form as follows.
Theorem 1. When wib}) + (p®) "Thf FGmDw it =

,z,(C 3« the optimal solution of problem (34) is given by (35) at

the top of next page, where Oy} € [0,2r| is arbitrary. On
the other hand, when (p(t))_1thF(t’”+1)W,(:’nH) + z,(fi —
wkbk i » the optimal solution of problem (34) is given by

wiblly + (p®) TRt Dw (D 0

*

Ak =

() - - » 36)

2wie)™ + (pM) = + 27w Yk

where Gy, = —1 if © = k, and w1 = i, otherwise. In (36),
*OlfT()<0 Y(r*) = Q(q;); otherwise, 0 < T* <

wkck )+1/( 201 is the unique solution of Y (7*) = 0, which

can be solved in a closed form.

Proof. Please refer to Appendix A. O

The proposed iterative solution for problem (28) is summa-
rized in Algorithm 2, which is guaranteed to converge to a
locally optimal solution of (28) [44]. Note that {q;} can be
optimized in parallel.

Remark 1. To solve problem PP;, one can alternatively intro-

duce an auxiliary variable ﬁk = (Ell, .. .,aK) = FW for



. . . oty | I/ V (™)) 1
o =1+ 30 (a) — el - — el L
O‘k(qk )6'6(011@ ) V (3 (ay, ))

A&f/’n):

m 2 m m
B Vg (Oék(q;(C ))> n ﬂka/%ak(ql(c )) < 2 @ (ql(c ))> 31
2V (Gi(af™) \Be(@™) ) @™ v G(al™)) \Be(a™) B2 (a™)
(m) 1,8 1 (it (0|2 —1/2
\/:YTCCJGW'IC Zi#k’wkbk,i +(p) ' F( ’7;+ 'w; 72 R + 0-]% , ifi=k,
. (m) (o (1)y—1 -
g = |20l +(p) 2| 147 | (35)
’ wr b ()~ H p(tnt1)  (tntD) _(6)
kb +(p )<m>hk F ‘- ki otherwise.
(2wkck ' +(p<t))’1)(1+’7k>)
CW(W(t’”), F(t’”), Q(t’n)y D(t’”), Z(t), U(t))i‘cw(w(t,n—l)’ F(t,’n—l)7 Q(t,n—l)’ D(t,'n—l)’ Z(t)’ U(t)) 3
, (39
.ﬁw(w(t,n—l)7 F(tn=1) Qt.n=1) Pltn-1) Z(t), U<t))’
A =max {|lvec(Q®) — HFFOW®) |2, [vec(D®) — FOW®) 2 1. (40)

each quadratic QoS constraint (8) as in [6] and transform them
into

a2 7 (3, Infdif* +0}) Vkek. 3T
However, this approach introduces (K + 1)N.K auxiliary
variables, significant increasing computational complexity. In
contrast, our proposed solution requires only N; K + K? aux-
iliary variables, which can be easily updated in closed form.
This reduction in dimensionality is particularly beneficial for
massive MIMO systems, where computational efficiency is an
essential requirement.

C. Feasibility Analysis and Initialization

Due to the limited transmit power budget in (6b) and
stringent users’ QoS requirements (8), problem P; may be
infeasible for some channel realizations, e.g., when the users’
channel vectors are highly correlated. Meanwhile, our pro-
posed iterative algorithm for solving P; requires a feasible
initial solution. To this end, we consider to solve the following
power minimization problem:

: mi F 2
Ps s min [FW][; (38)

s.t. (6¢), (8).
In problem Ps, the digital and analog precoders are jointly
optimized to minimize the transmit power subject to the users’
QoS constraints. Problem P; is feasible if the optimal objective
function value of IP5 is less than P; otherwise, it is infeasible.
Problem P5 can be solved using the methods in [17], [19].

D. Overall Solution of Problem Py

The proposed algorithm to solve Py is described in Algo-
rithm 3, where the relative objective progress (ROP) A&’")
and the constraint violation A&t,) are defined in (39) and
(40) at the top of this page, respectively. In the inner iter-
ation, the variables {W,F,Q,D} are optimized using the
BSUM method [43] to address the AL problem P4. In the
outer loop, the dual variables {U,Z} are updated using
the subgradient method when the constraint violation A&;) is
relatively small (steps 13 and 14); otherwise, we decrease the

penalty parameter (step 19) to gradually reduce the constraint
violation. Algorithm 3 adaptively alternates between the AL
approach and the penalty method until the constraints (9) and
(10) are approximately satisfied, i.e., the constraint violation
Agf,) is small sufficiently. According to [38], Algorithm 3 is
guaranteed to converge to the KKT solutions of problem P,
for the continuous phase shifters under mild conditions. Note
that this convergence result generally does not apply to the
discrete phase shifters, as Algorithm 1 may not converge to
a stationary point. Despite of this, our numerical results in
Section V show good convergence performance of Algorithm
3 for discrete phase shifters.

