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Abstract— Wireless backhauling at millimeter-wave frequen-
cies (mmWave) in static scenarios is a well-established practice
in cellular networks. However, highly directional and adaptive
beamforming in today’s mmWave systems have opened new
possibilities for self-backhauling. Tapping into this potential,
3GPP has standardized Integrated Access and Backhaul (IAB)
allowing the same base station to serve both access and backhaul
traffic. Although much more cost-effective and flexible, resource
allocation and path selection in IAB mmWave networks is
a formidable task. To date, prior works have addressed this
challenge through a plethora of classic optimization and learn-
ing methods, generally optimizing Key Performance Indicators
(KPIs) such as throughput, latency, and fairness, and little
attention has been paid to the reliability of the KPI. We propose
Safehaul, a risk-averse learning-based solution for IAB mmWave
networks. In addition to optimizing the average performance,
Safehaul ensures reliability by minimizing the losses in the tail
of the performance distribution. We develop a novel simulator
and show via extensive simulations that Safehaul not only reduces
the latency by up to 43.2% compared to the benchmarks, but
also exhibits significantly more reliable performance, e.g., 71.4%
less variance in latency.
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I. INTRODUCTION

HE emergence of mmWave cellular systems created

a unique opportunity for Mobile Network Operators
(MNOs) to leverage a scalable and cost-effective approach to
deal with network densification. The fact that mmWave base
stations can support fiber-like data rates facilitates the use of
the same base station for both access and backhaul traffic,
a solution which in 3GPP parlance is referred to as IAB.
Consequently, 3GPP has included IAB in the standard [1],
[2] covering the details on architecture, higher layer proto-
cols, and the radio. Although Release 17 of 5G-NR defines
the interfaces, architectures, and certain system parameters,
the actual configuration and resource allocation is left to
MNOs.

Traditional self-backhauled networks featured fixed-wireless
links decoupled from access networks with static configura-
tions. In contrast, IAB should account for the dynamic nature
of the backhaul links (particularly in mmWave deployments)
and their integration with the access network. Further, IAB
allows the traffic to traverse several hops (i.e., base stations) to
reach its destination, thus increasing the problem’s complexity.
In addition to the scheduling problem, an IAB network should:
(i) solve the problem of path selection and link activation
at the backhaul while considering inter-cell interference, and
(ii) decide on serving access or backhaul traffic depending
on the access load and the ingress backhaul traffic from
neighboring base stations.

Prior work. Methodologically, the majority of the exist-
ing works [4], [5], [6], [7], [8], [9], [10], [L1], [12]
focus on classic optimization techniques to solve the
above-mentioned problem. However, given the large num-
ber of parameters involved, such formulations often result
in non-convex problems that are too complex for real-time
operations, but are nonetheless valuable indicators as per-
formance upper bounds. Recently, some works focus on
more practical solutions which can be deployed in real
networks [13], [14], [15]. Specifically, these works lever-
age Reinforcement Learning (RL) to tackle both resource
allocation and/or path selection in IAB mmWave networks
and demonstrate that RL-based solutions achieve real-time
performance.

Regardless of the methodology, prior works mostly aim
at maximizing the network capacity [4], [5], [6], [7], [8],
[9], [10], [11], minimizing latency [16], [17] and improving
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throughput fairness [5], [18]. Although these approaches suc-
cessfully improve the network performance, MNOs are often
more concerned about their reliability. For this reason many
commercial products rely on simplified but reliable algorithms
for resource allocation, despite their sub-optimal performance.
In this article, we propose Safehaul, a reinforcement learning-
based solution for reliable scheduling and path selection in
IAB mmWave systems under network dynamics. We use the
concept of risk aversion, commonly used in economics [19],
[20], to measure and enhance the reliability of Safehaul. The
following summarizes our contributions:

o« We model the scheduling and path selection problem
in TAB mmWave networks as a multi-agent multi-
armed bandit problem (Section III). We consider multiple
fiber base stations, simultaneously supporting many
self-backhauled mmWave base stations. In our model,
the self-backhauled base stations independently decide
the links to activate. The consensus among the base
stations is reached via standard-defined procedures
(Section IV-C).

o We present the first solution to provide reliable perfor-
mance in IAB-enabled networks (Section IV). Specifi-
cally, we investigate the joint minimization of the average
end-to-end latency and its expected tail loss. To this aim,
we propose Safehaul, a learning approach that leverages
the coherent risk measure Conditional Value at Risk
(CVaR) [19]. CVaR measures the tail average of the end-
to-end latency distribution that exceeds the maximum
permitted latency, thus ensuring the network’s reliability.

e We analytically bound the regret of Safehaul, i.e., we
bound the loss of Safehaul compared to the case when
the delays associated to all end-to-end paths between
self-backhauled base stations and fiber base stations are
known a priori. We show that, for the case when there are
no conflicts between the decisions of the self-backhauled
base stations, the average regret of Safehaul tends to zero
as the time increases. This regret bound characterizes
the learning speed and proves that Safehaul converges
to the optimal scheduling and path selection solution that
jointly minimizes the average end-to-end latency and its
expected tail loss.

o We provide a new means of simulating multi-hop IAB
networks by extending NVIDA’s GPU-accelerated sim-
ulator Sionna [21] (Section V). Specifically, we add
codebook-based analog beamforming capabilities for
both uplink and downlink communications. In addition,
we add internal Ray-tracing (RT) of Sionna in order
to generate Channel Impulse Response (CIR). Further,
we extend Sionna by implementing system-level compo-
nents such as layer-2 schedulers and buffers and Backhaul
Adaptation Protocol (BAP)-like routing across the IAB
network. We believe our IAB extensions will be instru-
mental for the open-source evaluation of future research
on self-backhauled mmWave networks.

o Exploiting the above simulator, we evaluate and
benchmark Safehaul against two state-of-the-art algo-
rithms [17], [22] based on deployment in two different
locations (Manhattan and Padova). The results confirm
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that Safehaul is significantly more reliable than the con-
sidered benchmarks, as it exhibits much tighter variance
in terms of both latency (up to 71.4% smaller) and
packet drop rate (at least 39.1% lower). Further, Safehaul
achieves up to 43.2% lower average latency and 11.7%
higher average throughput than the reference schemes.

II. SYSTEM MODEL

We consider a cellular system with [V base stations capable
of self-backhauling and D base stations with a fiber connection
to the core network. Following 3GPP terminology, we refer
to self-backhauled base stations as IAB-nodes (BS-nodes)
and to fiber base stations as IAB-donors (BS-donors).! Each
BS-node connects to the core network via a (multi-hop)
wireless link to a BS-donor. The sets of all BS-nodes and
BS-donors are denoted by N' = {1,...,N} and D =
{N + 1,...,N + D}, respectively. The system works in a
time-slotted fashion starting from time slot ¢ = 1 until a finite
time horizon 1. All the time slots ¢ = 1,..., I have the same
duration. The BS-nodes are equipped with two RF chains.
One RF chain is used exclusively for the communication
with cellular users (access network), while the second RF
chain is used for self-backhauling. In line with the 3GPP
specification [23], we assume half-duplex self-backhauling,
i.e., in each time slot ¢ a BS-node can either transmit, receive
or remain idle.

We model the connections between the base stations in slot
i as a graph G; = {V,&;}, see Fig. 1. The set V = N UD
of vertices is formed by all the BS-nodes and BS-donors in
the system. The set &; of edges is composed of the available
wireless links (n,l) between a BS-node n € AN and any
BS (BS-donor or BS-node) I € V in time slot 7. Note that
G; is not static. In a given time slot ¢, some links may be
unavailable due to failure, blockage, or interference. Thus,
only feasible wireless links are considered in the set &;. The
path X, ;4 from BS-node n to any BS-donor d is a sequence
of intermediate links (n, ). X,, 4 changes over time according
to the traffic loads of the intermediate BS-nodes and to the
channel conditions. We model the activation of link (n,)
with the binary variable z,;;. When z,;; = 1, the link
is activated and BS-node n transmits to BS [ € V in time
slot 4, whereas x,,; ; = 0 indicates that the link is deactivated.
Zp,n,i = 1 indicates that BS-node n does not transmit nor
receives backhaul data in time slot <.

Each BS-node n has a finite data buffer with capacity B'**
to store the backhaul data to be transmitted to any of the

Please note that throughout the paper we will use interchangeably
BS-nodes and IAB-nodes (and similarly for BS-donors and IAB-donors).
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BS-donors. In each time slot ¢, BS-node n is characterized by
its load and average queuing time. The load, denoted by B,, ; €
N, indicates the number of data packets stored in the buffer at
the beginning of time slot ¢. The average queuing time tfm €
R is the average number of time slots the current packets in
the data buffer have been stored. Additionally, we denote by
M, 1.; € N the number of data packets transmitted from n and
successfully received at [ in time slot 7 (i.e., when z,,;; = 1),
and with #}*,; € R" the transmission time needed to send
these packetsj Note that M, ;; < B, ; as only packets stored
in the data buffer can be transmitted. At the receiver BS-node [,
the load B ;41 of its data buffer is updated at the beginning
of the next time slot ¢ + 1 such that B ; + M, ;; < B
holds. That is to say, packets exceeding the buffer capacity are
dropped. Finally, when x,,;; = 0 both M, ;; and t:z)fl,i are
equal to zero.

