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Abstract—Multi-access edge computing (MEC) refers to de-
ploying computation resources, known as cloudlets or edge
servers, near the edge of the mobile network. Services like
augmented reality (AR) benefit from MEC by service placement,
which refers to installing service-specific software and allocating
resources on cloudlets. Service placement in MEC improves
service quality and potentially reduces costs compared to cen-
tralized cloud computing approaches. The main stakeholders
in MEC are infrastructure providers (IPs), who manage the
MEC infrastructure, and service providers (SPs), who offer
services to users. Both have unique technical and economic
perspectives, such as resource demands, resource availability,
and costs. Information asymmetries exist as only IPs have
access to information about their resources, and only SPs have
information about service usage and resource demands. This
work addresses challenges of service placement in MEC from
a multi-stakeholder, techno-economic perspective. We introduce
a model including the stakeholders’ technical and economic goals
and information asymmetries. To solve this problem efficiently,
we propose a multi-stakeholder bargaining mechanism, termed
Nash Backward Induction with Linear Equilibrium Strategies
(NBI-LES). In a case study with 544 users and 16 SPs, we achieve
79% of the optimal reduction in traffic given by a centralized
optimal service placement strategy.

I. INTRODUCTION

Multi-Access Edge Computing (MEC) refers to deploying
computational resources near the edge of the mobile net-
work [1]. These resources are called cloudlets or edge servers.
Cloudlets are small data centers within the one-hop commu-
nication range of the users’ mobile devices. Recently, MEC
has emerged as a new computing paradigm where centralized
computing approaches such as cloud computing fall short
[2]. Service placement in MEC refers to installing service-
specific software on the cloudlet to enable a service to run on
the cloudlet. In addition, each service placed on the cloudlet
should be allocated computation and storage resources to
process the users’ service requests. In the following, when we
refer to service placement, we include both the installation of
the service-specific software and the allocation of computation
and storage resources. Since the IP has deployed limited

This work has been funded by the German Research Foundation (DFG)
as a part of the projects B3, C5, and T2 within the Collaborative Research
Center (CRC) 1053 - MAKI (Nr. 210487104) and has been supported by the
BMBF project Open6GHub (Nr. 16KISK014).

computation resources in the MEC network, the SPs must
share these limited resources.

The benefits of service placement in MEC lie in the
improvement of service quality and the potential reduction
of operational cost of networks [3] since the amount of
communication from the edge through the network core is
reduced, e.g., by more than 80% of bandwidth in a virtual
reality context [4] and by up to 95% in an augmented reality
(AR) context [5]. In addition, multiple types of services,
including mobile gaming [6], smart home applications, or
mobile crowdsensing [7], can benefit from service placement
in MEC. Another important application of service placement
in MEC is the caching of artificial intelligence (AI) models [8]
and the inference of deep learning models at the edge of the
wireless network [9].

A typical MEC system consists of users, service providers
(SPs), infrastructure providers (IPs), and the cloud [10]. The
users access a service, e.g., mobile gaming or AR application,
by sending a service request. Each SP offers one of these
services to users and is responsible for processing their service
requests. To process the users’ service requests, the SPs must
use communication resources provided by the mobile network
and computation resources provided by the IPs or the cloud.
Thus, the SP performs the computation on a cloudlet in the
MEC network or the cloud. The resources of the MEC network
are provisioned by the IPs, where each IP may deploy one or
more cloudlets at an access point [11]. For a service placement,
i.e., processing the users’ service requests on a cloudlet, we
assume that the SP and the IP have to bargain about a price
for the service placement. Using cloud resources, the SP has
to pay a fixed price to provide the cloud resources.

To place a service on a cloudlet, both the IP and the SP
must agree on the service placement. The SP has to pay for
the service placement, and the IP must install its service-
specific software on its cloudlet and provide computation and
storage resources. Therefore, we consider the SPs and the IPs
to be the primary decision-makers in the service placement
problem. Each SP’s goal is to provide its service to users at
the lowest possible cost for the resources. The goal of each
IP is to maximize its profit from the resource provisioning.



TABLE I: An overview of related work in the research area of service placement in MEC

Contributions
Related Work [12]–

[17]
[18] [19] [20],

[21]
[22] [23] [24] [6] [25],

[26]
Our

Approach
Techno-economic model of IP and SPs - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Joint solution for pricing and service placement - ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fairness and efficiency considered - ✓ ✓ - ✓ - - ✓ - ✓
Information asymmetries regarding resources - - - - - - ✓ - ✓ ✓
Information asymmetries regarding cost factors - - - - - ✓ ✓ ✓ - ✓
MEC model with limited resources ✓ - ✓ ✓ ✓ - ✓ - ✓ ✓
Multiple SPs with heterogeneous services ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - ✓
Low computational complexity approach ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓

A. Research Challenges

The success of MEC requires a suitable service placement
strategy to maximize both the IP’s and the SP’s revenue. Fur-
thermore, novel bargaining mechanisms must consider fairness
between the different stakeholders and ensure efficient use of
the IPs’ resources. However, designing a service placement
strategy in MEC means overcoming three significant chal-
lenges:

1) Considering the techno-economic, multi-stakeholder per-
spective: The MEC network consists of multiple stakeholders,
which are autonomous decision makers [1], [27]. The IP
and the SPs act as individual rational stakeholders with their
decision-making capabilities. Furthermore, each stakeholder
has its individual technical and economic perspective, the so-
called techno-economic perspective [27]. Considering service
placement from the technical perspective requires careful
analysis of the available resources and demands of all stake-
holders. Considering service placement from the economic
perspective requires analysis of the payments and costs of
each stakeholder and finding a suitable pricing scheme. In
the multi-stakeholder case, we must consider the fairness
and efficiency of the provided solutions as discussed in [27]
and [19]. Fairness of the proposed solution ensures that all
stakeholders profit from using MEC; thus, participating is
an incentive. Having an efficient solution ensures that the
MEC network’s communication and computation resources
are utilized to achieve maximum performance. This techno-
economic and multi-stakeholder perspective is important for a
suitable service placement strategy in MEC networks [2].

2) Considering information asymmetries: Information
asymmetries (IAs) occur as the SPs and the IP have different
information available in a bargaining situation [6]. For exam-
ple, the IP knows its available resources, specifically commu-
nication and computation resources, and the cost associated
with using those resources. The SP knows about the expected
service usage and the number of resources required to operate
the service. Usually, the IPs and the SPs do not want to reveal
this information. Therefore, in the multi-stakeholder case,
finding an approach that allows bargaining without complete
information to find an agreement and a suitable payment for
service placement is essential.

3) Solving the combinatorial service placement problem
given heterogeneous services and limited resources: Service
types such as mobile gaming, AR, smart home, or mobile

crowdsensing have heterogeneous communication and compu-
tation resource requirements. Additionally, the users’ demand
for each of these services dynamically changes over the course
of a day. Furthermore, the IP has deployed only limited
computation resources in the MEC network; thus, the SPs
must share these limited resources. This results in an NP-hard
combinatorial problem of finding the optimal service place-
ment strategy, as shown in [17] and [28]. Therefore, service
placement algorithms either rely on suboptimal heuristics to
solve the service placement problem or use a low-complexity
approximation of the problem to handle a large number of
different services and adapt quickly to changing demands.

B. Related Works

Table I shows an overview of the related works. Previous
works focusing on efficient service placement strategies from
the perspective of a single stakeholder are [12]–[17]. In [12],
the authors take the SPs’ perspective and propose a central-
ized optimization framework for service placement in MEC
networks to minimize the delay required for service request
processing. The authors of [13] optimize the end-to-end delay
in MEC using a low-complexity game-based approach to
increase quality-of-service (QoS) by jointly considering the
access network delay and the position of service placement
while also considering the service placement cost. The authors
of [14] take the IP’s perspective and propose a low complexity
centralized optimization approach using branch and bound
and interior point methods to minimize the service placement
cost while keeping a time constraint for all services. Efficient
deployment of latency-critical virtual network function chains
in MEC using a low complexity algorithm has been studied
in [15] and [16]. In [12] and [14], assumptions include that
the whole information of the MEC network, including all
resources, services, and demands, is available to a central
network orchestrator. In [17], the authors consider the IP’s per-
spective and formulate a profit maximization problem for each
cloudlet, which they solve using the interior point method.
The service placement problem is solved for each cloudlet
individually. Although the aforementioned works [12]–[16]
and [17] significantly contributed to overcoming the challenge
of efficient service placement, the multi-stakeholder perspec-
tive is missing in these works.