E. Complexity Analysis

In Algorithm 1, Step 7 is the most computationally de-
manding, which has a computational complexity O (N;N,.).
Therefore, the complexity of Algorithm 1 is O (IpNZN?),
where [ is the number of iterations required for convergence.
Updating D and W require complexities of O (N;N,.K) and
(@] (NENT), respectively. Moreover, assuming that Algorithm 2
converges after I iterations, its complexity is O (I KN, N,.).
Consequently, the overall computational complexity of Algo-
rithm 3 is O (Iouterlinner (NENT + IpNZN? + IQKNtNT)),
where Iinner and Iyyuter are the total numbers of iterations of
the inner and the outer loops in Algorithm 3, respectively.’

IV. MMF HYBRID PRECODING DESIGN

In Section III, we have developed Algorithm 3 based on the
PDD method to handle the WSR problem PP;. This section
extends the PDD method to solve the MMF problem Ps.
Unfortunately, the decomposition technique in Section III and
Algorithm 3 cannot be directly applied to problem Py due to
its nonsmooth objective function and complex structure. To

SDeep learning (DL) has the potential to facilitate real-time hybrid pre-
coding design by learning the mapping function from wireless channels to
corresponding solutions through training a neural network [46]. The DL-based
hybrid precoding design in the FBL regime presents a valuable direction for
future research.



Algorithm 3 Proposed Algorithm for Solving Problem P,

1: Initialize t=0, F®), W1 QO D® U® z® 51 get
tolerance 7, penalty update factor £, tolerance 3 and the
maximum number of iterations N3'**.

2: repeat

3. Initialize n=0, F&n) = F®O wtn) = w®) Q) =

Q(t), set tolerance €4 and the maximum number of

iterations V"%,
4 repeat
5: Update W *n+1) ysing (17),
6: Update F(*"+1) ysing Algorithm 1,
7 Update D®"+1) ysing (26),
8 Update q\"" ™) k =1,..., K, using Algorithm 2,
9 n=n-++1,

10:  until Agf,’”) <g4 or n > Npax,

e RO D ) WD) oy Qe — g,
D+ = pln),

12 if AYTY <9 then

13 z t+1);Z(t)+(p(t))—1 (Q(t+1)_HHF(t+1)W(t+1))’
14: U(t+1):U(t)+(p(t))—1(D(t-&-l)_F(t-&-l)W(t-&-l))’
15: p(t"rl) — p(t)’

16:  else

17: z) = z®,

18: vttty =py®,

19: p(t"rl) = fp(t)’

20.  end if

210 t=t+1,

22: until As,f,) <egort> N3
23: return {F = F® W =W®},

overcome this issue and solve P5, we have to combine the
PDD method with novel problem reformulation and decom-
position techniques to be detailed below.

A. Transformation of Problem Py

Following (8), we introduce an auxiliary variable r and
reformulate the MMF optimization problem P, into the fol-
lowing equivalent smooth problem

Pg : max r
W,F,r

s.t. (6b), (6¢), (8),
R(yk, 95) > r, Yk € K. (41)
Problem Pg is intractable due to the coupling between ana-
log and digital precoders in constraints (6b), (8), and (41).
To tackle this challenge, we further introduce the auxiliary
variables Q and D, cf. (9), (10), and

pi; = h’Fw; Vi, j € K, (42)

. =nr,Vk € K. (43)

Then constraints (6b), (8), and (41) can be equivalently trans-
formed into (11),

Qi (Pr)=7r (Z#k|pk,i|2+0i)—|pk,k|2 <0,Vk e K, (44)
Tk — R(’yk(qk),ﬁk) <0,Vk € K, (45)

respectively, where py, = (pk.1,- - - ,pk,K)T. Finally, P can

be equivalently reformulated as

Pr: W,F,ITI,II%),(D,QJ' r (46)
s.t. (60),(9),(10), (11), (42), (43), (44), (45),
where P = [py,...,px]T € CE*K andt = (7,...,7x)T €

REX1, Similar to problem PP, the variables of problem IP; are
only coupled in equality constraints (9), (10), (42), and (43),
Then, we utilize the PDD method to solve problem P7, whose
AL problem is expressed as

P8:W,F,¥F{1§?§31Qﬁi ‘C’M(Wv Fa T, P7 D? Qv r; E’ Z’ U’ ’U) (47)

s.t. (60), (11), (44), (45),
where

EM(Wv F7 T, P? D7 Q7 f7 E7 Z7 U7 ’U)
1 1 2
=g |ID-FW+pU |5 % |Q-HFW+pZ|.