We define the maximum tolerable latency T ,.x as the
maximum time a packet can take from its source BS-node
to any BS-donor. Any packet that is not delivered before
Thax milliseconds will be dropped. The average maximum
end-to-end latency Tn_,d from BS-node n to BS-donor d
is the average, over the complete time horizon I, of the
maximum delay a packet originating from BS-node n takes
to reach any BS-donor d in time slot . This is calculated as
Tha = %Zle Ty, a,i» where T, 4; is the maximum end-to-
end latency among all the packets originating in BS-node n
which reach BS-donor d in time slot i. T}, 4, is a sample of
the random variable T}, 4 drawn from an unknown stationary
probability distribution P that depends on the links xy, ;/,
neN,leV, i =1,...,i, activated up to time ¢, the user’s
mobility, the location of the BS-node n, the interference in the
system, and the queue dynamics. Accordingly, we define the
average maximum end-to-end latency in the system 7' as

_ 1 M2
T=5p 2> Tansa ()

n=1d=1

III. PROBLEM FORMULATION

The joint minimization of the average maximum end-
to-end latency and the expected value of its tail loss in
IAB-enabled networks is formulated in this section. We first
introduce CVaR, the risk metric accounting for minimizing the
events in which the end-to-end latency is higher than T} ..
Next, we formulate the optimization problem in the complete
network.

A. Preliminaries on CVaR

Traditionally, latency minimization in [AB-enabled net-
works has focused on optimizing the expected value of a
latency function [16], [17]. However, such an approach fails
to capture the time variability of the latency distribution, thus
potentially leading to unreliable systems in which T}, 4; >
Tax, for any i = 1,...,I, n € N and d € D. For this
purpose, we consider not only the average end-to-end latency
T in the system, but also its expected tail loss based on the
CVaR [19], [24].

Having in mind that 7T}, 4 is a random variable, we assume it
has a bounded mean on a probability space (2, F, P), with
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and F being the sample and event space, respectively. Using
a risk level a € (0, 1], the CVaRq (T}, q) of T}, 4 at risk level
« quantifies the losses that might be encountered in the a-tail.
More specifically, it is the expected value of T, 4 in its a-tail
distribution [24]. Formally, CVaR (T}, 4) is defined as [19]

CVaRy(T},¢) = min {q + lIEI max{T,.q4 — g, 0}]} , (@
q€R Q

where the expectation in (2) is taken over the probability
distribution P. Note that lower CVaR,, (T}, 4) results in higher
system reliability because the expected end-to-end latency in
the a-worst cases is low. Moreover, note that « is a risk
aversion parameter. For a = 1, CVaRq(T}.q) = E[T}, 4]
which represents the traditional risk-neutral case. Conversely,
lin% CVaRy(Th,q) = sup{T,q}. CVaR has been shown
?o_)be a coherent risk measure, i.e., it fulfills monotonicity,
subadditivity, translation invariance, and positive homogeneity
properties [25].

B. Optimization Problem

We jointly minimize the average maximum end-to-end
latency and its expected tail loss for each BS-node. For this
purpose, we decide which of the (n,l) links to activate in
each time slot ¢ during the finite time horizon I. In the
following, we formulate the optimization problem from the
network perspective and consider the sum over all BS-nodes in
the system. The latency minimization problem should consider
three different aspects: (¢) link activation is constrained by the
half-duplex nature of self-backhauling, (ii) only data stored in
the data buffers can be transmitted, and (7i¢) packet drop due
to buffer overflow should be avoided. Formally, the problem
is written as:

I
minimi}ze Z (Z (} ZTn,d,i> + HCVaRa(Tn,f)>

{lenrid T2X \dep i=1
(3a)
subject to Z Tl + Z Ty, =1,
1€V, i#n leEN

ncN,i=1,...,1 (3b)
B> My,: neN,leV,i=1,...,1 (3c)
Bij+ My ;< B"™, neNileV, i=1,...,1

(3d)
Tn1i€40,1}, neN,leV, i=1,....1. (3e)

In (3a), n € [0,1] is a weighing parameter to control the
trade-off between minimizing the average maximum end-to-
end latency de and the expected loss of its tail. The constraint
in (3b) considers half-duplex transmissions by ensuring that,
in each time slot ¢, every IAB-node communicates with up
to one of its neighbors by either receiving or transmitting
backhaul data. (3c) considers data causality, i.e., only data
already stored in the data buffers can be transmitted, and (3d)
prevents buffer exhaustion. As the considered scenario is
not static, solving (3) would require complete non-causal
knowledge of the system dynamics during the complete time
horizon I. However, in practical scenarios, knowledge about

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.
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the underlying random processes is not available in advance.
For example, the BS-node’s loads B, ; depend not only on
the transmitted and received backhaul data, but also on the
randomly arriving data from its users. Similarly, the amounts
of transmitted data M, ;; depend on the varying channel
conditions of both BS n and [. As a result, the exact values
of T}, 14, By, and M, ; ; are not known beforehand. For this
reason, we present in Sec. [V Safehaul, a multi-agent learning
approach to minimize in each BS-node the average maximum
end-to-end latency and the expected value of the tail of its
loss.

IV. OUR PROPOSED SOLUTION: SAFEHAUL

In this section, we describe Safehaul, a multi-agent learning
approach for the joint minimization of the average maximum
end-to-end latency and its expected tail loss in [AB mmWave
networks. In Safehaul, each BS-node independently decides
which links (n, ) to activate in every time slot ¢ by leveraging
a multi-armed bandit formulation. The consensus among the
BS-nodes is reached by exploiting the centralized resource
coordination and topology management role of IAB-donors
[1, Sec. 4.7.1].

A. Multi-Armed Bandit Formulation

Multi-armed bandit is a tool well suited to problems in
which an agent makes sequential decisions in an unknown
environment [26]. In our scenario, each BS-node n decides,
in each time slot 4, which of the links (n,[) to activate without
requiring prior knowledge about the system dynamics. The
multi-armed bandit problem at BS-node n can be characterized
by a set A, of actions and a set R, of possible rewards.
The rewards 7, ; € R,, are obtained in each time slot ¢ as a
response to the selected action a, ; € A, and the observed
latency. Since every BS-node n selects only one action during
each time slot, we enforce the half-duplex constraint in (3b)
by defining the set of possible actions as the set of feasible
links for BS-node n. In particular, we define A,, for n € N
as A, = {(n,1),(m,n)lm € N, 1 € V}, where link (n,n)
indicates that BS-node n remains idle. As blockages, over-
loads, or failures might render certain links (n,!) temporarily
unavailable, we define the set A, ; C A,, of available actions
in time slot ¢ as A,; = {(n,0),(,n)|(n,1),(l,n) € &}.
Selecting action a; = (n,!) in time slot ¢ implies x,;; = 1.

The rewards r,, ; are a function of the end-to-end latencies
T4 and depend on whether at BS-node n a link (n,!) or
(I,n) is activated. BS-node n is connected to the BS-donor
via multi-hop wireless links. Consequently, T}, 4, cannot be
immediately observed when a link (n,l), with I ¢ D is
activated. In fact, the destination BS-donor d might not even
be known to BS-node n in time slot ¢. To overcome this
limitation, we define the rewards r,; as a function of the
next-hop’s estimated end-to-end latency Thdﬂ; as

{ e+ Ti.ai, for link (n,1)
Tni = ) St

4
to i+ Todis for link (I,n), @
tx

where T; 4; is calculated as T; q; = min T}, ; and £.%;,,
; ., ( Jm, 1

,m)EE;
is calculated based on M, ; ; to ensure the causality constraint
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in (3¢) is fulfilled. Note that the constraint in (3d) cannot be
enforced, since multi-armed bandit algorithms learn from the
activation of both optimal and suboptimal links.

B. Latency and CVaR Estimation

As given in (4), BS-node n learns which links (n,l) to
activate by building estimates of the expected latency Tml
associated to each of them. Let K, ;; = Z;Zl Zn,,; be the
number of times link (n, ) has been activated up to time slot i.
The estimated Tn,l is updated using the sample mean as

T o Kn,l,iTn,l,i + Tn,i
n,li+1 —
Kn,l,i +1 ’

where the subindex ¢ is introduced to emphasize that the
estimate is built over time.