Related works [6] and [18]–[26] considered the multi-
stakeholder perspective. In [18], the authors propose using
Nash Bargaining to find an agreement for the service place-



ment and pricing between the IP and the SPs. Assumptions
include all the information about the resources and cost factors
between the IP and the SPs. The authors of [19] propose to use
Nash Bargaining for resource sharing between multiple SPs.
Each SP has a utility depending on the amount of allocated
resources. In [20], the authors propose a two-level optimiza-
tion framework to optimize the IP’s profit while minimizing
the SPs’ cost. Each SP has a limited budget for resources;
therefore, setting the price too high may reduce the availability
of services. In [21], the authors propose an auctioning-based
mechanism to allocate the MEC resources of the IP to different
heterogenous SPs. The SPs report their resource demand and
QoS requirements to the IP and the IP determines a resource
allocation and a price for the service placement. In [22],
the authors model the service placement as an extended
Fisher market. They present a convex optimization problem
to find the market equilibrium of the proposed model of the
extended Fisher market. In the aforementioned works [18]–
[22], assumptions include that all stakeholders, namely IPs
and SPs, share all their information regarding resources and
cost factors. We argue this assumption is unrealistic, as SPs
and IPs do not want to share their information.

The authors of [29] propose an admission control mecha-
nism for an SP to accept or defer service requests coming from
end users. The end users as well as the SP are considered to be
stakeholders with their own utility functions, where the SP has
to balance its revenue and the provided QoS. In [6] and [29]
only one SP is considered.

Prior works that consider information asymmetries are [6]
and [23]–[26]. In [6], the authors propose a multi-stakeholder
bargaining procedure with partial information sharing. This
approach is based on the NBS with IAs regarding the cost
factors of the respective bargaining partner. In contrast to [6],
multiple SPs are considered, and the limited resources of the IP
are modeled. In [23], the authors propose a Stackelberg game
with incomplete information to solve the IP’s pricing problem
and the SPs’ placement decision. Assumptions include that
the cloudlets have an infinitely long queue and unlimited re-
sources. In the Stackelberg game, the authors model the SPs as
passive price takers without their own bargaining power. The
authors of [24] propose a double auction mechanism, where
a centralized auctioneer takes bids for selling and buying
resources. The centralized auctioneer acts as an individual
stakeholder who profits from the difference between buying
and selling prices. This adds additional costs for service place-
ment in the MEC network. Furthermore, the authors did not
consider the solution’s fairness, and the proposed approach is
highly computationally complex. In [25], the authors propose
a two-stage dynamic game of incomplete information. In the
first stage, the IP decides on the resource prices and service
placement. In the second stage, the users decide whether to use
the service provided. In [26], the authors propose a Bayesian
optimization approach for the pricing of the SP. They select a
price and a set of services for placement and learn the reward-
maximizing placement strategy.

Known strategies from the literature [30] and [31] on

how to overcome or reduce IAs are signaling, screening,
monitoring, and information exchange. In this work, we focus
on the IA reduction method of signaling, which refers to the
voluntary sharing of information by the stakeholder possessing
the information with the respective bargaining partner before
agreeing on the payment and service placement, as discussed
in [32].

As discussed, the prior works are limited in several ways.
Firstly, the multi-stakeholder perspective is lacking in [6], [12],
[14], [17], [23] and [26]. Secondly, the IAs are not considered
in [18]–[20] and [22]. Thirdly, the perspective of efficiency
and fairness is lacking in [20], [23]–[25] and [26]. To the
best of our knowledge, we are the first to consider the service
placement problem in MEC from a multi-stakeholder, techno-
economic perspective, including IAs and considering limited
resources.

C. Contributions

This work’s main contribution is a novel multi-stakeholder
bargaining mechanism that enables bargaining between the IP
and the SPs under IAs. In the studied scenario, we consider one
IP and multiple SPs with their individual utility functions con-
sisting of technical and economic elements. We also consider
IAs between the IP and the SPs. In our model, we adopt the
simplifying assumption that bargaining occurs with a single IP.
This approach is based on the premise that bargaining with
multiple IPs can effectively be represented as simultaneous
individual bargainings with each IP. Existing service placement
approaches cannot handle the IAs between multiple stake-
holders, resulting in degraded overall system performance. In
particular, we propose a novel multi-stakeholder bargaining
mechanism termed Nash Backward Induction with Linear
Equilibrium Strategies (NBI-LES), whose goal is to find a
fair and efficient solution to the service placement problem.
In our NBI-LES approach, the IP and the SPs individually
calculate their best LES strategy based on their information
and belief about the bargaining partners’ information. The
main contributions of this work are summarized as follows.

• We model a bargaining situation between SPs offering
many heterogeneous services and the IP. We include a
fine-granular model of all relevant technical and eco-
nomic attributes influencing service placement decisions.
Furthermore, we discuss the different aspects of IAs
between the SPs and the IP and provide a model that
includes the stakeholders’ beliefs about the respective
bargaining partners.

• We propose a novel bargaining mechanism termed Nash
Backward Induction with Linear Equilibrium Strategies
(NBI-LES). We derive the optimal strategies for each
stakeholder considering the given IAs and show that they
are equivalent to the linear equilibrium strategies (LES),
meaning no stakeholder would improve by changing its
approach.

• To overcome the challenge of exponentially growing
computational complexity of the service placement prob-
lem, we propose a discretization approach of the available



computation and storage resources into virtual machines
(VMs) to achieve a solution with linearly growing com-
plexity.

• We evaluate the performance of the proposed NBI-LES
algorithm in a realistic case study. We analyze a data set
containing the service usage of 544 users accessing vari-
ous service types from 16 service providers. Furthermore,
we use realistic models of the cost associated with data
transfer and computation.

The rest of this paper has the following structure. In Sec-
tion II, we introduce the MEC system model with the relevant
stakeholders, and in Section III, we present the proposed
NBI-LES algorithm. The evaluation of the proposed NBI-LES
algorithm in an extensive case study follows in Section IV, and
finally, Section V concludes the paper.

II. SYSTEM MODEL

A. Overview

Figure 1 shows the system model. The two relevant stake-
holders are the IP and the SPs, the main decision-makers
in MEC’s service placement. The IP owns and operates the
resources at the edge, i.e., the base station (BS), the cloudlet,
and the backhaul network. The backhaul network connects
the edge of the network, i.e., the BS and the cloudlet, to
the core network. The BS uses a wireless link to transfer
data to the users’ devices. Further, the BS hosts a cloudlet, a
computation resource close to the users, offering low-latency
access to the services placed on it. In contrast to the centralized
cloud, edge computing devices, such as cloudlets, have limited
computation resources [33]. We consider N different SPs
that each offer one service to the users. Each SP requires
communication, computation, and storage resources in the
network to offer its service. The computation and storage
resources are available either in the centralized cloud or in
the cloudlet provided by the IP. The users pay for the access
to the service.

The IP bargains with each SP individually about whether or
not to place the service on the cloudlet and which price has to
be paid for the service placement. This individual bargaining
protocol allows the IP as well as the heterogeneous SPs to
make individual agreements, which improves the efficiency of
the resource allocation.

We assume a non-cooperative setting, as described in [34],
where SPs compete and bargain individually rather than form-
ing groups or coalitions, which reflects the market dynamics in
many practical scenarios. This means that each SP individually
performs a one-to-one bargaining with the IP, i.e., SP 1
negotiates with the IP, then SP 2 negotiates with the IP until
finally SP N and the IP bargain about the service placement.
In our terminology, SP 1 denotes the SP that begins bargaining
with the IP, while SP n represents the SP in the n-th bargaining
step.

Each bargaining has two possible outcomes: a service
placement agreement or no agreement. An agreement results in
the service being deployed on the cloudlet and the SP paying
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Fig. 1: Overview of the system model

the IP. When the IP places the service of SP n on the cloudlet,
we denote this by an indicator variable xn = 1. In this case,
the IP receives a payment kn from SP n. In the case of no
agreement, the SP continues to rely on cloud computing, which
we denote by xn = 0. When the IP does not place the service
on the cloudlet, there is no payment from the SP to the IP
(kn = 0). To simplify the notation, we introduce the service
placement profile x = (x1, . . . , xN ) and the payment profile
k = (k1, . . . , kN ). Table II shows the mathematical symbols
introduced in the system model.