1, 1 2
3 |F—r1x+pv| -3 |P-HY"FW-+pE|., (48)

Z, U, E = [e,...,ex]T, and v = (vy,...,vk)T are
the dual variables for constraints (9), (10), (42), and (43),
respectively. In problem Pg, the variables naturally divide
into three blocks, i.e., the auxiliary variables {Q,D,P,r},
{W,r}, and the analog precoder F, where different blocks
are not coupled in constraints. Thanks to this decomposable
structure, problem Pg can be solved leveraging the BSUM
approach. We denote the value of p, v, U, Z, and E in the
t-th outer iteration as p(), v(®, U, ZW and E®, and let
WEn) gtn) ptn) ptn) ptn) Qtn) and r*™) denote
the value of W, F, r, P, D, Q, and 7 in the n-th inner iteration
within the ¢-th outer iteration. The BSUM algorithm to solve
the AL problem Pg within the ¢-th outer iteration with given
p(t), v, U(t), Z(t), and E is elaborated in the following.

B. Solving the AL Problem Pg

The problem transformation (P7) and the PDD method
enable us to derive an efficient BCD-type algorithm to solve
problem Pg, where the variables are optimized with efficient
and even closed-form solutions.

1) Optimization of {W,r}

With given Ft7) P& DEn) - Qtn) - and £(™) | the
optimization of {W,r} can be written as the following
unconstrainted convex optimization problem

min Ly (W,r, Ftm ptn) ptn) qQtm)
W,r

). g0 70 U(t),v(t)). (49)
By setting the first-order derivative to zero, the optimal solu-
tion is given by

K
* _ Z =(t,m) (t),,(®) (t)
r _( i:l(Tz +p Uz )+p )/K7
and (51) at the top of next page.

(50)



W* — ((F(tm )@ o (R HHHHFa,n)) T(F(tm ) {D<t,n)+p<t>U<t)+H (Q(t»n)+P(t=n)+p(t) ZW4p E(t))} .65

(14 7) " (RHF(tnt Dy ()

- P(t)eg,),)v

if i £ k,

Phi = -2 2 (55)
m \/ﬁk ’Z#k (1 + ﬁlk) ‘hfF(t,nH)wgt’"H) - p(t)eg)il + O',%‘GJGM”“. otherwise,
2) Optimization of F The optimization of {Q,T} can be expressed as
'WiFh given W+ ptn) Dtn) and Q(t’”), the opti- min ZK ’fk _ pltntn) p(t)vlit)‘2
mization of the analog precoder F can be written as Qr k=1
- H H (tn+1) (Wtnt+1)\ H Hp(tnt D)yt D) | (0 70 ]
min Tr(F" (Ly, + 2HH")FW (W ) +HQ—H F W +p020|| 67

— 2%{Tr{FH (D(t,n) + p(t)U(t) + H(Q(t,n)

N P(tm)+p(t)Z(t)+p(t)E(t))) (W(t,n+1))H}} (52)

s.t. (6¢),

which admit an identical form as problem (19) and can
be efficiently solved exploiting Algorithm 1 for both the
continuous and discrete phase shifters.

3) Optimizing {P,D,Q,r}

With given WD Rltntl) = apd (4D the opti-
mization of {P,D,Q,r} at inner iteration n divides into
three independent optimization subproblems w.r.t. P, D, and
{Q,r}, respectively. The optimization of D is essentially the
same as problem (25), whose optimal solution is given by (26).

The optimization of P can be written as

Hgn HP — HIFGn+)wtntl) 4 p(t)E(t) Hi (53)

s.t. (44).

Problem (53) is further decomposed into K independent
subproblems and subproblem k € K can be written as

. K 2
i )23 ok B0

s.t. Qi (pr) < 0. (54)
Problem (54) is nonconvex due to its nonconvex constraint.
Note that problem (54) would have the same structure as (28)
provided the first term of the latter objective function vanishes.
Owing to this slight difference, we show below that, unlike
(28), problem (54) can be optimally solved in a closed form.

Theorem 2. If h/F(tn+lyw (t ntD) e (t) = 0, the

optimal solution of problem (54) is given by (55) at the
top of this page, where Oy, € (0,27 is arbitrary. When
thF(tm/H)wl(:*”H) — p(”e;;)k # 0, the optimal solution of
(54) is given by

I Y (56)
pk,z 1 +§M,kw>k ’
where sy, = —1 if i = k and sy 1. = 7y otherwise. In (56),

the optimal dual variable w* = 0 when ®(0) <0, @(w*) =
Qk(pk) otherwise, there exists the unique solution 0 < w™ <
1 satisfying ®(w™) = 0, which can be solved in a closed form.