The CVaR definition given in (2) requires T, ¢ which,
as discussed before, is not known a priori. Hence, we leverage
the CVaR estimator derived in [27] to calculate the estimated
CVaR of a link (n,l). Let 7, ... ,F,nK"/’fibe all the rewards
received up to time 4. The estimated CVaR;(n,!) in time slot
4 18 calculated as [27]

&)

Kn,i,i
S 1 ot
nbi

Using the estimates in (5) and (6), BS-node n computes
the value @Q,,(an; = (n,1)) associated to the selected action
an € A, and defined as

Qu(an:) = Tuti + nCVaRi(n, ). @)

Note that (7) is aligned with the objective function in (3a).
Actions with an associated low value @, (an ;) lead to lower
end-to-end latency and a low expected value on its tail.

C. Consensus

All the BS-nodes independently decide which links to
activate based on their estimates of the end-to-end latency.
As a consequence, conflicting actions may be encountered.
A conflict occurs when two or more BS-nodes n and m aim
at activating a link to a common BS [, [ € V, ie., zp 1 =
ZTm,,i = 1. We reach consensus by first retrieving the buffer
and congestion status of the various IAB-nodes, leveraging
the related BAP layer functionality [1, Sec. 4.7.3]. With this
information at hand, conflicts are resolved by prioritizing the
transmission of the BS-node with the larger queuing times
t,; and loads B, ;. Then, we let the IAB-donor mark as
unavailable the time resources of the remaining base stations
with conflicting scheduling decisions [1, Sec. 10.9]. Note that
as the learning is performed at each BS-node, only the link
activation decision and the weighted sum of t?mi and B, ; are
transmitted. Thus, low communication overhead is achieved.

D. Implementation of Safehaul

Here, we describe how the above-mentioned solution can
be implemented in a real system. Specifically, we elaborate
on the required inputs and the interactions among the different
entities as well as the pseudo-code of Safehaul, see Alg. 1.
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Algorithm 1 Safehaul Algorithm at Each BS-node
Input: o, n, A,
1: Initialize T, ;, CVaR(n,1), and @, for all (n,l) € &

2: Set counters K, ; = 0 and initial action a, ; = (n,n)

3: for every time slot i =1,...,1 do

4 perform action a,, ;, observe reward 7, ; and increase
counter K,,; by one > Eq. (4)

5: update latency estimate Tn,l > Eq: (5)

6: update CVaR estimate m(n, 0) > Eq: (6)

7: update @, (an.;) > Eq: (7)

8: select next action a,, ;41 using e-greedy > Eq. (8)

9: share a,, ; 41, t?z,i and B,, ; with the other BS-nodes

10: if required, update a,, ;41 to reach consensus >
Sec. IV-C

11: end for

Safehaul is executed at each BS-node n. For its implemen-
tation, the MNO provides «, 1 and A, as an input. « is
the risk level parameter that influences the level of reliability
achieved in the system. Similarly, 1 controls the impact of
the minimization of the latency in the a-worst cases on the
overall performance. Both parameters, o and 7, are set by
the MNO depending on its own reliability requirements. The
set A, depends on the considered network topology, which is
perfectly known by the MNO. A,, includes all links (n,[) and
(I,m) to and from the first-hop neighbors of BS-node n.

The execution of Safehaul begins with the initialization of
the latency and CVaR estimates, and the values ) of the
actions in A,,. Additionally, the counters K, ;, that support
the calculations of 7},; and C/V\aR(n,l), are initialized for
all links in A, (lines 1-2). These parameters are updated
and learnt throughout the execution of Safehaul. At time
slot ¢ = 0, no transmission has occurred and B, o = 0.
Hence, BS-node n remains idle for the first time slot ¢ = 1,
i.e., an,1 = (n,n) (line 2). Next, and in each of the subsequent
time slots ¢ € {1,..., I}, the selected action is performed and
the corresponding reward is obtained (line 4). If BS-node n
transmits in time slot ¢, ie., a,; = (n,!l), the reward r,, ;
is sent by the receiving BS [ through the control channel. If
an,i = (I,n), the reward r,, ; depends, as given in (4), only
on the current estimates at BS-node n and the status of its
buffer B,, ;. With the observed reward 7, ;, the counter for
action a,; is increased and the latency and CVaR estimates
are updated (lines 4-6). Using the new estimates (lines 5
and 6), the value Q(ay ;) of the performed action ay; is
updated (line 7). The next action a, ;41 is then selected
according to e-greedy (line 8), which is a well-known method
to balance the exploitation of links with estimated low latency,
and the exploration of unknown but potentially better ones.
In e-greedy, a random action a,, ;41 from the set A, ;41 is
selected with probability ¢ € [0, 1]. With probability (1 — €),
instead, the action that yields the estimated lowest value is
chosen, i.e.,

randomly selected action from A, ;11, if v <e

An,i+1 =Y argmax Q,(by), if x> ¢,
bn€AnR, it1

®)
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where x is a sample taken from a uniform distribution in the
interval [0, 1]. Once the action a,, ;41 is selected, it is shared
with other BS-nodes in the network along with tg’i and B, ;
(line 9). As described in Section IV-C, this goes through the
control channel. If conflicts arise, consensus is reached by
prioritizing the transmission of the BS-node with the largest

loads and queuing times (line 10).

E. Regret Analysis

The regret ( is the expected loss caused by the fact that the
optimal action is not always selected [28]. Let T* and Tan be
the expected delay associated to the optimal action a* € A,
and the non-optimal action a,, € A, respectively. Similarly,
let CVaR" and CVaR,, be the CVaR of the optimal action
a* € A, and the non-optimal action a,, € A, respectively.
Formally, the regret (; after ¢ time slots is defined as

G =Y ((T., +nCVaR,,) — (T* + nCVaR")) E[K,, 1]

an €A

= Z AanE[KamiL )

an€A,

where K, ; is the number of times action a, has been
selected up to time slot <.

Proposition 1: For a network G in which the independent
decisions of the BS-nodes do not lead to conflicts, let A, =
|Ay| be the number of available actions for BS-node n.
Additionally, let ¢ > 0, 0 < d < 1, and ¢; := min(1, Cdé;)
Then, there exists a positive constant C > 1, such that
the probability that Safehaul chooses a non-optimal action

an # a* after i > cA,/d time slots is upper bounded as
2Cd?
n ((2;22280.5)

c (i — 1)d?e% =

c de ¢
< — 4+ B2
— d? + dz " +

Play,; = ay]

Proof: See the Appendix. ]

Theorem 1: For a network G in which the independent
decisions of the BS-nodes do not lead to conflicts, the regret
C; of Safehaul after i time slots is upper bounded by

%

c de < 20d2
G < Z Ay [ 1+ Z 2 + ﬁBﬁ + (i'—1)d2e05
an€An =2 cln (W)

c (i/ _ 1)d2€0'5 522
+ 40 (d21n <C‘An Bi' B

where ¢ > 0 and 0 < d < 1.
Proof: From the definition in (9), the regret can be upper
bounded as

G< S A, (1+§ij[an,y:an]>, (10)
an €A, /=2

by considering that E[K,, ;] <1+ Y% _, Plan.i = an]. The
bound is obtained by including the result of Proposition 1
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in (10) as
: c de < 2Cd?
Ci S ZAG" 1 + Z W + ﬁBz’ + ) ((i’fl)d%o-f’)
an€A, =2 L Ry W—

o 1 d2 0.5 62
140 (;2111 (“ cf)ln ¢ )) B D (11)

As every term in square brackets decreases monotonically in
i/, the regret (; grows sub-linearly. (]

V. SIMULATION SETUP

Given the lack of access to actual 5G (and beyond) net-
work deployments, prior works mostly rely on home-grown
simulators for performance evaluation. Although this is a
valid approach, these simulators often cannot fully capture
the real network dynamics, introducing strong assumptions in
the physical and/or the upper layers of the protocol stack.
Until very recently, the most complete simulator for IAB
networks was a system-level simulator [29] developed as an
extension of the ns-3 mmWave module [30]. However, despite
accurate modeling of the IAB protocol stack, it is currently
behind the latest IAB specifications.> Moreover, the ns-3 IAB
extension is unsuitable for large simulations with hundreds of
nodes due to reliance on an older version of the mmWave
module. Therefore, in our work we opt for Sionna [21],
which is an open-source GPU-accelerated toolkit based on
TensorFlow.

However, unlike the aforementioned ns-3 module, Sionna
is a physical layer-focused simulator that does not explic-
itly model 5G networks, thus lacking the characterization
of the 5G-NR upper-layer protocol stack. Hence, we extend
Sionna by including the system-level functionalities such as
MAC-level scheduling and RLC-level buffering. Furthermore,
since Sionna exhibits slight differences compared to the
5G-NR physical layer, we extend Sionna’s physical layer
model [21] with the 5G-NR procedures. In the following,
we describe the details of our extensions, which are publicly
available.’