B. Service Providers

We consider a set N = {1, . . . , N} of SPs, each offering
one service to its users. The users of SP n access the service
by sending service requests and paying the SP n for access
to the service. To process these service requests, the SP needs
to use communication, computation, and storage resources in
the network. The services are heterogeneous, so the com-
munication and computation requirements are different for
each service request. For each service, we consider all users’
communication, computation, and storage resource demand.
These demands are individually aggregated over all the users’
service requests. SP n denotes the aggregated communication
demand as DSP

n and the aggregated computation demand as
XSP

n . Furthermore, we denote the sum of all users’ payments
as kUsers,SP

n .
Depending on the bargaining result, there are two possibili-

ties to provision these resources: The provisioning of resources
occurs either directly at the network edge using MEC in the
case of an agreement or the centralized cloud through cloud
computing in the absence of an agreement. In the following,



we discuss the two different cases: 1) the SP uses cloud
resources, and 2) the SP uses service placement in MEC.

1) Cloud Computing: In this paragraph, we discuss the case
of the SPs offering their service using cloud resources. SP n
needs to pay for using the communication, computation and
storage resources in the cloud. In particular, we assume that
SP n has negotiated a fixed price per resource in the cloud.
We model the communication cost between the users’ mobile
devices and the cloud using a cost factor βSP

n for each unit
of data transmitted. Additionally, the SP must pay αSP

n for
each computation resource required in the cloud. We denote
the storage cost in the cloud for the service by SP n by ΦSP

n .
In the case of cloud computing, the utility of SP n is

USP
n (xn = 0, kn) = kUsers,SP

n − βSP
n DSP

n − αSP
n XSP

n

− ΦSP
n , (1)

which is the difference between the aggregated payments
kUsers,SP
n of its users and the total cost for communication,

computation and storage.
2) Service placement in Multi-Access Edge Computing: In

this case, the SP n has successfully negotiated with the IP to
place its service on the cloudlet. The IP installs the service-
specific software of SP n on the cloudlet and provisions the
necessary computation and storage resources to process the
users’ service requests of the service provided by SP n on the
cloudlet. This significantly reduces the latency, improving the
users’ Quality-of-Service (QoS). To account for the improved
QoS, we assume that users are potentially willing to pay more
for the service. For this, we introduce an increase in payment
LSP
n . Note that LSP

n can be zero if the users are unwilling to
pay more for an increased QoS.

The SP has to pay kn monetary units to the IP for the
placement. Determining kn is part of the bargaining procedure,
discussed in Section III. Despite the utilization of MEC, there
remains a need to communicate with the cloud and execute
computations at the cloud, e.g., for synchronization with a
database [6]. We denote D̃SP

n as the communication demand
to the cloud and X̃SP

n as the computation demand in the cloud.
The utility of the SP n using MEC is

USP
n (xn = 1, kn) =kUsers,SP

n + LSP
n − βSP

n D̃SP
n

− αSP
n X̃SP

n − kn, (2)

which is the difference between the users’ payments, the
remaining cost in the cloud, and the payment to the IP for
service placement.

The linear utility function (2) is based on two assumptions:
Firstly, no saturation effects are considered, meaning the utility
of each SP is linearly dependent on the cost parameters
βSP
n , αSP

n , the communication demand D̃SP
n and computation

demand X̃SP
n , without diminishing returns from increased

resource demands or higher costs. Secondly, we assume risk
neutrality, meaning that the SPs aim to maximize expected
profit without incorporating terms related to risk, which are
typically non-linear.

The payoff which SP n gains in case of a service placement
is

P SP
n (kn) =USP

n (xn = 1, kn)− USP
n (xn = 0, kn)

=LSP
n + αSP

n (XSP
n − X̃SP

n )

+ βSP
n (DSP

n − D̃SP
n )− kn (3)

which is the difference between the utility of edge computing
and the utility in the case of cloud computing.

We define the reservation price vSPn of SP n as the highest
payment the SP is willing to make for service placement.
This reservation price appears when the payoff from (3) is
P SP
n (vSPn ) = 0. This can be determined as

vSPn =LSP
n + αSP

n (XSP
n − X̃SP

n )

+ βSP
n (DSP

n − D̃SP
n ). (4)

We assume that each of the SPs is individually rational, i.e.,
they only agree to a payment kn which results in a positive
payoff P SP

n (kn) ≥ 0 from (3). In the bargaining with the IP,
SP n is therefore never willing to make a payment kn > vSPn
which is larger than its reservation price vSPn . Therefore vSPn is
the maximum price that SP n is willing to pay for the service
placement.

C. Infrastructure Provider

The IP owns and operates the cloudlet, including the back-
haul network between the BS and the cloud. To derive the
utility function of the IP, we first consider the negotiation with
one SP. When negotiating with SP n, there are two cases:
Either the SP n provides the service using cloud computing,
i.e., not using the cloudlet of the IP, or the IP provides
the service of SP n using MEC, i.e., relying on the IP’s
infrastructure. In the following, we discuss those two different
cases.

1) Cloud Computing of SP n: In the case of cloud comput-
ing of SP n, indicated by xn = 0, there is no payment from
SP n to the IP. The IP incurs a given cost βIP for each data
unit transferred between the users and the core network on the
IP’s backhaul network. Therefore, the utility is

U IP
n (xn = 0, kn) = −βIPDSP

n , (5)

which is the cost for data transfer from the user to the cloud
resources.

2) Multi-Access Edge Computing of SP n: In the case of
edge computing of SP n, i.e., xn = 1, the SP n and the
IP must agree on a payment kn for the usage of the cloudlet.
When using the cloudlet, the IP’s cost comprises computation,
communication and storage costs. Computation on the cloudlet
incurs a cost of αIP for each computation resource. Further-
more, for each communication resource required between the
users and the cloud, there is a cost of βIP. The infrastructure
cost for storage is ΦIP

n . The utility of the IP in the case of
edge computing is

U IP
n (xn = 1, kn) = kn − αIPXSP

n − βIPD̃SP
n − ΦIP

n , (6)



TABLE II: Overview of the notation and the information asymmetries between the IP and the SPs

Symbol Description Symbol Description
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USP
n (xn, kn) Utility function of SP n

XIP Available computation resources at the cloudlet XSP
n Computation resource demand of SP n on the

cloudlet
xn Indicator variable xn ∈ {0, 1} whether the

service from SP n was placed
X̃SP

n Computation resource demand of SP n on the
cloud

x = (x1, . . . , xN ) Service placement profile DSP
n Communication resource demand between the BS

of the IP and the cloud caused by SP n’s users
kn Payment from SP n to the IP D̃SP

n Communication resource demand between the BS
of the IP and the cloud caused by SP n’s users
in case of service placement

k = (k1, . . . , kN ) Payment profile LSP
n Additional utility by service placement, e.g., by

increased QoS for the users
kUsers,SP
n Payments from the users to SP n for the service

usage in the considered time interval
αIP Cost per computation resource at the cloudlet αSP

n Cost per computation resource at the cloud
βIP Cost per bit for communication on the backhaul

network
βSP
n Cost for communication between user and the

cloud
ΦIP

n Infrastructure cost per bit for storage and main-
tenance cost

ΦSP
n Cost per bit for storage and maintenance cost of

the service provided by SP n
vIPn IP’s reservation price when bargaining with the

SP n
vSPn SP’s reservation price when bargaining with the

IP
f IP
n (vSPn ) IP’s belief of the SP’s reservation price fSP

n (vIPn ) SP’s belief of the IP’s reservation price

i.e., the difference between the payment kn of the SP n
and the cost for computation, communication and storage
resources. Analogous to the SPs, we also assume a linear
utility function (6) for the IP, without saturation effects and
under the assumption of risk neutrality.

Analogous to the payoff (3) of the SPs, we define the payoff
of the IP for an agreement with SP n as the difference between
the utility for edge computing (6) and for cloud computing (5).
The payoff of the IP in case of an agreement with SP n is

P IP
n (kn) = U IP

n (xn = 1)− U IP
n (xn = 0)

= kn − αIPXSP
n − βIP(D̃SP

n −DSP
n )− ΦIP

n . (7)

From the payoff, we can derive the reservation price

vIPn = αIPXSP
n + βIP(D̃SP

n −DSP
n ) + ΦIP

n (8)

which is the cost for the resources required for the service
placement of SP n. We refer to vIPn as the IP’s physical cost of
the service placement, as (8) includes all the costs associated
with the provisioning of the computation, communication and
storage resources.

By XIP, we denote the IP’s limited computation resources
at the cloudlet. To model the limited resources, we introduce
the constraint

N∑
n=1

xnX
SP
n ≤ XIP (9)

for the computation resources at the cloudlet.
The total utility of the IP is the sum

U IP(x,k) =

N∑
n=1

U IP
n (xn, kn) (10)

over all potential agreements with all N SPs.