Proof. Theorem 2 can be obtained by replacing g; ; and zj;
by p; , and ey ; and setting w,=0 in Theorem 1, respectively.
' O

s.t. (45).
Problem (57) can be further divided into K independent
subproblems indexed by k£ € K, with subproblem k given
as )
_ p(tntD) "'p(t)“l(ct)’

min  Fyq,.m (Q, ) = ‘
qk,Tk

K 2
+ Z ‘Qk,i ~ hEFEn D Gt P(t)zl(ﬁ‘ (58)
i=1
s.t. T — R(ﬁ/k(qk),’ﬂk) <0

Problem (58) is nonconvex due to its nonconvex constraint,
which cannot be reduced to (8) and tackled similar to the
WSR problem due to the additional variable 7. Therefore,
although problem (58) has a similar form as (54), it is much
more challenging to solve. Particularly, unlike (54), problem
(58) does not admit closed-form optimal solutions, due to the
nonconvex FBL rate function R(&k(qk), ﬂk) in the constraint.
Instead, we approximate the FBL rate function by (29), which
enables to obtain a locally optimal solution of problem (58) by
solving a sequence of subproblems [44]. At the m-th iteration,
the subproblem is expressed as

mlp FM,qk,Fk (qk7 Fk) (59a)
qk,Tk
STy (Fr ar, al™) = 7 — Ry(a, ay™) <0, (59b)

where q( ™) is a feasible solution in the m-th iteration. Problem
(59) is a convex problem and can be optimally solved in a
closed form as shown in the following Theorem.

Theorem 3. The optimal solution of problem (59) is given by

Fp =t _ p(t)v,(f) —u*/2, (60a)
thF(t,nH)w(t,nH) p(t) (t)_,_u* (m)/
Gii = o . (60D)
1+ p*c,

where p* = 0 if $(0) < 0, ¢p(u* ) = Y(7},q}); otherwise,
w* > 0 is the unique root of ¢(u*) = 0 and can be obtained
in a closed form.

Proof. First, the strong duality holds for problem (59) as it
satisfies the Slater’s condition. Then the optimal solution (60)
is derived from the KKT conditions of problem (59) similar
to Theorem 1. The detailed proof is omitted here due to the
limited page space. O

The MM-type algorithm to problem (58) is summarized in
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Algorithm 4 Proposed Algorithm for Solving Problem (58)

Algorithm 5 Proposed Algorithm for Solving Py

1: Initialize m = 0, qgcm) = q,(ct’n), 7“,(:") = T,(Ct"”), set

tolerance 5 and the maximum number of iteration NS,
: repeat
Update q,(cmH) and r,imH)
m=m+1,
. until Agg) <es or m > Npmax,

. return q\™ and r"™.

according to Theorem 3,

Algorithm 4, where
m) —(m m—1) —(m—1
‘FM1kaFk (ql(c )’Tl(c ))_FMqufk (ql(c )7T1(c ))‘

(m—1) -<m—1>>‘

A(m) _
’FM,qk,Fk (qk » T

QR

(61)
According to [44], Algorithm 4 is guaranteed to converge to
a locally optimal solution of problem (58). Note that {7, qx}
can be optimized in parallel.

Remark 2. By introducing the auxiliary variables 7y, Vk € IC,
in (43), r admits a closed-form solution given in (50), and the
optimization of Q also decomposes into small subproblems
that can be easily solved in parallel. Both of these strategies
facilitate rapid computation, which is attractive for massive
MIMO. Without such transformation, the optimization of Q
and r would become a complex nonconvex problem, rendering
its solution highly challenging and computationally expensive.

C. Overall Solution of Problem P,

Algorithm 5 summarizes the procedure for solving problem
P>, where we define the ROP Al(vtl’n) and the constraint viola-
tion Al(vtl) in (62) and (63) at the top of next page, respectively.
Similar to the solution of problem PPy, we propose to first solve
problem P5, which enables a feasibility check of problem P,
and provides an initial solution to start Algorithm 5. In Algo-
rithm 5, we update the primal variables {W,F,r,P, D, Q, T}
in the inner loop and adaptively update the dual variables and
the penalty parameter in the outer loop until convergence. For
the continuous phase shifters, Algorithm 5 is guaranteed to
converge to a set of KKT solutions of problem Py under mild
conditions [38]. Though this convergence result does not apply
to discrete phase shifters, our numerical results in Section V
demonstrate that Algorithm 5 achieves good convergence even
in this case.

D. Complexity Analysis

Updating D, P, and {W,r} require complexities of
O (N;N,K), O(N,N,K), and O (NZN,), respectively.
Moreover, assuming that Algorithm 4 converges after Ig
iterations, its complexity is O (Ig,KN;N,). Therefore,
the overall computational complexity of Algorithm 5 is
0 (fouteranner (N2N, + IpNEN? + IQ,KNtNT)), where

Intinner and Infouter are the total numbers of iterations of the
inner and the outer loops in Algorithm 5, respectively.

V. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed
algorithms by simulation. The BS is equipped with a uniform
linear array comprising Ny = 64 antennas and serves K =
12 single antenna users over a transmission blocklength of

I: Initialize ¢ = 0, FO WO, QW p® ),
rOU®, zO E® 4® p®) set tolerance 7, penalty
update factor &, tolerance g and the maximum number
of iterations NG,

2: repeat

3 Initialize n = 0, F&» = FO Wtn) = W),
Qtn) = QW Pptn) — P® get tolerance €7 and
the maximum number of iterations N7***,

4:  repeat

s Update r®"+1D and W+ using (50) and (51),

respectively,

6: Update F(:*+1) using Algorithm 1,

7: Update D7 +1) ysing (26),

8 Update p\"" ™k = 1,..., K, based on Theorem 2,

9: Update qkt’nﬂ) and r,(f’nﬂ), k=1,...,K, using

Algorithm 4,

10: n=n+1,

11:  until AI(J[’") <e7 or n > Npax,

12: F(t-l—l) —_ F(”),W(“’l) _ W("), Q(t+1) _ Q(n),
P+ — p(n) D+ = pn),

13 if AUTY <) then

14: Zl\gt+1)zz(t)+(p(t))71(Q(t+1)_HHF(t+1)W(t+1)),

15: E(t+1):E(t)+(p(t))71(P(t+1)_HHF(t+1)W(t+1)),

16: D) = ) 4 (p®)—1 (r(t+1) _ r(t“)lK),

17: U(t+1):U(t)+(p(t))—1(D(t+1)7F(t+1)w(t+1))’

18: Pt = )

19: else

20: z) =z,

21: Et) = g®),

22 v+ = (1),

23: Uty —py®,

2 P =£p0,

25:  end if

26 t=t+1,

27: until Al(vt[) < g ort > NI
28: return {F = F®) W = W®},

N. We adopt a geometric mmWave channel model of L =
15 paths with isotropic scatterers [6], [9], where the channel
vector between the BS and user k can be expressed as

1 L
hy =/ L 21:1 Crpae (Vr), k€K,

I, = 100-366+4.14l0g,o(dx)+2.43log,0(fe) jg the path-loss of
user k experienced at a distance dj, from the BS, f. = 28 GHz
is the carrier frequency, and ¢x; ~ CN(0,1) is the complex
gain of the /th path between the BS and user k [47]. The users
are uniformly and randomly located in a disk with an inner
radius of 50 meters and an outer radius of 200 meters. The
BS antennas are separated by a spacing of half wavelength.
Consequently, the antenna array response at the transmitter
a; (¢g,) w.r.t. the azimuth angle ¢ ; € [0,27] is g}ven by

at("/fk l): [17 eI Sin(’d)k,L)’ o eij(Nt—l) sin(¥g,1) , (65)
where the azimuth angles {wm} are uniformly distributed

within the interval [0, 27]. Unless otherwise specified, we set
the BLER ¢, = 10~“(*) for FBL transmission according

(64)
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Al™ = ’ L (Wa,n), Pt Rt pn) pltn) Qtn) §tn). g Z® ) Um)

. (Wmn—l)’r(t,n—l),F(t,n—n’P(t,n—l),D(t,n—n’Q(t,n—n,f(t,n—l);E(t), Z(t),U(t),v(t))‘

/‘['M (W(t,n—1)7 ptn=1) Rln=1) pltn=1) ptn-1) qtn-1) gtn-1), E®, Z(t)’ U, v(t)) ‘7

(62)

2 2
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Figure 1. The convergence performance of Algorithm 3 for WSR based hybrid
precoder design (Ny = 64, K = 12, N = 100, and P = 2 dBm).

Proposed-r = 0o
Proposed-r = 1

N ]

2
1.5

0 100 200 0 100 200
Number of iterations Number of iterations

Proposed-r = 0o
Proposed-r = 1

45 ‘

Minimum FBL rate (bps/Hz)
o .
Constraint Violation
5

Figure 2. The convergence performance of Algorithm 5 for MMF based
hybrid precoder design (INy = 64, K = 12, N = 100, and SNR= -7 dB).

to ¢(k) = min{5+ ([k/2] — 1) x [5/(K —1)],10}, w =
/K, 0 = ¢*> = 107 mW, and the minimum rate
requirements R, = R = 1 bits/s/Hz. The results are averaged
over 200 random independent channel realizations. Similar
to [28], the value of the objective function of problems Py
and Py are set to zero if the obtained solution violates any
constraints to account for the penalty. Additionally, when using
our proposed Algorithms 3 and 5 to optimize the hybrid
precoding for discrete phase shifters, their first 20 iterations
are performed assuming continuous phase shifters, which can
effectively avoid inefficient suboptimal solutions according to
our observations.