A. Extensions to Sionna’s Physical Layer Module

In this section, we describe the physical layer modifica-
tion that were necessary to evaluate IAB scenarios using
Sionna.

1) Codebook-Based Beamforming: Sionna’s native beam-
forming only supports Zero-Forcing (ZF) pre-coding in
downlink. Therefore, as a first step, we extend Sionna by
implementing an NR-like codebook-based analog beamform-
ing both at the transmitter and at the receiver. Specifically,
we assume that the beamforming vectors at the transmit-
ter wy, and at the receiver w,, are a pair of codewords
selected from a predefined codebook. The codebook is com-
puted by defining a set of beam directions {w, ,} which
scans a given angular sector with a fixed beamwidth. The

2For instance due to the assumption of L-3 (instead of L-2) relaying at the
IAB-nodes which was based on a draft version of TR 38.874 [23].
3https://github.com/TUDA-wise/safehaul_infocom2023
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our additions to the baseline simulator, i.e., Sionna [21].

steering vector a,, corresponding to direction w,, can
be computed as:

Com e s . )
_ 7 2Ed(iy sin ayp sin Bg+iy cos 3
ap’q—[l,..we ~ P a ‘I),...,

T
ejo"d((NH—l) sin oy sin Bq+(Ny —1) cos B4)

(12)
where Ny and Ny are the number of horizontal and vertical
antenna elements, respectively. The horizontal and verti-
cal indices of a radiating element are denoted by iy €
{0,...,Nyg — 1} and iy € {0,..., Ny — 1}, respectively.
ap and 3, represent the azimuth and elevation angles of wy, 4.
Next, we define the codebook as the set { (v Nu Ny ) - Wp q}-

In line with the 5G-NR beam management procedure [31],
we assume the lack of complete channel knowledge, i.e., the
communication endpoints do not know the corresponding
channel matrix. Accordingly, an exhaustive search is con-
ducted to identify the best pair of codewords resulting in
the highest Signal to Interference plus Noise Ratio (SINR).
We leverage a hierarchical search, in which the communication
pairs first perform a wide-beam search in which the transmitter
and the receiver approximate the direction of communication,
see Fig. 2. Next, the beamforming direction is fine-tuned
through a beam refinement procedure going through a code-
book with narrow beams. Consequently, we employ two types
of codebooks, one with wide beams for sector sweep and
another with narrow beams for beam refinement.

2) SINR Computations: Since Sionna does not natively
calculate the SINR, we add this functionality to the simulator
to better model the impact of interference in our simulations.
We compute the SINR experienced by Transport Blocks (TBs)
by combining the power of the intended signal with that of

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.
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the interferers and of the thermal noise. Specifically, we first
compute the power P, (4, f) of the intended signal at receiver n
over frequency f and in time slot i. Then, we obtain the overall
interference power by leveraging the superposition principle
and summing the received power from all other interfering
base stations P, (i, f) where m # n. For the purposes of
this computation, we assume that each interferer employs
the beamforming vector yielding the highest Signal to Noise
Ratio (SNR) towards its intended destination. Similarly, the
transmitter and the receiver use the beamforming configuration
estimated via the hierarchical search procedure. Finally, the

SINR is v, (¢, f) = 5= P&’;f}’)ﬁag(iyf) where o2 (i, f) is the
mzZn

thermal noise power at the receiver.

B. System-Level Extensions to Sionna

As mentioned, Sionna is mainly a physical layer simu-
lator. However, to get closer to IAB networks as specified
in Rel. 17, we have extended Sionna by implementing a
selection of system-level features. To such end, we introduced
a discrete-event network simulator for modeling IAB net-
works. This system-level extension operates on top of Sionna
and provides basic functionalities such as a Medium Access
Control (MAC)-level scheduler, layer-2 buffers, and data flow
and path selection mechanisms. Our simulator, depicted in
Fig. 2, generates a variety of system-level KPIs such as latency,
throughput, and packet drop rate.

1) Data Flow and Buffer: 3GPP has opted for a layer-2
relaying architecture for BS-nodes where hop-by-hop Radio
Link Control (RLC) channels are established. This enables
retransmissions to take place on the affected hops only, thus
preventing the need for traversing again the whole route
from the BS-donor whenever a physical layer TB cannot be
successfully decoded. This design results in a more efficient
recovery from transmission failures and reduces buffering at
the communication endpoints [32]. To mimic this architecture,
we have implemented RLC-like buffers at each base station.
Specifically, each BS-node features layer-2 buffers for both
received and transmitted packets. For instance, the data flow
for an uplink packet is the following. The User Equipment
(UE) generates packets and sends a transmission request to
the base station. Consequently, the scheduler allocates OFDM
symbols for this transmission, which is eventually received and
stored at the RX buffer of its Distributed Unit (DU). Next, the
packet is placed into the TX buffer to be forwarded to the
suitable next hop BS-node. This procedure is repeated until
the packet crosses all the wireless-backhaul hops and reaches
the BS-donor. Note that the packet can be dropped due to
latency constraints or to interference.

2) BAP: To manage routing within the wireless-backhauled
network, the 3GPP introduced BAP, i.e., an adaptation layer
above RLC which is responsible for packet forwarding
between the BS-donor and the access BS-nodes [33]. Our
simulator mimics this by associating each BS-node to a unique
BAP ID. Moreover, we append a BAP routing ID to each
packet at its entry point in the Radio Access Network (RAN)
(i.e., the BS-donor and the UEs for DL and UL data, respec-
tively). Then, this identifier is used to discern the (possibly
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TABLE I
SIMULATION PARAMETERS

Parameter | Value

Carrier frequency and bandwidth 28 GHz and 400 MHz
IAB RF chains 2 (1 access + 1 backhaul)
Pathloss model UMi-Street Canyon [34]
Number of BS-nodes N {223 NY, 100 Padova}
Source rate {40, 80} Mbps

IAB Backhaul and access antenna array 8Hx8V and 4Hx4V

UE antenna array 4Hx4V

IAB and UE height I5mand 1.5 m

IAB antenna gain 33 dB

Noise Figure 10 dB

Risk level o 0.1

Reliability weight factor n 1

multiple) routes toward the packet’s intended destination [33].
The choice of the specific route is managed by Safehaul.

3) Scheduler: We implemented a MAC-level scheduler
which operates in a Time Division Multiple Access (TDMA)
mode. The scheduler periodically allocates the time resources
to backhaul or access transmissions in a Round-Robin fash-
ion.* Specifically, each cell first estimates the number of
OFDM symbols needed by each data flow by examining the
corresponding buffer. Then, the subframe’s OFDM symbols
are equally allocated to the users. If a user requires fewer
symbols to transmit its complete buffer, the excess symbols
(the difference between the available slot length and the
needed slot length) are distributed to the other active users.

VI. PERFORMANCE EVALUATION

In our simulations, we consider realistic cellular base sta-
tion deployments in Manhattan, New York City’> and in the
historical city center of Padova. Specifically, for the former
we collect the locations of N = 223 5G-NR base stations in
an area of 15 Km? as depicted in Fig. 4b. On the other hand,
in the Padova topology we combine locations of N = 100
4G-LTE Base Station (BS) of different MNOs (WINDTRE,
TIM, and Vodafone) in an area of 10 Km? as depicted in
Fig. 4, due to the lack of 5G-NR base station deployment
at the time of writing of this paper. The detailed simulation
parameters are provided in Table I. We used the channel
model outlined by 3GPP in TR 38.901 [34], which provides
a statistical channel model for 0.5-100 GHz, and analyzed the
“Urban Micro (UMi)-StreetCanyon” scenario.

Benchmarks. To provide better insights on the performance
of Safehaul, we replicate two approaches from the state of
the art: (7) Scalable and Robust Self-backhauling Solution
(SCAROS), a learning-based approach that minimizes the
average latency in the network [17], and (i¢) Maximum
Local Rate (MLR), a greedy approach aiming to maximize
throughput by selecting the links with the highest data rate.

Our evaluations consider six scenario to study the algo-
rithms’ convergence to a steady state, the number of BS-nodes,
the number of BS-donors, and the impact of risk aversion.

4The choice of the specific scheduling algorithm is outside of the scope
of the 3GPP NR specifications, and is thus left to the MNOs. Accordingly,
a Round-Robin scheduling policy represents a typical baseline assumption.

5The locations correspond to the network of T-Mobile, which has the largest
deployment among the MNO:s.
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Fig. 4. Locations of BS-nodes (red dots) and of the BS-donor (green triangle)
in the Manhattan (left) and Padova (right) topologies.

When demonstrating the results, we show the average through-
put, latency, and packet drop rate per UE. We also show the
statistical variance of the obtained results using candlesticks
which include the corresponding max, min, mean, and 10 and
90 percentiles.