D. Information asymmetries
We consider different types of IAs in the scenario: IAs

regarding costs and utility functions and IAs regarding the
availability of resources. In Table II, we highlight these IAs
by displaying the information of the IP on the left side and
the information of the SPs on the right side.

1) Information asymmetries regarding the available re-
sources: The IP knows the amount XIP of (its own) available
computation resources, which is unknown to the SPs. Further-
more, each SP does not know the number N − 1 of other SPs
competing for the resources. The IP knows the number N of
its bargaining partners. This is an advantage in the bargaining
procedure, as the IP knows how limited the resources are.

2) Information asymmetries regarding costs and utility
functions: The IP and the SPs do not share information
about their cost factors and utility functions, as they contain
sensitive business model information. If, for example, the IP
knew the exact cost factor and utility function of an SP,
the IP could price its resources exactly at the reservation
price of the SP and maximize the IP payoff. Therefore, no
bargaining would occur, and the SP would not receive any
payoff. Thus, we assume that the IP and the SPs do not know
the cost factors and utility functions (1), (2), (5) and (6) of
their bargaining partners. Therefore, the respective bargaining
partners’ payoffs (3) and (7) are unknown. However, this
information is essential for settling the payment kn between
the SP n and the IP, in a manner reflecting optimal payoffs for
the IP and the SP. For example, a high reservation price vSPn of
SP n would mean that the IP could demand a higher payment
for the service placement. Although SPs and IP do not know
the exact reservation prices of each other, the SPs and the IP
can obtain some information about their bargaining partner’s
reservation price, e.g., using publicly available information
sources [6]. To model these IAs, we assume that both the SPs
and the IP can calculate a probabilistic model of the bargaining
partner’s reservation price. A common approach in bargaining



theory to model the belief over the bargaining partner’s payoff
is a uniform distribution between a lower bound and an upper
bound [35], [36].

Each SP n can model its belief over the IP’s reservation
price vIPn using a probability density function

fSP
n (vIPn ) =

{
1

vIP
n −vIP

n
, for vIPn < vIPn < vIPn

0, else,
(11)

which is a uniform distribution between a lower bound vSPn
and an upper bound vSPn . The difference between vSPn and
vSPn is inversely proportional to the amount of information
available to SP n. In a practical scenario, the SP has to
estimate the lower bound vIPn , which is the minimum price
the IP would accept for service placement. The SP can obtain
the lower bound vIPn , e.g., by an estimation of the costs
for the additional hardware and energy of the IP for service
placement as described in [37]. The upper bound vIPn of the
IP’s reservation price can be obtained, e.g., by using prices for
service placement [38].

Analogously, the IP models its belief about each SP’s
reservation price as

f IP
n (vSPn ) =

{
1

vSP
n −vSP

n
, for vSPn < vSPn < vSPn

0, else.
(12)

Similar to the case of the SP, the IP has to estimate its upper
bound vSPn by using public price lists of cloud providers,
e.g., [39]. Its lower bound vSPn can be obtained by estimating
the reduction in cloud and backhaul cost of the SP, e.g., as
discussed in [40].

Note that the SP and the IP cannot employ learning
approaches, as observing the true values of the bargaining
partner’s reservation prices is impossible.

E. Social Welfare

We define the social welfare as the sum of the utilities of
all SPs and the IP:

Ψ(x,k) =

N∑
n=1

USP
n (xn, kn) + U IP(x,k)

=

N∑
n=1

xn(v
SP
n + vIPn ). (13)

The social welfare Ψ(x) = Ψ(x,k) is therefore indepen-
dent of the payment profile k [41]. Consequently, the social
welfare Ψ(x) measures the benefit for the whole network
based on the chosen service placement profile x.

The payment profile k determines the distribution of the
payoff of the service placement between the IP and the SPs.

F. Fairness

Another important measure of the provided solution is
fairness. SPs may not place their service at the edge if they
do not benefit from it. Therefore, it is an important incentive
that the benefits of MEC are shared in a fair manner between
all stakeholders. A common approach to measure fairness is

the Jain’s index, e.g., as discussed in [19]. The Jain’s index
for the payoffs of all SPs which have their service placed is
given by

J (x,k) =
(
∑N

n=1 P
SP
n (kn))

2

(
∑N

n=1 P
SP
n (kn)2)(

∑N
n=1 xn)

, (14)

which is the quotient of the squared mean value of the payoffs
and the expected value of the squared payoff. A Jain’s index
of J (x,k) = 1 indicates a fair service placement and pricing,
i.e., all stakeholders have the same payoffs. The least fair

solution is indicated by J (x,k) =
1

(
∑N

n=1 xn)
.

G. Problem Formulation

We argue that a formulation of the service placement
problem as an optimization problem, e.g., as proposed in [42]
and [43], is not realistic in a practical scenario, as we consider
the SPs and the IP to act as selfish stakeholders with their
individual decision-making capabilities. Furthermore, a cen-
tralized optimization approach requires a central entity with
full knowledge of all SPs and the IP.

Moreover, the goal is not only to maximize efficiency but
also to enhance fairness [19]. The Nash Bargaining Solution
(NBS) [44] provides a fair and efficient outcome [45]. How-
ever, we argue that the NBS cannot be calculated directly,
e.g., as proposed in [18], as no central entity with complete
information can calculate the NBS.

1) One-to-one bargaining with information asymmetries:
When only one SP n exists, we can describe the situation
as a buyer-seller problem with IAs. In this case, the SP n
acts as buyer, paying for the use of the available computation
resources XIP on the cloudlet, while the IP acts as seller,
provisioning the resources to the SP n. The IP aims to maxi-
mize the payment kn and will never accept any price below its
reservation price vIPn . The SP aims to minimize the payment
kn and will never accept any price higher than its reservation
price vSPn . As a result, an agreed-upon price between the two
parties must lie in the interval kn ∈ (vIPn , vSPn ). No efficient
placement exists in the case of vIPn > vSPn [6]. We define the
one-to-one bargaining problem between one IP and one SP as

P1: argmax
xn,kn

(USP
n (xn, kn)− USP

n (0, 0)) (15)

·(U IP
n (xn, kn)− U IP

n (0, 0))

s.t. xnX
SP
n ≤ XIP (16)

which is the NBS with the computing resource constraint (16).
The solution of (15) cannot be calculated directly because of
the IAs.

2) One-to-many bargaining with information asymmetries:
In the case of N > 1 SPs requesting a service placement on the
IP’s cloudlet, we must consider the one-to-many bargaining.
The SPs have reservation prices vSPn , and the IP has reservation
prices vIPn for the bargainings. In a scenario with unlimited
resources, the case would simplify to N independent one-to-
one bargainings as discussed in [6]. As we assume limited
cloudlet resources given by (9), we need to account for that in



our bargaining mechanism. Due to the scarcity of resources,
the cloudlet cannot host every service. This corresponds to an
opportunity cost that we must reflect in the reservation price.
Therefore, we formulate the reservation price for the IP as the
sum

ṽIPn = vIPn + vIP,opp
n (17)

of the physical cost vIPn (8) and opportunity cost vIP,opp
n

associated with the service placement.

III. PROPOSED NASH BACKWARD INDUCTION WITH
LINEAR EQUILIBRIUM STRATEGIES ALGORITHM

This section presents our proposed bargaining mechanism
for solving the service placement problem. The two main
challenges we need to overcome are IAs and limited resources.
In the bargaining situation with N SPs, the service placement
considering the limited resources of the IP is challenging as
the IP has opportunity costs that each agreement with an
SP induces. Unlike [23] and [25], which model the IP as
a price-setting leader and the SPs as price-taking followers
in a Stackelberg game, we propose a bargaining framework
between the SPs and the IP. This approach more accurately
reflects the bargaining powers of both the IP and the SPs.