A. Convergence Performance

In this subsection, we validate the convergence of the
proposed algorithms. Unless otherwise specified, we set the
relevant algorithmic hyperparameters as £ = 0.95, p(®) = 0.3,
n= le 3, e =€ =10"% e5 =€ =107, €4 = €5 = €7 =

1074, Njrax = Nmax — 2(), and N®* = NPax = 100. Figs.
1 and 2 show the convergence of our proposed Algorithms
3 and 5 by plotting the objective values and the constraint
violations averaged over 200 simulations for phase shifters
with infinite, i.e., K = 0o, and 1-bit resolutions, i.e., xk = 1,
respectively. We observe from Figs. 1 and 2 that the proposed
algorithms converge rapidly for both continuous and discrete
phase shifters. However, the hybrid precoding design based
on the MMF criteria requires on average more iterations
to converge than that based on the WSR due to the more
complex problem structure in the former. Note that for the
hybrid precoder designs with discrete phase shifters, ideal
continuous phase shifters are used in the first 20 iterations,
while discrete phase shifters are employed in the subsequent
iterations. As a result, a noticeable discontinuity is observed
in the convergence curves of our proposed Algorithms 3 and
5 in Figs. 1 and 2, reflecting the switch from continuous to
discrete phase shifter modeling.

B. WSR Hybrid Precoding

In this subsection, we evaluate the WSR performance of
the following schemes: (i) “Proposed”, namely the proposed
Algorithm 3; (ii) “FD-FBL”, which optimizes the WSR for
fully digital precoding in the FBL regime subject to the
power and QoS constraints (6b) and (6d) as considered in
[29], [30]; (iii) “FD-IBL”, which optimizes the WSR for fully
digital precoding under the power and QoS constraints but
adopting the Shannon capacity formula as the performance
metric; (iv) “FD-Conventional”, which evaluates the FBL rate
when employing the fully digital precoder obtained in (iii);
(v) “MAP”, which designs the hybrid precoder using the
matrix approximation (MAP) method [6], [7] by minimizing
the Euclidean distance between the hybrid precoder and the
fully digital precoder obtained from (ii); (vi) “Con-MAP”,
which designs the hybrid precoder based on the fully digital
precoder obtained from (iii) by using the MAP method. Note
that the FBL rate is evaluated for all the considered schemes
except (iii).

Fig. 3 illustrates the WSR of the considered fully digital
and hybrid precoding designs with continuous phase shifters
versus the transmit power budget P. We observe that “FD-
IBL” provides a performance upper bound for all considered
schemes. This is expected as it employs the IBL and a fully
digital precoding architecture. Meanwhile, the fully digital
precoding scheme “FD-FBL” achieves the best performance in
the FBL regime. Compared with “FD-FBL”, the performance
of “FD-Conventional” degrades significantly in the low SNR
regime, as the impact of blocklength is ignored and the
users’ QoS constraints (6d) may be violated. This result
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highlights the importance of tailored precoding design for
FBL applications, particularly in the low SNR regime. In
contrast, the performance gap between “FD-Conventional” and
“FD-FBL” vanishes in the high SNR regime. This is because
the users’ SINR are sufficiently large such that the channel
dispersion Vi () =~ 1 in (5) and its penalty on the data rate
in the objective function of problem P; becomes negligible.
However, “FD-IBL”, “FD-FBL”, and “FD-Conventional” with
the fully digitial precoding architecture would incur high hard-
ware costs for mmWave massive MIMO. When considering
hybrid precoding architecture with low hardware costs, Fig.
3 shows that our proposed algorithm always outperforms
“MAP” and “Con-MAP” for different number of RF chains.
Interestingly, when N, = 2K RF chains are available, both
our proposed hybrid precoding design and “MAP” achieve
the same performance as “FD-FBL”, while “Con-MAP” and
“FD-Conventional” achieve similar performance, which is
consistent with the results in [9].

Fig. 4 shows the WSR of the fully digital precoding
scheme “FD-FBL” and hybrid precoding methods ‘“Proposed”
and “MAP” versus the number of RF chains for phase
shifters with different quantization resolutions. We observe
that our proposed algorithm always outperforms “MAP” for
all considered parameter settings. Particularly, pronounced
performance gains are achieved even when the number of
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Figure 5. WSR vs. blocklength IV for phase shifters with different resolutions
(Nt =64, K =12, N, =12, and P = 2 dBm).

RF chains are small or the resolution of phase shifters is
low. This is because the “MAP” method is heuristic and
lacks theoretical performance guarantees in solving problem
P;, failing to effectively tackling the nonconvex objective
functions and constraints of problem P;. As a result, it leads
to poor performance, especially when the level of quantization
reduces, since the degree of nonconvexity in IP; increases.
This result highlights the advantages of adopting our proposed
hybrid precoding design in practical FBL systems. Moreover,
the “MAP” solutions would violate the QoS constraints with
a high probability, which is undesirable for FBL applications.
Additionally, we observe from Fig. 4 that even when the BS
is equipped with N, = K RF chains, which corresponds to
the minimum number of RF chains required for supporting K-
user communications, our proposed hybrid precoding adopting
discrete phase shifters with several bits (e.g., 3-bit) resolution
already achieves a performance that closely match the fully
digital precoding counterpart.