A. Scenario 1: Average Network Performance

Analyzing the performance of the algorithms as a function
of time is crucial to determine the convergence speed of the
learning-based techniques, i.e., Safehaul and SCAROS. Hence,
in Fig. 5 we show the average network performance over time
for three metrics: latency, throughput, and packet drop rate.

In Fig. S5a, we can observe that Safehaul rapidly converges
to an average latency of approximately 8.6 ms which is 12.2%
and 43.4% lower than the latency of SCAROS and MLR,
respectively. The high performance of Safehaul stems from
the joint minimization of the average latency and the expected
value of its tail loss, which results in avoiding risky situations
where latency goes beyond Ti,.x. This is not the case for
SCAROS where we observe a high peak in the latency before
convergence, i.e., between zero and 1000 ms. It is exactly
the avoidance of such transients in Safehaul that leads to
higher reliability in the system. The reliability offered by
Safehaul allows MNOs to deploy self-backhauling in an online
fashion and without disrupting the network operation. The
performance of MLR is constant throughout the simulation,
as it is not designed as an adaptive algorithm.

Figure 5b shows that the risk-aversion capabilities of Safe-
haul have no negative impact on the average throughput of
the network. The performance of Safehaul is comparable
to that of SCAROS, approximately 79.3 Mbps, and 11.7%
larger than the performance of MLR. The performance shown
in Figure S5c is consistent with the behavior observed in
Figure 5a. As Safehaul additionally minimizes the a-worst
latency, it achieves the lowest packet drop rate compared to
the reference schemes, namely, 30.1% (84.0%) lower than
SCAROS (MLR).

B. Scenario 2: Impact of the Network Size

In Fig. 6 we evaluate the reliability of the three considered
approaches for different network sizes. Specifically, we vary
the number of BS-nodes from 25 to 200. At the same time,
we increase the load in the network by increasing the number
of UEs. From the figures, we can clearly see that Safehaul
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consistently achieves a lower variation compared to the refer-
ence schemes. This verifies that Safehaul achieves the intended
optimization goal, i.e., the joint minimization of the average
end-to-end delay and its expected tail loss.

Fig. 6a shows that Safehaul is able to maintain an almost
constant latency as the number of BS-nodes increases. Specif-
ically, the variation of latency with Safehaul is 56.1% and
71.4% less than with SCAROS and MLR, respectively. Fur-
thermore, Safehaul achieves 11.1% and 43.2% lower latency
compared to SCAROS and MLR, where the high variance
exhibited by the latter is due to a lack of adaptation capa-
bilities. As shown in Fig. 6b, the average throughput of the
learning-based approaches Safehaul and SCAROS remains
constant for the different values of the network size. However,
the lowest variation in the throughput is achieved by Safehaul,
i.e., only 0.90 compared to 1.9 and 2.8 in the benchmark
schemes. Such behavior corroborates Safehaul’s reliability
capabilities. The packet drop rate for different numbers of
BS-nodes is shown in Fig. 6¢. Safehaul not only consistently
outperforms the reference schemes, but also has the minimum
variation in the results (at least 47.3% lower compared to the
benchmarks). Considering the largest network size and load,
i.e., 200 BS-nodes and 400 UEs, Safehaul achieves 49.3%
and 81.2% lower packet drop rate compared to SCAROS and
MLR, respectively.

C. Scenario 3: Impact of the Number of BS-donors

Although the benchmark schemes do not support multiple
BS-donors, Safehaul is designed to accommodate such sce-
narios. In Fig. 7, we investigate the impact of the number of
BS-nodes on Safehaul. To this end, we keep the number of
UEs and their data rate constant.

We observe in Fig. 7a that the highest latency is experienced
when only one BS-donor is present in the network. This
stems from the tributary effect of self-backhauling where the
traffic flows towards a central entity which itself can become
a bottleneck. As the number of BS-donors increases, the
traffic is more evenly distributed, resulting in lower latency.
Specifically, the average latency decreases from 8.2 ms for
D =1 to 1.7 ms when D = 5. Since the load is constant
in this scenario, the average throughput also remains constant
for all different numbers of BS-donors, see Fig. 7b. Notably,
Safehaul’s learning speed is maintained for the different values
of D. This is an important feature because having more
BS-donors exponentially increases the number of paths a
BS-node has to the core network. From a learning perspective,
such increment implies a larger action set and a lower learning
speed. Safehaul avoids this problem by learning the average
latency based on the estimates of its neighbors and not on the
complete paths to the BS-donors. Finally, Fig. 7c shows that
a larger number of BS-donors significantly reduces the packet
drops, which also stems from a better distribution of traffic
flows in the network, as observed in Fig. 7a.

D. Scenario 4: Impact of the Risk Parameter o

The definition of losses in the tail of the latency distribution
is controlled by the risk level parameter «. Its impact on the
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average latency is shown in Fig. 8, where an increasing behav-
ior is observed for a < 0.7. The lowest latency is achieved
for a = 0.1, which corresponds to the most risk-averse, and
therefore the most reliable, case out of all the considered ones.
The non-monotonic behavior of the average latency versus
« can be explained by the so-called exploration-exploitation
trade-off: the higher «, the higher the level of risk, which in
turn leads Safehaul to learn more about the environment and
choose a more reliable action. Eventually, as o grows beyond
approximately 0.7, the performance of Safehaul tends to that
of the risk-neutral case. As a consequence, the algorithm
undertakes excessive exploration, which causes a degradation
of the average latency performance.

E. Scenario 5: Performance in Different Topologies

To verify the generality of the proposed algorithms, it is
essential to examine how they perform in different topolo-
gies, and consider both typical network performance metrics
(i.e., along the lines of Scenario 1) and their stability with
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(b) Average per-UE throughput
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Network performance for 50 UEs and 40 Mbps per-UE source rate, versus the number of BS-donors (Scenario 3).
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Fig. 8. Average latency for 50 UEs and 20 Mbps per-UE source rate, versus
the risk level o (Scenario 4).

respect to the number of BS-nodes and BS-donors (Scenar-
ios 2 and 3). To this end, we ran additional simulations
in the deployment depicted in Fig. 4b, which mimics the
BS-nodes locations of the historic center of Padova. We report
the average network performance over time, in terms of end-
to-end packet drop rate, throughput, and latency in Fig. 9.
Overall, the outcomes of this simulation campaign are in line
with those obtained in Scenario 1. Specifically, as seen in
Fig. 9a, Safehaul quickly converges to an average latency
of approximately 8 ms, which is 14% and 31% lower than
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SCAROS and MLR’s latency. Fig. 9b shows the average per-
UE throughput, for which Safehaul achieves about 4% and
17% better performance than SCAROS and MLR, respectively.
Similarly, the performance depicted in Fig. 9c is in line with
that reported in Figs. 9a and 9b, with Safehaul achieving
approximately a 24% and 38% smaller packet drop rate than
SCAROS and MLR, respectively.

In Fig. 10, we compare the consistency of the performance
of the three algorithms with respect to the network size. In par-
ticular, we change the number of BS-nodes from 25 to 100,
keeping fixed the number of UEs per BS-node and thus effec-
tively increasing the network load on the BS-donor. Results
show that Safehaul, when compared to other schemes, exhibits
minimal performance degradation when introducing additional
BS-nodes and UEs. As can be seen in Fig. 10a, the latency
achieved by Safehaul increases by at most 16% in the case
of 100 BS-nodes, while SCAROS and MLR lead to a latency
which is consistently higher and increases up to 27% and 25%
when deploying additional nodes, respectively. Similar trends
can be observed in Figs. 10b and 10c, which report throughput
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and packet loss versus the network size, respectively. Indeed,
Safehaul is the best performer across the whole range of
BS-nodes which have been considered. Furthermore, Safehaul
loses 20% more packets with the denser network deployment
(i.e., 100 BS-nodes), while reference schemes exhibit an
increase in packet loss of up to 33%.

We complete this analysis by examining how the number
of donors affects the performance achieved by Safehaul in the
Padova-like topology. As can be seen in Fig. 11, increasing
the number of fiber-backhauled base stations progressively
reduces the latency. Similarly, and in line with the results
obtained in Scenario 3 and reported in Fig. 1lc, the packet
drop rate varies from approximately 0.08% when considering
a single BS-donor, to approximately 0.003% in the presence
of five BS-donors. The performance improvements introduced
by additional fiber links saturate after 3 donors, thanks to the
efficient routing and scheduling performed by Safehaul.

In summary, the results obtained in the additional topology
mimicking the historical center of Padova are well aligned
with those obtained in the Manhattan topology. Although

cable license agreement with IEEE. Restrictions apply.