A. Sequential bargaining mechanism

Our proposed bargaining mechanism is a sequential bargain-
ing approach, i.e., the IP bargains with each SP individually.
We depict the sequential bargaining mechanism in Algo-
rithm 1. Initially, each SP reports its computation resources
demand X̃SP

n to the IP (line 3). After all N SPs have signaled
whether they want to participate in the bargaining, the IP cal-
culates its optimal strategy (lines 4-9). Simultaneously, the SPs
calculate their optimal offer strategies (line 12). Afterward, the
individual one-to-one bargainings start (lines 14-21). There
are N bargaining rounds; each bargaining is between one
SP n ∈ {1, . . . , N} and the IP. Due to potential agreements
in previous rounds, the amount of available resources XIP

might decrease each bargaining round. We denote the available
resources in bargaining round n as XIP

n .
For each bargaining round, we propose to use a double

auction mechanism, as described in [46] and [47]. In this
mechanism, the SP n and IP simultaneously suggest a price
for the service placement. The IP makes an offer kIPn and the
SP n makes an offer kSPn in bargaining round n. If kSPn > kIPn ,
i.e., the SP is willing to pay more than the IP requests, then
the service of SP n is placed on the cloudlet and the final
agreed payment

kn =
kIPn + kSPn

2
(18)

is the average of the two offers. If kSPn < kIPn , i.e., the SP is
willing to pay less than the IP requests, then no agreement is
reached. Either way, the bargaining concludes with a reveal of
both offer prices. This mechanism is considered fair as both
offers of IP and SP receive equal weights.

Algorithm 1 Proposed NBI-LES algorithm

1: Input: Reservation prices vSP,n and vIP,physical,n

2: Input: Belief about the f IP
n (vSPn ), fSP

n (vIPn ) ∀n
3: All N SPs report XSP

N to the IP
4: ▷ The IP calculates its optimal offers
5: The IP computes πIP

N (XIP
N ) ▷ Eq. (20)

6: for n = N − 1, ..., 1 do
7: The IP computes vIPn (XIP

n ) ▷ Eq. (22)
8: The IP computes πIP,agg

n (XIP
n ) ▷ Eq. (24)

9: The IP computes kIPn according to the LES ▷ Eq. (25)
10: end for
11: ▷ Each SP calculates its optimal offer
12: Each SP computes kSPn according to the LES ▷ Eq.(27)
13: ▷ Sequential bargaining
14: for n = 1, ..., N do
15: SP n makes the offer kSPn , the IP kIPn .
16: if kIPn ≤ kSPn then
17: xn = 1, kn = 1

2 (k
IP
n + kSPn ) ▷ Eq. (18)

18: XIP
n+1 = XIP

n −XSP
n

19: else
20: xn = 0, kn = 0
21: XIP

n+1 = XIP
n

22: end if
23: end for
24: return service placement profile x, payment profile k

The challenge is now to calculate the optimal offer kIPn of
the IP and the optimal offer kSPn of the SPs. Logically, the IP
and each SP will optimize the respective offers to maximize
their expected payoff. Any stakeholder’s optimal offer strategy
is dependent not only on its own reservation price but also on
the reservation price and offer strategy of the other parties.
Furthermore, due to IAs, the optimal strategy depends on the
belief about the others’ reservation prices.

B. The strategy of the infrastructure provider

The following section will discuss IP’s strategy for calcu-
lating reservation prices and optimal offers. Afterwards, we
discuss the SPs’ strategies to find the optimal offers. At the
end of this section, we discuss the computational complexity of
this bargaining approach. At first, we calculate the reservation
prices of the IP. To calculate the opportunity cost vIP,opp

n , we
use backward induction. The backward induction consists of
an initialization step and the subsequent induction steps.

1) Initialization: Using the backward induction, the initial-
ization starts in the last bargaining round N with SP N . The
sequential bargaining mechanism ends when the IP finishes
negotiations with SP N . Consequently, the bargaining with
SP N does not influence other negotiations. As a result,
vIP,opp
N = 0 holds. Therefore, we can use the bargaining with

SP N as our starting point for the backward induction. The IP
calculates its expected payoff to calculate the expected profit
when bargaining with SP N . The expected value of a random
variable X is denoted by E{X}. For the IP, the expected



payoff is given by

πIP
N (kIPN ) = E{P IP

N (kIPN )} (19)

=

∫ ∞

kIP
N

(
kIPN + kSPN

2
− vIPN

)
pSP(kSPN ) dkSPN

when bargaining with SP N . To maximize its expected payoff
πIP
N (kIPN ), the IP has to optimize its offer kIPN before the

bargaining. This is difficult due to the fact that (19) is
dependent on the SP’s offer kSPN , which is unknown to the
IP. Intuitively, if the SP is willing to pay a lot for the service
placement, i.e., kSPN is high, it is advantageous for the IP
to make a higher offer. Conversely, if the SP is willing to
pay little for the service placement, i.e., kSPN is small, it is
advantageous for the IP to make a lower offer.

This is an interdependent problem, where the IP’s opti-
mal strategy depends on the SP’s strategy and vice versa.
For this, there are infinite equilibria for the interdependent
strategies [35]. For a subset of offer strategies, namely offer
strategies for which the offers of IP and SP increase strictly
monotonically with the reservation prices except for bound
values, we can find a unique equilibrium [36]. This is known
as the Linear Equilibrium Strategy (LES). In the following,
we argue that the IP and the SPs choose their offers according
to the LES. This allows us to determine the IP’s optimal offer
kIPN .

As the SP N is the last SP in the bargaining, we know that
vIP,opp
N = 0 holds. This is because SP N is the last SP in the

bargaining sequence. Therefore, the resources not given to SP
N are not used. Consequently, the reservation price ṽIPN = vIPN
contains only the resource prices, and the opportunity cost is
zero. Considering the limited resources, a service placement
is only possible if the IP has enough resources to satisfy the
demand of SP N , that is, XIP

N ≥ XSP
N . The expected payoff

of the IP is given as

πIP
N (XIP

N ) =

{
πIP,LES(vIPN ) if XIP

N ≥ XSP
N

0 if XIP
N < XSP

N

(20)

which is a step function of the available resources XIP
N in the

last bargaining round N .
2) Backward Induction Steps: To employ the LES mecha-

nism, all left to do is calculate the reservation prices ṽIPn of the
bargaining round with SP n. We calculate this by backward
induction. Instead of calculating vIPn as a scalar value for the
bargaining with SP n, we determine the reservation price as a
function of the available resources XIP

n , i.e., vIPn (XIP
n ). The

IP can determine its reservation price by looking up the value
assigned to XIP,n.

Consider now that the IP bargains with SP N − 1. The
IP has already concluded the bargainings with SP 1 to SP
N−2. At the beginning of the negotiation, the IP has resources
XIP

N−1 available. The outcome of the negotiation influences the
resources the IP has available for bargaining with SP N . If the
negotiation is successful, the service of SP N −1 is placed on
the cloudlet and requires XSP,N−1 resources. The IP has then
XIP

N−1−XSP
N−1 resources available for the bargaining with SP

N . If there is no agreement between IP and SP N − 1, the IP
has XIP

N−1 resources available for negotiation with SP N . The
opportunity cost vIP,opp

N describes the expected payoff the IP
cannot realize due to a placement of SP N − 1.

The reservation price of the IP in bargaining round N − 1
is calculated as follows. First, we determine the opportunity
cost

vIP,opp
N−1 = πIP

N (XIP
N−1)− πIP

N (XIP
N−1 −XSP

N−1), (21)

which describes the expected payoff the IP cannot realize due
to a placement of SP N−1. This is the difference between the
expected payoff πIP

N (XIP
N−1) when no agreement is made, and

the expected payoff πIP
N (XIP

N−1−XSP
N−1) when the service of

SP N − 1 is placed.
Now we can calculate the reservation price function

ṽIPN−1(X
IP
N−1) = vIPN−1 + vIP,opp

N−1 (22)

= vIPN−1 + πIP
N (XIP

N−1)

− πIP
N (XIP

N−1 −XSP
N−1),

which, according to (17), is the sum of the cost for the
resources vIPN−1 and the opportunity cost vIP,opp

N−1 .
Based on the reservation price function, we can calculate

the expected payoff function as

πIP
N−1(X

IP
N−1) (23)

=

{
πIP,LES(vIPN−1(X

IP
N−1)) if XIP

N−1 ≥ XSP
N−1

0 if XIP
N−1 < XSP

N−1.

The expected payoff function describes the additional payoff
the IP can expect by bargaining with SP N − 1 compared to
a scenario where SP N − 1 does not exist.

The aggregated expected payoff function is the payoff the
IP expects from the remaining bargaining process. It is the
sum of all individual expected payoff functions

πIP,agg
N−1 (XIP

N−1) = πIP
N−1(X

IP
N−1) + πIP

N (XIP
N−1) (24)

with the available resources XIP
N−1 in bargaining round N−1.

Analogously, the backward induction is repeated until the
bargaining round n = 1 is reached. After finishing the back-
ward induction, the IP has calculated its reservation price func-
tions vIPn (XIP

n ) for every bargaining round n ∈ {1, ..., N}.
3) IP’s offer strategy: The last missing step for the IP

is to calculate its optimal offer for the bargaining based on
its reservation price functions vIPN (XIP

n ) from the backward
induction. Using the calculated values of vIPN (XIP

n ) and the
belief (12) about the SP’s reservation price, we can determine
the optimal offer kIPn in bargaining round n.