In Fig. 5, we further evaluate the WSR of the fully digital
precoding scheme “FD-FBL” and hybrid precoding designs
“Proposed” and “MAP” versus the blocklength N for phase
shifters with different resolutions. We observe that the WSRs
of “FD-FBL”, “Proposed”, and “MAP” increase monotonically
with the blocklength N. Meanwhile, our hybrid precoding
design always outperforms “MAP”, especially for short block-
length N. For example, our proposed hybrid precoding scheme
achieves performance gains of 3 to 14 times over the “MAP”
when the BS adopts the discrete phase shifters of 2-bit
resolution. For the discrete phase shifters of 1-bit resolution,
the “MAP” scheme can even hardly satisfy the constraints and
lead to poor performance. This result fully demonstrates the
advantages of our hybrid precoding scheme in the FBL regime.

C. MMF Hybrid Precoding

We further evaluate the minimum rate achieved by the
following schemes: (i) “Proposed”, namely the proposed Al-
gorithm 3; (ii) “FD-FBL”, which maximizes the minimum
FBL rate for fully digital precoding subject to the power and
QoS constraints (6b) and (6d) using the solutions proposed in
[29], [30]; (iii) “FD-IBL”, which maximizes the minimum rate
specified by the Shannon capacity for fully digital precoding
under the power and QoS constraints (6b) and (6d); (iv) “FD-
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Figure 7. Minimum FBL rate vs. number of RF chains for phase shifters
with different resolutions (Ny = 64, K = 12, N = 100, and P = 2 dBm).

IBL”, which evaluates the FBL rate of the fully digital precoder
obtained from (iii); (v) “MAP”, which obtains the hybrid
precoder using the MAP method [6], [7] based on the fully
digital precoder from (ii); and (vi) “Con-MAP”, which obtains
the hybrid precoder using the MAP method based on the fully
digital precoder from (iii).

Fig. 6 presents the minimum rate of the considered fully
digital and hybrid precoding schemes with continuous phase
shifters versus the transmit power budget P. As expected, the
fully digital precoders “FD-IBL” and “FD-FBL” achieve the
best IBL and FBL performance, respectively. However, unlike
the WSR case, a non-negligible performance gap between
“FD-FBL” and “FD-Conventional” always exists, since the
second term in the FBL rate (5) cannot be ignored in the
objective function of the MMF problem. We observe that our
proposed hybrid precoder always outperforms the heuristic
MAP-type hybrid precoding designs, as the latter often violates
the users’ QoS requirements. In contrast, our proposed solution
is always feasible, which demonstrates the necessity of consid-
ering our solution in practical FBL systems. Similarly, when
N, = 2K, both our proposed hybrid precoding algorithm
and “MAP” achieve similar performance as “FD-FBL”, while
“Con-MAP” and “FD-Conventional” perform close to each
other.
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In addition, in Fig. 7, we evaluate the minimum FBL rate
of the fully digital precoding scheme “FD-FBL” and hybrid
precoding methods ‘Proposed” and “MAP” versus the number
of RF chains for phase shifters with different resolutions. It
can be observed that our proposed hybrid precoding design
always performs better than “MAP”. For example, when the
BS employs N, = K RF chains and the ideal continuous
phase shifters, our proposed hybrid precoding scheme achieves
approximately 11 times higher performance than that of the
“MAP” benchmark. Additionally, under low-resolution phase
shifters, such as 1-bit or 2-bit quantization, or when the
number of RF chains is small, the heuristic "MAP" design fails
to meet QoS requirements and may easily get trapped into bad
and infeasible points, particularly for 1-bit resolution phase
shifters. Therefore, adopting our hybrid precoder is crucial
for latency-sensitive applications. Furthermore, as illustrated
in Fig. 7, our proposed optimization algorithm enables hybrid
precoding with just a few bits (e.g., 3-bit) quantization to
closely approach the performance of fully digital precoding,
even when the BS is equipped with N, = K RF chains, i.e.,
the minimum number of RF chains required to support multi-
user communication.

Finally, Fig. 8 shows the minimum FBL rate of the fully
digital precoding scheme “FD-FBL” and hybrid precoding
designs “Proposed” and “MAP” versus the blocklength N
for phase shifters with different resolutions. We observe that
our hybrid precoding solution always achieves the best perfor-
mance. Meanwhile, for the heuristic “MAP” scheme of low-
resolution, e.g., 1-bit and 2-bits, phase shifters, increasing the
blocklength N can hardly improve the performance. This again
demonstrates the superiority of our method.