GARGARI et al.: RISK-AVERSE LEARNING FOR RELIABLE mmWAVE SELF-BACKHAULING

4999

—— Safehaul

SCAROS

»

R

—— Safehaul
SCAROS

—=— MLR

Packet drop rate [%)]

M 1

—s— MLR Z 50
15 4ma—na—as =
= =75
g 2
10 z:f, 70
- 565 —— Safehaul
5 - SCAROS
P —=— MLR
| ; ; | 55 ; ;
0 1000 2000 3000 4000 5000 0 1000 2000

Simulation time [ms]

(a) Average per-UE end-to-end latency

Simulation time [ms]

(b) Average per-UE throughput

2000 3000 4000

Simulation time [ms]

3000 4000 5000 0 1000 5000

(c) Average per-UE packet drop rate

Fig. 12. Average network performance for 50 UEs and 80 Mbps per-UE source rate where 1 random BS-node is shut down.
25 90
—— Safehaul 301 —— Safehaul
2 SCAROS _ s SCAROS
—s— MLR R e S B —— X257 e MR
&) ©
= z2
-] o
EX( 215
g g 5
a H <
5 —— Safehaul "§ 10
5 60 SCAROS =5
—=— MLR —_ 1"
0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Simulation time [ms] Simulation time [ms] Simulation time [ms]
(a) Average per-UE end-to-end latency (b) Average per-UE throughput (c) Average per-UE packet drop rate
Fig. 13. Average network performance for 50 UEs and 80 Mbps per-UE source rate where 3 random BS-nodes are shut down.

the specific values of the network metrics achieved by the
considered schemes in the two topologies are different (for
instance, SCAROS achieves a 66% lower packet drop rate in
Scenario 1 compared to Scenario 5), the trends among the
various schemes are the same. Specifically, we observed that
Safehaul consistently achieves the best performance in com-
parison to SCAROS and MLR across different metrics, which
supports the claim that the proposed scheduler is capable of
learning how to optimize arbitrary deployment topologies.

E Scenario 6: Network Resilience

In networking, resilience refers to the ability of a network to
recover in a quick and effective fashion from disruptions, thus
providing reliable and high-quality communication services to
its users. Specifically, the ability to recover from link failures is
particularly important in IAB networks, where backhaul links
are susceptible to the typical disruptions which plague the
RAN due to its mobile and wireless nature. For instance, the
links among BS-nodes can be degraded by adverse environ-
mental conditions such as heavy rain and monsoons, physical
obstacles and network congestion. These disruptions can cause
temporary or permanent communication failures, which in turn
result in degraded performance and/or loss of connectivity
for the end users. To prevent and/or recover from these
undesired events, a backhaul scheduler must detect, mitigate,
and recover from various types of disruptions and failures,
and must maintain the required level of service availability
and performance despite the time-varying channel conditions.

We benchmark the resilience of the proposed algorithm
by mimicking radio link failures, which we simulate by
stopping BS-nodes at a fixed time instant (2000 s), and
inspecting the resulting performance degradation. Since the
failed node(s) is (are) chosen at random, we run multiple

simulations to estimate the average network performance,
as shown in Figs. 12 and 13 for the case of one and three
link failures, respectively.

Results show that MLR is unable to react to the link
failure(s) due to its static and myopic policy. Specifically,
the disruption causes an increase of 33% (60%) in latency,
and a decrease of up to 15% (23%) in throughput when
considering one (three) link failure(s). On the other hand,
both Safehaul and SCAROS are capable of adapting the
scheduling to the new topology. Indeed, both schemes show a
transient region where the performance is slightly degraded
since the algorithms are learning new routes and resource
partitions to account for the lost link. Nevertheless, Safehaul
and SCAROS eventually converge to a solution which provides
approximately the same network performance as before the
failures, in both cases of one and three lost links.

VII. RELATED WORK

Self-backhauling wireless networks have been studied in
different contexts. Ranging from the so-called Heterogeneous
Networks (HetNets) and IAB 5G New Radio (NR) systems,
to Cloud Radio Access Networks (C-RANSs), each has consid-
ered a different set of premises and optimization goals. In this
section, we review the related work in the context of basic
assumptions and their optimization goals.

Ideal backhaul links. Numerous works assume either an
infinite or fixed capacity backhaul link. This is often motivated
by the presence of a wired fiber link between the Small Base
Stations (SBSs) and the Macro Base Station (MBS) [4], [6],
[71, [8]. Indeed, most of these works consider a scenario
where a centralized Baseband Unit (BBU) is connected to
several Remote Radio Heads (RRHs), i.e., radios which lack
signal processing capabilities [4], [6], [7]. In particular, the
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authors of [7] consider an even more complex C-RAN scenario
where RRHs feature caching and signal processing capabili-
ties. However, in an IAB context it is fundamental to consider
limited-rate, time-varying backhaul channels and to study the
impact of such limitations on the performance of the RAN.

Constrained topologies. It is often assumed that
self-backhauled networks have a specific topology. This
assumption usually simplifies the problem and makes it
tractable and/or solvable in polynomial time. For instance, the
authors of [9], [10], and [13] assume a single-hop network
where each SBS is directly connected to the MBS. In [11],
a k-ring deployment is considered, i.e., a topology where a
single IAB-donor provides backhaul connectivity to k rings of
IAB-nodes. Even though this topology can be used to model
networks with arbitrary depth, it maintains a symmetric load
for each node, an assumption which generally does not hold in
real networks. In fact, the 3GPP does not impose any limits on
the number of IAB-nodes which can be connected to a given
IAB-donor, nor does it set an upper bound on the number
of wireless hops from the latter to other wireless-backhauled
base stations [23]. Accordingly, in our problem formulation
we consider IAB networks with an arbitrary number of nodes
and an arbitrary maximum number of wireless hops between
MBSs and SBSs.

Simplistic traffic models. Some works either assume a
full buffer traffic model and/or impose flow conservation
constraints. In particular, the authors of [8] and [35] consider
systems where the capacity of each link can always be fully
exploited thanks to the presence of infinite data to transmit at
each node. However, in actual IAB deployments the presence
of packets at the MBSs and SBSs is conditioned on the status
of their RLC buffers and, in turn, on the previous scheduling
decisions. Moreover, packets can actually be buffered at the
intermediate nodes, thus preventing the need for transmitting
a given packet in consecutive time instants along the whole
route from the IAB-donor to the UEs (or vice versa).

Optimization goals. The works in the literature focus on
different optimization goals. Therefore, they prioritize differ-
ent network metrics. For instance, the authors of [36] aim
to optimize the beam alignment between MBSs and SBSs.
Instead, the work of [5] aims to compute the optimal user-
to-base-station association. However, they neglect backhaul
associations and focus on the access only. In [5], [9], [35],
and [37] the objective function is a function of the users data-
rate. In particular, the authors of [35] optimize the max-min
user throughput, arguing that such a metric better captures the
performance of the bottleneck links. In [16], the average rate
of each link is maximized under bounded delay constraints.
In our work, we focus on reliability by minimizing not only
the average end-to-end delay, but also the expected value of
the worst-case performance. The work closest to this article
is SCAROS [17], a learning-based latency-aware scheme
for resource allocation and path selection in self-backhauled
networks. Assuming a single IAB-donor, the authors study
arbitrary multi-tier IAB networks considering the impact of
interference and network dynamics. In contrast, we aim at
enhancing the reliability of the IAB-network by jointly mini-
mizing the average end-to-end delay and its expected tail loss.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 6, DECEMBER 2024

VIII. CONCLUSION

In this work, we proposed the first reliability-focused
scheduling and path selection algorithm for IJAB mmWave
networks. We illustrated that our RL-based solution can cope
with the network dynamics including channel, interference,
and load. Furthermore, we demonstrated that Safehaul not
only exhibits highly reliable performance in the presence of
the above-mentioned network dynamics, but also outperforms
the benchmark schemes in terms of throughput, latency and
packet-drop rate. The reliability of Safehaul stems from the
joint minimization of the average latency, and the expected
value of its tail losses, by leveraging CVaR as a risk metric.

Reliability is a highly under-explored topic that definitely
deserves more investigation. Some interesting research direc-
tions are the maximization of reliability under the assumption
of statistical system knowledge, or the evaluation of the
network’s reliability when the functionality of the BAP layer
is compromised. Furthermore, our system-level extension to
Sionna can be further developed to support an arbitrary
number of RF chains and in-band backhauling, allowing more
extensive investigation of IAB protocols and architectures.

APPENDIX

For the proof of Proposition 1, Theorem 3 in [27] is needed.
For completeness, we first present the theorem in [27] for
the special case in which the considered random variables are
independent. Next, we present the proof of Proposition 1.