Theorem 1. The optimal offer of the IP in round n according
to the Linear Equilibrium Strategy is given by

kIPn =


2
3v

SP
n + 1

3s0 for ṽIPn (XIP
n ) ≤ max(s0, vSPn )

−s0 + vIPn
2
3 (ṽ

IP
n (XIP

n )− vIPn ) + s0 else
(25)



Case 1 of Theorem 1 Case 2 of Theorem 1
0

Fig. 2: The IP’s optimal offer strategy according to Theorem 1
for a varying reservation price ṽIPn (XIP

n ) of the IP.

Case 1 of Theorem 2 Case 2 of Theorem 2
0

Fig. 3: The SP’s optimal offer strategy according to Theorem 2
for a varying reservation price vSPn of the SP.

with s0 = 3
4v

IP
n + 1

4v
SP
n .

Proof. The proof is analogous to the proof found in [36].

The optimal offer strategy of the IP is shown in Fig. 2. The
optimal offer strategy is a piece-wise linear function of the IP’s
reservation price, which is common for offer strategies under
IAs [36]. For the analysis of the IP’s strategy, it is important
to remember that a higher offer kIPn is better for the IP, as the
payment from the SP to the IP is the mean value of the IP’s
and the SP’s offers, as seen in (18).

The optimal offer kIPn from Theorem 1 consists of two
cases: In the first case, the IP’s reservation price is below a
threshold ṽIPn (XIP

n ) ≤ max(s0, v
SP
n )−s0+vIPn . This threshold

depends on the SP’s estimation of the lower bound vIPn of
the IP’s reservation price. When this condition is met, the
optimal offer is fixed at kIPn = 2

3v
SP
n + 1

3s0, independent of the
IP’s actual reservation price. This allows the IP to exploit the
SP’s underestimation of vIPn , making an offer higher than what
would be expected based on the IP’s true reservation price. In
the second case, where the IP’s reservation price exceeds the
threshold ṽIPn (XIP

n ) > max(s0, v
SP
n )− s0+ vIPn , the IP’s offer

increases linearly with the reservation price ṽIPn (XIP
n ). In this

case, the optimal offer increases because of the IP’s growing
opportunity and placement costs.

C. The strategies of the service providers

The SP n has no information about the availability of the
IP’s resources XIP

n in the current bargaining round n, i.e., the
SP n does not know whether the computation resources are
plenty or scarce. Furthermore, the SP n has no information

about the costs associated with the resource usage of the IP.
For the SP n, the expected payoff is given by

πSP(kSPn ) = E{P SP
n (kn)} (26)

=

∫ kSP
n

−∞

(
vSPn − kIPn + kSPn

2

)
pIP(kIPn )dkIPn

which is the expected value of the payoff based on its offer
kSPn . Based on the belief (11) about the IP’s reservation price
and the reservation price vSPn of SP n, the SP n can calculate
its optimal offer.

Theorem 2. The optimal offer of the SP n according to the
Linear Equilibrium Strategy is given by

kSPn =


2
3v

SP
n + 1

3s0 for vSPn ≤ min(s1, vIPn )

−vIPn + s0
2
3 (v

IP
n − vIPn ) + s0 else

(27)

with s0 = 3
4v

IP
n + 1

4v
SP
n and s1 = 3

4v
SP
n + 1

4v
IP
n .

Proof. The proof is analogous to the proof found in [36].

The optimal offer strategy of the SP is shown in Fig. 3. For
the analysis of the SP’s strategy, it is important to remember
that a lower offer kIPn is favorable for the SP, as a lower kIPn
results in a lower payment from the SP to the IP according
to (18). In Fig. 3, we can see also a piece-wise linear optimal
strategy. For lower reservation prices of the SP, the optimal
offer increases linearly with the SP’s reservation price vSPn .
After the threshold vSPn ≥ min(s1, vIPn ) − vIPn + s0, the SP
does not increase its offer any further and the SP’s optimal
offer is fixed to kSPn = 2

3 (v
IP
n − vIPn )+ s0. This is an effect of

the IAs, as the SP can exploit the limited information of the
IP.

D. Computational complexity

To execute the LES bargaining mechanism, we need to
calculate the reservation price functions and the IP’s expected
payoff functions. Each of these functions from (23) is a step
function as every function is the sum and concatenation of
other step functions. To fully describe such a function, each
resource amount is stored where the function changes its value,
and the corresponding function value is sufficient. If the SPs
can demand an arbitrary amount of resources XSP

n ∈ R,
the number of resource amounts where the reservation price
functions change value grows exponentially with each step of
the backward induction. Thus, the bargaining mechanism has
a computational complexity of O(2N ).

We argue that, in reality, it is reasonable to assume that
resources are organized in discrete computation instances,
like virtual machines at a cloudlet. This is common practice
for MEC providers [38]. By making this assumption, the
possible combinations of demands XSP

n of the SPs and the
IP’s available resources XIP reduce to an integer number
of these computing instances. Therefore, we can significantly
reduce the computational complexity of our proposed NBI-
LES approach. In our case, the SPs can only demand multiples



of a single computational instance, i.e., only integers of
instances. As a result, the step functions of the IP’s reservation
price can only change their value at integer resource amounts.
This reduces the computational complexity to O(XIP ·N) and
allows for computation of the bargaining mechanism when the
number N of SPs is large.

E. Effects of the bargaining order

The order of SPs in the sequential bargaining process can
influence the outcome at step n due to the IP’s opportunity
cost vIP,opp

n , which depends on n. This can lead to variations
in the utility for both the SP and the IP during individual nego-
tiations. In the complete information case discussed in [41], an
early-mover advantage is observed, where the first SP enjoys
a higher expected payoff due to an increased likelihood of
reaching an agreement and securing service placement.

However, our primary focus in this work is on evaluating the
efficiency and fairness of the overall network. Therefore, we
concentrate on aggregate metrics such as total utility, resource
utilization, and average resource prices. As shown in [41], the
bargaining order does not affect these aggregate metrics, nor
does it impact the overall efficiency of the proposed solution.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed
NBI-LES approach and compare it to state-of-the-art algo-
rithms using a real service usage dataset. We will first discuss
the service usage dataset and the selection of the different
MEC service use cases. Afterward, we present the model for
the cost factors, IAs, and resources.

A. Case Study and Data Set

We obtained data on the use of services from different SPs to
study the performance and effectiveness of our approach in the
simulation. We are unaware of a public dataset that provides
usage information at the appropriate granularity for various
SPs with heterogeneous use cases. We collected the data in a
field study to use reasonably realistic smartphone usage as a
basis for the simulations. Overall, K = 544 participants from
the US took part in the study for about three weeks, starting on
30th of November until 23rd of December 2022. We aggregated
the data over all K = 544 users and 36 services to obtain an
average service usage time per service.

We consulted related literature [5], [6], [48]–[50] and [51]
to gain an overview of possible use cases for the MEC
scenario. We chose a subset of use cases for simplicity
and analyzed them regarding their traffic and computational
load. We determine service use case categories according to
computational and data traffic demands, which can be either
high or low. Table III visualizes three of these combinations
providing possible use cases with different requirements re-
garding computation and traffic, i.e., computation high and
traffic low (computation-heavy), computation low and traffic
high (traffic-heavy), and computation high and traffic high
(multiple-heavy). We excluded the fourth imaginable use case
with low computation and traffic load, as we consider this use

case least appropriate for MEC as there is only low potential
for efficient use in MEC. Hence, only three use case categories
remain: computation-heavy, traffic-heavy, and multiple-heavy.
We selected the N = 16 most popular services in our dataset
from these use case categories. We chose the use cases “mobile
AR”, “video streaming”, and “video analytics”. Based on
the usage time duration of a service, we can determine the
computational resource demand XSP

n and data traffic of each
service type. The type of service and the associated MEC
use case plays a particular role, as the resource demand XSP

n

differs between different service types.
Regarding the computation and traffic reduction by offload-

ing a service to the edge in respective use cases, we based our
parameters on existing studies [5], [6], [48], [49] and [51], that
have implemented and evaluated similar services. When the
studies above presented different values for the computational
or data traffic demands, we averaged these values for the
respective use cases. We measure the computational demand
XSP

n in virtual CPUs (vCPUs). First, we consider the use case
“mobile AR” from the use case category “computation-heavy”.
In case of a mobile AR game, the data traffic demand is as
low as 0.028MB/h [6], while a Full HD video stream might
require 4.6GB/h, e.g. when a video stream is augmented live.
We average this to a data traffic demand of DSP

n = 2.3GB/h.
As the “mobile AR” use case requires large amounts of
computation resources, we assume XSP

n = 4 vCPUs per
service instance. For the use case “video streaming” from
the use case category “traffic-heavy”, we assume XSP

n = 1
vCPU per service for a relatively low computation load. At the
same time, we consider data traffic demand to be 4.6GB/h,
assuming Full HD video streaming. Finally, we inspect the use
case “video analytics” from the use case category “multiple-
heavy”. For this use case, we estimate a 4K video stream to
require between 4.6GB/h and 15GB/h, averaging to about
DSP

n = 9.65GB/h of data traffic demand. Simultaneously, we
assume this to be a computation-heavy use case. Hence, we
presume XSP

n = 4 vCPUs per service instance.
We estimate the cost factors based on real-world IPs

like [38] and [39]. We differentiate cost factors associated with
cloud computing αSP

n , βSP
n ,ΦSP

n and the cost factors αIP,ΦIP
n

associated with MEC, which are presented in Table IV.