VI. CONCLUSIONS

In this paper, we explored hybrid precoding designs for
massive MIMO systems in the FBL regime under the WSR
and MMF criteria. Considering the users’ minimum rate
requirements, maximum transmit power budget at the BS,
and various implementations of phase shifters, we formulated
hybrid precoding optimization problems to maximize the WSR
and the minimum users’ rate. In the formulated problems, the
digital and analog precoders are coupled in both the noncon-
vex objective functions and nonconvex constraints, rendering



their solutions challenging. To address these issues, we first
proposed novel problem transformation and decomposition
methods to reformulate the original complex problems into
specific forms, whose AL problems exhibit decomposable
structures and can be solved in a BCD manner. Then we
proposed two efficient PDD algorithms to solve the WSR
and the MMF hybrid precoding optimization problems, re-
spectively. Our proposed BCD-type solutions are applicable to
both continuous and discrete phase shifters. Simulation results
demonstrated that our proposed hybrid precoding schemes
outperform several considered benchmarks. Furthermore, the
results showed that hybrid precoding with several bits (e.g., 3-
bit) quantization phase shifters can approach the performance
of the fully digital precoding scheme.

APPENDIX A
PROOF OF THEOREM 1

Problem (34) is a quadratically constrained quadratic pro-
gramming (QCQP) with only one constraint (QCQP-1), and
also satisfies the Slater condition. Therefore, strong duality
holds for (34) [45], whose optimal solution can be obtained

via solving its dual problem given as
(66)

U(7) =min L
max () min Lr

Here, L, is the Lagra_ngian of problem (34), i.e.,

K
L, = wie™ 21:1 |qril* — wi Z %{(b(m) ) Qh.i }s
K

+ g kB w0 )

—Zm{(zitz—WhHF(t”“) ) b)) g

(TrL) -1 _ 2
+ Z#k (wrey™ + (072 4+ ) lai|
+ (wkcém) +(p) 72— 1) lqr.r|?
K
), )y Hp(tnt+l) (En+l) 2, _— 2

+2p(t>zi:1|P Z—hp F w; |*+7k0%, (67)
and 7 > 0 is the dual variable for constraint (28b). Note that
U(r) = —o0 if chém) + (pM)=1/2 — 7 < 0, we require
weel™ 4 (p®)~1/2 > 7. Additionally, the optimal solution

of problem (34) must satisfy the following KKT conditions:
oL,

m 1 m
22( kC,E ) + % + §W,Iq7—>Qk,i - wkb](f,i)

aq}c,i
— (p) R RO 40— 0, (68)
T >0, (69)
™ (ar) =0, (70)
Q(qr) <0, 1)
where ¢w = —1 if i = k and w j = 7, otherwise.

Now assume wkb(m) +(pM)ThFtntDw (t ntl) _ (t)
As qpr > 'ykak > 0 in constraint (28b), 1t follows from

condition (68) that the optimal dual variable 7* = wkc,(cm) +
(p¥)~1/2 . Thus, we have
* ka(? <t) hHF(t "Hw (t Y ;(fz .
qk,i = G 7é k.

(2wkc£ )+-0ﬂ”)—1)(14—ﬁk)
(72)

14

According to the complementary slackness condition in (70),
we have

Qay) = Y (Z#k |qzﬂ_|2 + a,ﬁ) - \q,’;?k|2 =0. (73)
Note that the phase of g ; cannot be uniquely determined
by (73), since the constraint and the objective function only
depend on the magnitude of g . Thus, the optimal solution
.k 18 given by

ai =V (3, latad? + ot)
where Oy i € [0,27] is arbitrary.
Next, assume wkbﬂ’ff + (p(t))flth(t,n+1)wl(€t,n+1) £
z,(;;c Then, the optimal solution (36) can be obtained from
(68) Substituting (36) into Q4 (q}), we have

T(7) = Q(ay)
Z#k 'wkb( + (pM)~ 1hHF(t n+1) g (t n+1)
=Yk _
(2“ "+ (p) 71+ 27%)

1/2
el (74)

‘wkb( )—i-(p(t)) thF(tn+1) (t"+1) (t)l

+7k0'k (Qch( m) T+ (p®) 1 — 22

(75)

From the complementary slackness condition (70), the optimal
dual variable 7* satisfies

T*Y(T*) =0 (76)

Note that T(7) is monotonically decreasing w.r.t. 0 < 7 <

kcém) 4 (p™)"1/2 and T (wkc(m) + (p®)~ 1/2) — oo

Therefore, we have 7* = 0 when T(0) < 0; otherwise, there

must exist a unique root 0 < 7* < wkc,(cm) + (p)"1)2

satisfying Y (7*) = 0. Define

A= 3[R w0
ik

b= [wrbfT 4+ (o) R R w0 Coa)

e=wrey™ + (o)1 /2. 79

Then solving Y(7*) = 0 is equivalent to solving the following

quartic equation
T(r) = (1o + (ser70? - sEitot)

+ (a — D92 + 425302 + 47,02 — 16627,30,3) 2

- (Qaam — 8835202 + 8302 + zzcm) T
+ G + 407t — b =0, (80)

whose solution can be obtained in closed form and the

existence of a unique real root 7* satisfying 0 < 7* <
cm

wiep + (pM)71/2 is guaranteed.
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