Theorem 2: Let T, ; be independent random variables
where maxi<j<; Lo, ; = Tmax with ¢ € {1,2,...}. Then,
forany 0 < 6 < 1/2, £ > 0 and v > 0, there exists a
positive constant C' which only dws on & and 7y, such
that the probability of the event |CVaR,, ; — CVaR,,, ;| >
2504_1Tmaxi_5(1nlni)1/2 Ini is smaller than or equal to
Cef(lJr'y) Ini

Proof: See Theorem 3 in [27]. O

Proof of Proposition 1

Proof: In this proof, we use the result of the regret
bound for the risk-neutral case without CVaR, shown in [28,
Theorem 3], as a basis. Additionally, we use the bound for
the terms related to the CVaR formulated in [27, Theorem 3].
Using both these results, we first bound the probability that
Safehaul chooses a suboptimal arm in the exploitation phase.
Then, we combine the latter with the probability of choosing
a suboptimal arm in the exploration phase to derive the bound
given in Proposition 1.

From the system model and Proposition 1, we have that
¢c>00<d <1, and ¢, := min(l, C;;;L). Moreover,
an,; 1S the action chosen by e-greedy in time slot ¢ and
K, ; is the number of times, up to time slot ¢, in which
Safehaul chose action a,, at random. Similarly, we use K
for the counter of the optimal action. Ty, ; are independent
random variables distributed according to the rewards linked
to action a,,. We use 7" for the optimal action, and Tami is the
estimated mean of the probability distribution of the rewards
linked to action a,, using E‘M samples. As before, we use

Ty for the optimal action. CVaR,,, ; is the estimated CVaR of
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%
action a,, up to time slot ¢ and CVaR, is the estimated CVaR
of the optimal action up to time slot 7. Then, the probability
that action a,, is chosen in time slot ¢ is upper bounded as

€; €
P n,i — nS]P) 5(1 i— S(ﬁ_ 1- 717 13
[an,i = an] <P [da, i1 zl]( An)+An (13)
with 8o, ;1 = Ta, i1 +7CVaRq, ;1 and 67, = 17, +
nC/V\aRFl. The first term in (13) is the probability of explmta-

tion and the second term to the probability of exploration.
Using the mean Tan and CVaR,, of action a,, and the
likewise defined T* and CVaR* for the optimal action, we set
Amean .— T, —T* and AL := CVaR,, — CVaR". Using
these definitions in (13) we conclude

P [ba,.i-1 < 0;_4] <
r mean

cvar
P 50‘"71'—1 S T]CVaRan — a’#+ Tan - 77(;”:|

mean
+P|T* + g

cvar

+nCVaR* +n ‘; < 52‘_1}

mean

nri—1 < Ta, bl

_ mean R
} +P[T* + —“2" <T* 1}

+P|CVaR,

cvar
n,t—1 S CV&R’an - t;" :l

+P|CVaR* +

Cvar

(14)

S < CVaR,_ 1]

Similar to [28], we use the Chernoff-Hoeffding bound for
the first two terms in (14). For the last two summands,
there remains to find a boLn_d\ for the difference between
the CVaR and its estimate CVaR. From Theorem 2, we set
§ =AY a /4T haz, 6 = 0.5 and by using the limit v — 0,
we obtain

Acvar C
1

P||CVaR,, ; — CVaRq, i > =57 (Inln i) Ini| <

5)

As max; i %%(Inlni)%®Ini < 1, the condition

(A /2)i=05(InIn4)"5Ini < 22 holds for all i,
Therefore, considering the last two summands in (14),
we conclude that there exists a positive constant C' that
satisfies

o cvar C
P{|CV&R% i — CVaR,, i| > ‘; } <—. (16
i
The number of times action a,, has been selected up to time
slot 7 is smaller than or equal to ¢, i.e., K, ; < 4. Using (16)
we write the last two summands in (14) as

e AZVB.Y C
P CVaRan i—1 S CVaRan - - S ) (17)
’ 2 Kan,i—l

and

cvar

[CVaR 4+ — < CVaR 1} < Kg (18)

i—1

5001

As in [28], we use Bernstein’s 1nequahty to get an estlmate
for K, ;—1. Defining z¢ := 1/2A Z 165
we get P(K,, i—1 <zg) <e” 2, Additionally, from [28]:

i—1 d2€0'5 '
2 (T o

The same holds for the optimal action and K ;. Using these
estimations for x, we can conclude that for i — 1 > cA,,/ d?

19)

P[(ﬁ/ﬁam“ < CVaR,, — 2"] (20)
i—1 C
<Y PKa, i1 =4l=
— J
J
[zo]
C .
= Z P[K,, i-1 = ]} + Z Ko, i-1=j]—
j=1 =|wo)+1 J
e C 2q C
< Croe™ s + = < Cage™ > + =—. 21
< Cxoe 5+x0_ Toe 5+C”(i) 21
The same holds again for the optimal action
. cvar g C
]P’[CVaR — < CVaR 1} < Cmoe™ 5 + oW
(22)

Together with the bounds from Theorem 3 in [28] it follows
that for C > 1:

P [afn,i = an]

€ 0 4 —(smen) el c
< —+4Cxpe™ 5 + ——5e~ 2

An (Aanfan) 2 C’(n)
L, o L e cAn  \?
= dQZ Cln ((iflfzeo.fw) d2 ('L _ 1)d2€0'5

c (i — 1)d?e% cA, 5
+ 40? In < cAn (i — 1)d2e0-5 '

REFERENCES

[1] NR; Overall Description; Stage-2, document TS 38.300, Version 17.1.0,
3GPP, Jun. 2022.

[2] NR; Integrated Access and Backhaul (IAB) Radio Transmission and
Reception, document TS 38.174, V.17.1.0, 3GPP, Jun. 2022.

[3]1 A. A. Gargari et al., “Safehaul: Risk-averse learning for reliable
mmWave self-backhauling in 6G networks,” in Proc. IEEE INFOCOM
Conf. Comput. Commun., May 2023, pp. 1-10.

[4] C. Pan, H. Zhu, N. J. Gomes, and J. Wang, “Joint precoding and RRH
selection for user-centric green MIMO C-RAN,” IEEE Trans. Wireless
Commun., vol. 16, no. 5, pp. 2891-2906, May 2017.

[5] A. Alizadeh and M. Vu, “Load balancing user association in millimeter
wave MIMO networks,” IEEE Trans. Wireless Commun., vol. 18, no. 6,
pp. 2932-2945, Jun. 2019.

[6] X.Huang, G. Xue, R. Yu, and S. Leng, “Joint scheduling and beamform-
ing coordination in cloud radio access networks with QoS guarantees,”
IEEE Trans. Veh. Technol., vol. 65, no. 7, pp. 5449-5460, Jul. 2016.

[71 H. T. Nguyen, H. D. Tuan, T. Q. Duong, H. V. Poor, and W.-J. Hwang,
“Nonsmooth optimization algorithms for multicast beamforming in
content-centric fog radio access networks,” IEEE Trans. Signal Process.,
vol. 68, pp. 1455-1469, 2020.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.



5002

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

M. E. Rasekh, D. Guo, and U. Madhow, “Interference-aware routing and
spectrum allocation for millimeter wave backhaul in urban picocells,” in
Proc. 53rd Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Sep. 2015, pp. 1-7.

G. Kwon and H. Park, “Joint user association and beamforming design
for millimeter wave UDN with wireless backhaul,” IEEE J. Sel. Areas
Commun., vol. 37, no. 12, pp. 2653-2668, Dec. 2019.

A. Pizzo and L. Sanguinetti, “Optimal design of energy-efficient mil-
limeter wave hybrid transceivers for wireless backhaul,” in Proc. 15th
Int. Symp. Model. Optim. Mobile, Ad Hoc, Wireless Netw. (WiOpt),
May 2017, pp. 1-8.

M. N. Kulkarni, A. Ghosh, and J. G. Andrews, ‘“Max-min
rates in self-backhauled millimeter wave cellular networks,” 2018,
arXiv:1805.01040.

L. F. Abanto-Leon, A. Asadi, A. Garcia-Saavedra, G. H. Sim, and
M. Hollick, “RadiOrchestra: Proactive management of millimeter-wave
self-backhauled small cells via joint optimization of beamforming, user
association, rate selection, and admission control,” IEEE Trans. Wireless
Commun., vol. 22, no. 1, pp. 153-173, Jan. 2023.

W. Lei, Y. Ye, and M. Xiao, “Deep reinforcement learning-based
spectrum allocation in integrated access and backhaul networks,” IEEE
Trans. Cognit. Commun. Netw., vol. 6, no. 3, pp. 970-979, Sep. 2020.
B. Zhang, F. Devoti, 1. Filippini, and D. De Donno, “Resource allocation
in mmWave 5G IAB networks: A reinforcement learning approach
based on column generation,” Comput. Netw., vol. 196, Sep. 2021,
Art. no. 108248.

Q. Cheng, Z. Wei, and J. Yuan, “Deep reinforcement learning-based
spectrum allocation and power management for IAB networks,” in Proc.
IEEE Int. Conf. Commun. Workshops (ICC Workshops), Jun. 2021,
pp. 1-6.