B. Evaluation Setup

In our evaluation, we consider the service placement to
be performed every hour for a T = 24 days, resulting in
a total of T · 24 = 576 different service placements. We
assume a constant number XIP of available vCPUs at the
cloudlet for the entire period. The order of SPs in each
bargaining procedure is randomly selected to mitigate the
effects of bargaining order, as discussed in Sec. III-E. For a
consistent comparison, the same bargaining order is used for
all approaches considered.

We determine the resource demands XSP
n of any given

SP through two variables. The first is the service instance
requirement (SIR), which indicates how many computation
resources must be allocated to the service-specific software



TABLE III: Overview of the analyzed use cases.
Use Case Domain Computation Traffic Traffic reduction CPUs per Service Traffic per Service
computation-heavy Mobile AR High Low 0.9 [5] 4vCPU 2.3GB/h
traffic-heavy Video Streaming Low High 0.3 [48] 1vCPU 4.5GB/h
multiple-heavy Video Analytics High High 0.8 [49] 4vCPU 9.65GB/h

TABLE IV: Evaluation parameters
Symbol Description Value Source
T Considered time period 24 d
t Bargaining interval 1 h
N Number of SPs 16
σSP Uncertainty about the SPs’ reservation prices vSPn 0.5
σIP Uncertainty about the IP’s reservation prices vIPn 0.5
αSP
n Cost per computation resource at the cloud 0.056 USD per hour [38]

βSP
n Cost for communication between user and the cloud 0.09 USD per GB [38]

ΦSP
n Cost for storage and maintenance of the service provided by SP n 0.000208 USD/GB per hour [39]

ΦIP
n Infrastructure cost for storage and maintenance 0.000208 USD/GB per hour [39]

αIP Cost per computation resource at the cloudlet 0.0416 USD per hour [38]

for each category. For example, one service instance of the
use case “mobile AR” may require 4 vCPUs, whereas the
use case “video streaming” requires only 1 vCPU per service
instance. The second important variable is the total service
usage duration tservice, which is the total time the users access
a service in a given hour. We assume that a duration of
tservice = 3600 s of app usage requires one service instance to
process the user demands. We then calculate the total demand
as XSP

n = ⌈SIR · tservice

3600 ⌉. Since the IP sells vCPUs only
in discrete units, we round up the demand to the next highest
integer to ensure sufficient computation resources are allocated
to each service instance.

To determine the reservation prices of the SPs, we first
calculate the reservation price vSPn of each SP according
to (4). Additionally, we assume that noise is present to model
the uncertainty of the reservation prices. We assume that to
each reservation price vSPn , a uniformly distributed random
variable vNoise

n ∼ U(−σSPvSPn , σSPvSPn ) is added. If not
stated otherwise, we set σSP = 0.5, i.e., the reservation price
fluctuates 50% around the reservation price vSPn .

For the IP, we calculate the physical cost vIPn for service
placement according to (8). We assume that each SP can
accurately estimate this cost because each SP knows its own
computation, communication, and storage resource demand
and can attain the physical computation cost per resource
through other edge computation providers. In a scenario with
unlimited resources, the physical cost vIPn corresponds to the
reservation price ṽIPn of the IP, i.e., ṽIPn = vIPn , as the SPs do
not need to compete for the resources in the case of unlimited
resources. Therefore, the physical cost vIPn of computation
is the lower bound of the IP’s reservation price. The other
extreme scenario describes the case that resources are very
scarce, i.e., the sum of the SPs’ resource demands

∑N
n=1 X

SP
n

is much larger than the number XIP of available vCPUs. In
such a case, the highest price the IP could reasonably demand
is the upper bound of the SP’s reservation price vSPn . The
upper bound of the IP’s reservation price equals, therefore,
the SP’s reservation price upper bound. Consequently, each SP
can model its belief function of (11) as a uniform distribution
between vIPn and vSPn .

C. Evaluation metrics

The IP and the SPs have different technical and economic
parameters, so assessing the system’s performance depends on
the considered perspective. We argue that different evaluation
metrics must be considered to measure the system’s perfor-
mance.

1) Resource utilization: The resource utilization R(x) is
defined as the number of computation resources, i.e.,
vCPUs, used in the service placement. This is defined
as R(x) =

∑N
n=1 xnX

SP
n .

2) Cloudlet service time: We consider the time users access
services placed on the cloudlet. A higher cloudlet service
time corresponds to a higher service quality for the users,
as more service requests are processed directly on the
cloudlet.

3) Reduced data traffic to the cloud: We consider the
amount of data that can be processed locally on the
cloudlet instead of sent to the central cloud.

4) Social Welfare: As described in Section II-E, social
welfare is used to measure the system’s efficiency.

5) Jain’s index: As described in Section II-F, we use Jain’s
index to measure the system’s fairness.

6) Price of the resources: We consider the average price
kn per resource.

7) Profits of the IP and SPs: We consider the individual
payoffs generated by the service placement of the SPs,
see (3), and the IP, see (7).

D. Baseline Algorithms

To evaluate our proposed NBI-LES, we compare it with tra-
ditional pricing approaches. We use the following algorithms
to benchmark our proposed NBI-LES.

• Fixed price per resource determined by the IP, which
is abbreviated as Fixed Price: The IP sets a fixed price
p per vCPU for every SP in this method. Each SP
then decides if it accepts a service placement for the
given price. This approach is derived from state-of-the-
art approaches [23] and [25] and is the most commonly
used in practice by major cloud providers like AWS [39]
or Azure. An SP n will agree to service placement if the
payment kn = pXSP

n for service placement is smaller
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Fig. 4: Average resource utilization in
vCPUs as a function of XIP.
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Fig. 5: Average cloudlet service time as
a function of the time of day, XIP = 30.
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Fig. 6: Reduced data traffic to the cloud
in GB/h as a function of XIP.

than its reservation price, i.e., vSPn > kn. For better
comparison, we assume that the SPs decide on the service
placement in the same order they bargain with the IP
in our LES mechanism. The SPs’ and IP payoffs are
calculated according to (3) and (7). The IP will choose
the price p per vCPU to maximize its expected payoff
for the service placement process considering the IAs.
This price p depends on the number XIP of available
resources and is calculated through backward induction.

• Centralized popularity-aware service placement, which
is abbreviated as POP. Using this approach, the services
with the highest usage time tservice are placed on the
cloudlet by a centralized network orchestrator [52] with
full information available. The IP charges for each vCPU
a fixed price p = 2vIPn , which reflects the IP’s reservation
price and a profit margin. The payment for the service
placement is then given by kn = pXSP

n . This approach
only considers the popularity of each service, i.e., it
aims to maximize the probability that a service request
is processed on the cloudlet. However, it neglects the
aspects of efficient resource utilization and disregards the
economic considerations of the SPs and the IP.

• Centralized optimal service placement, which is abbrevi-
ated as OPT: The OPT strategy describes which service
placement decisions x a centralized network orchestrator
with perfect information, i.e., without IAs, would take to
maximize the social welfare Ψ(x) (13). This is a state-of-
the-art approach from [12], which we adapted to the given
scenario. Resource demands XSP

n and reservation prices
vSPn , vIPn are known to a central network orchestrator. The
payments for the service placements are chosen to be
kn =

vSP
n +vIP

n

2 , i.e., the profit is split equally between the
IP and the SP. We can formulate the centralized service
placement problem as

max
x

Ψ(x) (28)

s. t. xn ∈ {0, 1} (29)
N∑

n=1

xn ·XSP
n ≤ XIP, (30)

where Ψ(x) is the social welfare from (13). The resulting
centralized optimal service placement x is obtained using

a solver.