T. K. Vu, C.-F. Liu, M. Bennis, M. Debbah, and M. Latva-aho, “Path
selection and rate allocation in self-backhauled mmWave networks,” in
Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2018, pp. 1-6.
A. Ortiz, A. Asadi, G. H. Sim, D. Steinmetzer, and M. Hollick,
“SCAROS: A scalable and robust self-backhauling solution for highly
dynamic millimeter-wave networks,” IEEE J. Sel. Areas Commun.,
vol. 37, no. 12, pp. 2685-2698, Dec. 2019.

M. Pagin, T. Zugno, M. Polese, and M. Zorzi, “Resource manage-
ment for 5G NR integrated access and backhaul: A semi-centralized
approach,” IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 753-767,
Feb. 2022.

R. T. Rockafellar and S. Uryasev, “Optimization of conditional value-
at-risk,” J. Risk, vol. 2, no. 3, pp. 2141, 2000.

H. Levy, Stochastic Dominance. New York, NY, USA: Springer, 1998.
J. Hoydis et al., “Sionna: An open-source library for next-generation
physical layer research,” 2022, arXiv:2203.11854.

M. Polese, M. Giordani, A. Roy, D. Castor, and M. Zorzi, “Dis-
tributed path selection strategies for integrated access and backhaul
at mmWaves,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2018, pp. 1-7.

NR; Study on Integrated Access and Backhaul, document TS 38.874,
V.16.0.0, 3GPP, Jan. 2019.

R. T. Rockafellar and S. Uryasev, “Conditional value-at-risk for general
loss distributions,” J. Banking Finance, vol. 26, no. 7, pp. 1443-1471,
Jul. 2002.

G. C. Pflug, Some Remarks on the Value-at-Risk and the Conditional
Value-at-Risk. Boston, MA, USA: Springer, 2000, pp. 272-281, doi:
10.1007/978-1-4757-3150-7_15.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

Z. Luo and S. Ou, “The almost sure convergence rate of the estimator of
optimized certainty equivalent risk measure under c-mixing sequences,”
Commun. Statist.-Theory Methods, vol. 46, no. 16, pp. 8166-8177,
Aug. 2017.

P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of
the multiarmed bandit problem,” Mach. Learn., vol. 47, nos. 2-3,
pp. 235-256, May 2002.

M. Polese, M. Giordani, A. Roy, S. Goyal, D. Castor, and M. Zorzi,
“End-to-end simulation of integrated access and backhaul at mmWaves,”
in Proc. IEEE 23rd Int. Workshop Comput. Aided Model. Design
Commun. Links Netw. (CAMAD), Sep. 2018, pp. 1-7.

M. Mezzavilla et al., “End-to-end simulation of SG mmWave networks,”
IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 2237-2263, 3rd Quart.,
2018.

[31]

(32]

(33]
[34]

(35]

[36]

[37]

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 6, DECEMBER 2024

M. Giordani, M. Polese, A. Roy, D. Castor, and M. Zorzi, “A tutorial
on beam management for 3GPP NR at mmWave frequencies,” IEEE
Commun. Surveys Tuts., vol. 21, no. 1, pp. 173-196, 1st Quart., 2019.
C. Madapatha et al., “On integrated access and backhaul networks:
Current status and potentials,” IEEE Open J. Commun. Soc., vol. 1,
pp. 1374-1389, 2020.

NR; Backhaul Adaptation Protocol (BAP) Specification, document TS
38.340, V.17.0.0, 3GPP, May 2022.

Study on Channel Model for Frequencies From 0.5 To 100 GHz,
document TR 38.901, V.15.0.0, 3GPP, Jun. 2018.

D. Yuan, H. Lin, J. Widmer, and M. Hollick, “Optimal joint routing and
scheduling in millimeter-wave cellular networks,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2018, pp. 1205-1213.

S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and
A. Ghosh, “Millimeter wave beamforming for wireless backhaul and
access in small cell networks,” IEEE Trans. Commun., vol. 61, no. 10,
pp- 4391-4403, Oct. 2013.

Y. Zhu, Y. Niu, J. Li, D. O. Wu, Y. Li, and D. Jin, “QoS-aware scheduling
for small cell millimeter wave mesh backhaul,” in Proc. IEEE Int. Conf.
Commun. (ICC), May 2016, pp. 1-6.

Amir Ashtari Gargari received the Ph.D. degree
in information engineering from the University
of Padova, Italy, in 2024. He is currently with
the Centre Tecnologic de Telecomunicacions de
Catalunya (CTTC) as an R2 Researcher (Post-
Doctoral Researcher). During his Ph.D. study,
he spent five months as a Visiting Researcher with
the WISE Group, TU Darmstadt, Germany, and three
months at Telefénica Research and Development,
Spain. His research interests include artificial intelli-
gence, modeling and simulation, and next-generation

wireless communication. He was awarded an EU MINTS Horizon 2020 Marie
Sklodowska-Curie Fellows grant to pursue his Ph.D. degree.

Andrea Ortiz (Member, IEEE) is currently a Vienna
Research Group Leader holding a Tenure-Track
Position at TU Wien. Previously, she was a
Post-Doctoral Researcher at TU Darmstadt. Her
research interests include the use of reinforcement
learning for resource allocation in wireless commu-
nications. She was a recipient of several awards,
including the Dr. Wilhelmy-VDE-Preis given by
German Association for Electrical, Electronic and
Information Technologies and the WWTF Vienna
Research Group for Young Investigators Grant.

Matteo Pagin received the B.Sc. and M.Sc. degrees
in telecommunication engineering from the Univer-
sity of Padova, Italy, in 2018 and 2020, respectively,
where he is currently pursuing the Ph.D. degree.
From October 2020 to September 2021, he was
a Postgraduate Researcher with the Department of
Information Engineering. He has collaborated with
several institutions, such as Northeastern University,
CTTC, NYU, TU Darmstadt, Orange, Viasat, and
Huawei. His research interests include the design
and evaluation of protocols for next-generation cel-

lular networks (5G and beyond). He was awarded the Best Paper Award from
the IEEE MedComNet 2020 and the IEEE WCNC Workshops 2023.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.


http://dx.doi.org/10.1007/978-1-4757-3150-7_15

GARGARI et al.: RISK-AVERSE LEARNING FOR RELIABLE mmWAVE SELF-BACKHAULING

Wanja de Sombre received the B.Sc. and interdis-
ciplinary M.Sc. degrees in mathematics from TU
Darmstadt, Darmstadt, Germany, with a focus on
mathematical logic and artificial intelligence, where
he is currently pursuing the Ph.D. degree with the
Communications Engineering Laboratory, under the
supervision of Prof. Anja Klein and Dr. Andrea
Ortiz. His research interests include reinforcement
learning, especially safe and distributional reinforce-
ment learning.

Michele Zorzi (Fellow, IEEE) received the Laurea
and Ph.D. degrees in electrical engineering from
the University of Padova, Padua, Italy, in 1990 and
1994, respectively. From 1992 to 1993, he was
on leave with the University of California at San
Diego (UCSD), USA. In 1993, he joined the Faculty
of the Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano, Milan, Italy.
After spending three years with the Center for Wire-
less Communications, UCSD. In 1998, he joined
the School of Engineering, University of Ferrara,
Ferrara, Italy, where he was a Professor in 2000. Since November 2003,
he has been with the Department of Information Engineering, University
of Padova. His current research interests include performance evaluation
in mobile communications systems, wireless sensor networks, the Internet
of Things, cognitive communications and networking, millimeter-wave and
terahertz communications, vehicular networks, non-terrestrial networks, and
underwater communications and networks. He has served as the Member-
at-Large for the Board of Governors of the IEEE Communications Society
from 2009 to 2011 and from 2021 to 2023. He received several awards
from the IEEE Communications Society, including the Best Tutorial Paper
Award in 2008 and 2019, the Education Award in 2016, the Stephen O. Rice
Best Paper Award in 2018, and the Joseph LoCicero Award for Exemplary
Service to Publications in 2020. He was the Editor-in-Chief of IEEE Wireless
Communications Magazine from 2003 to 2005, IEEE TRANSACTIONS ON
COMMUNICATIONS from 2008 to 2011, and IEEE TRANSACTIONS ON
COGNITIVE COMMUNICATIONS AND NETWORKING from 2014 to 2018.
He was the Director of Education from 2014 to 2015 and the Director of
Journals from 2020 to 2021.

5003

Arash Asadi (Senior Member, IEEE) is currently
an Assistant Professor with the Embedded Systems
Group, TU Delft, where he leads the Wireless
Communication and Sensing Laboratory (WISE).
His research interests include wireless communi-
cation and sensing for 6G networks. He was a
recipient of several awards, including the Athena
Young Investigator Award from TU Darmstadt and
the Outstanding Ph.D. and Master’s Thesis awards
from UC3M. Some of his papers on D2D commu-
nication have appeared in IEEE COMSOC’s best
reading topics on D2D communication and IEEE COMSOC Tech Focus.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.