E. Results and Discussion

In Fig. 4, we assess the resource utilization for the proposed
NBI-LES, Fixed Price, POP, and OPT algorithm for a varying
number XIP of available vCPUs. For a low number of
available vCPUs, i.e., XIP < 10, the NBI-LES, POP, and
OPT algorithms achieve a high resource utilization. For a
high number of resources, the proposed NBI-LES algorithm
achieves a resource utilization within 83% of the OPT algo-
rithm and a 50% (71%) higher resource utilization than the
POP and Fixed Price algorithm respectively. The POP and
OPT outperform the Fixed Price algorithm as they require a
central network orchestrator and the SPs and the IP to report
all their information. The resource utilization is not equal to
100% even for the OPT algorithm, as the service placement
is not economically viable for all SPs for every hour. For
some services, where either the current demand is low or the
benefits from MEC are not large, it is advantageous to use
cloud resources instead of service placement in MEC.

The cloudlet service time over the course of a day for
XIP = 30 vCPUs is shown in Fig. 5. For this, the data over the
whole period of 24 days has been averaged for each hour of
the day. The maximum service time of the cloudlet is at around
23:00 hours. For the OPT approach, the cloudlet service time
at 23:00 is 137 hours, i.e., 137 hours of service usage time
from all users, and for all N SPs between 23:00 and 0:00 has
been performed on this cloudlet. The NBI-LES has a cloudlet
service time of 123 hours, 89.8% of the OPT algorithm.
The Fixed Price and POP algorithms perform significantly
worse and achieve only 40.7% (30%) of the cloudlet service
time the proposed NBI-LES provides. Both the Fixed Price
and the POP algorithms suffer because the price kn for the
computation resources is not adjusted for each SP. This makes
service placement beneficial for SPs with a high reservation
price vSPn , which is above the price. The price from the Fixed
Price algorithm is calculated according to the current total
demand for resources. The price of the POP algorithm only
depends on the profit margin and physical cost of the IP.

We show the reduced data traffic to the cloud in Fig. 6. The
reduced data traffic fluctuates for a low number of vCPUs,
XIP < 10. This is because several computation-heavy services
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can only be placed if the available vCPUs exceed the demand.
Therefore, if the number of vCPUs is increased, a service
with higher computational demand will replace a service with
higher data traffic demands, decreasing the reduced data traffic
to the cloud. For a sufficient number XIP > 40 of vCPUs, the
OPT algorithm saves 38GB/h. The NBI-LES achieves 79%
of data reduction compared to the OPT approach and performs
60% (100%) better than the POP and Fixed Price algorithm,
respectively.

We assess the social welfare of (13) for the proposed NBI-
LES, Fixed Price, POP, and OPT algorithm in Fig. 7 for a
varying number of available computation instances XIP. The
social welfare is monotonically increasing since more available
computation resources XIP enable more service placements.
The higher number of service placements corresponds with an
increase in payoff for both IPs and SPs, which in turn increases
social welfare. When resources are scarce, SPs willing to
pay a higher price, i.e., with a higher reservation price vSPn ,
will receive the service placements. Furthermore, the social
welfare approaches a limit when available resources XIP

increase. This limit exists due to the finite demand XSP
n of SPs.

We can see that our proposed NBI-LES algorithm performs
14.2% better than the Fixed Price approach, 26.3% better
than the POP algorithm, and achieves 96% of the optimal
social welfare. From these results, we can also conclude that
a uniform price for all SPs, as used by the Fixed Price and
POP approach, leads to a decrease of social welfare.

In Fig. 8, the social welfare is shown over the whole period
of T for the NBI-LES, Fixed Price, POP, and OPT approach.

Social welfare varies daily as the users’ service usage and,
therefore, the SPs’ resource demands change. The proposed
NBI-LES algorithm provides higher social welfare than the
POP and Fixed Price algorithms on days with high demand as
well as on days with low demand.

Fig. 9 shows the Jain’s index (14) as a function of the
available vCPUs for the proposed NBI-LES algorithm and the
Fixed Price algorithm. As the OPT and the POP algorithms
are centralized approaches, we do not consider their fairness.
The black dashed line indicates the least fair solution, i.e.,
J (x,k) = 1

N , where only one stakeholder takes all the profit.
For a lower number of resources XIP = 10, the proposed NBI-
LES algorithm achieves an average Jain’s index of 0.3, while
the Fixed Price only achieves 0.2. These low numbers are be-
cause only a few services can be placed on the cloudlet, which
results in an unfair distribution that benefits the SPs with the
highest profit from service placement. For more resources, the
fairness increases, as more SPs can use MEC and place their
services on the cloudlets. Our proposed NBI-LES algorithm
significantly increases the fairness compared to the Fixed Price
approach because the IP adapts its price for each SP. This is
beneficial for the IP as well as the SPs because more service
placements are possible. The fairness measured by the Jain’s
index does not approach perfect fairness J (x,k) = 1 due to
the IAs.

Fig. 10 shows the average price kn paid per vCPU. For
comparison, the blacked dashed line shows the IP’s physical
cost vIPn (8) per computation resource. Both the Fixed-Price
Approach and the proposed NBI-LES approach adapt their
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proposed NBI-LES algorithm as a func-
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prices to the current demand and available vCPUs. For a
lower amount of available vCPUs, the price is higher. The
price is lower for XIP < 4, as only SPs with a very low
computational demand can place the service on the cloudlet.
The price of the proposed NBI-LES algorithm is lower than
that of the Fixed Price approach, which enables SPs with a
lower reservation price to achieve a service placement. This
increases the fairness of the service placement and allows for
better resource utilization. The POP algorithm’s fixed price is
p = 2vIPn , corresponding to the average price per vCPU of the
proposed NBI-LES algorithm.

Fig. 11 depicts the sum of the profit of all SPs for the
NBI-LES, POP, and Fixed Price algorithm. The POP algo-
rithm provides a larger profit for the SPs, as the prices are
lower when the resources are scarce, as shown in Fig. 10.
Furthermore, the price is not adapted for each SP; therefore,
SPs with a high reservation price profit from the low price
that the POP algorithm provides. As the POP algorithm is
a centralized approach, no IAs between the SPs and the IP
are considered, making real-world implementation difficult.
The proposed NBI-LES algorithm outperforms the Fixed Price
approach by 16.6% regarding the SPs’ profit.

Fig. 12 depicts the profit of the IP from the service place-
ment for the entire time period T depending on the number
of available vCPUs. When the IP has more vCPUs available
at the cloudlet, the NBI-LES algorithm generates higher profit
for the IP. This leads to higher price offers kIPn of the IP
for SPs with higher expected reservation prices and lower
price offers for SPs with lower expected reservation prices.
In comparison, when the IP sets a fixed price for all SPs, it
must choose between price per resource and the number of
service placements. If the IP sets a high price, it will receive
high payments, but from only a few SPs, thus not using many
cloudlet resources. In contrast, if the IP sets a lower price,
more services will be placed on the cloudlet, but the profit
per resource is lower. This lower flexibility of the Fixed Price
method leads to lower overall profits for the IP for the Fixed
Price approach. In the comparison between the IP’s profit from
Fig. 12 and the SPs’ profit from Fig. 11, we can see that the
SPs have a lower total profit than the IP. This can be explained
by the fact that the SPs are unaware of the number XIP of
available vCPUs, which is a disadvantage in the bargaining

procedure.

Furthermore, we investigate the effect of the degree of IAs
on the performance of the NBI-LES and Fixed Price approach.
The centralized approaches have complete information. There-
fore, the OPT and POP algorithms are not considered. We
vary the information available σIP and σSP of the bargaining
partner’s reservation prices, where a larger value of σIP (σSP)
corresponds to greater IAs. In the first experiment, shown in
Fig. 13, we vary the uncertainty σIP about the IP’s reservation
price and analyze how this affects the profit of the SPs. We
can see that for the NBI-LES approach, the profit of the SPs
decreases with increasing σIP. For the Fixed Price approach,
the SPs’ profit is constant over σIP, as the SPs are not involved
in the pricing of the resources. For the Fixed Price approach,
the IP determines the price without involving the SPs.

In the second experiment, shown in Fig. 14, we vary the un-
certainty σSP about the SPs reservation prices and analyze how
this affects the profit of the IP. Here, we can see that the profit
of the IP decreases much faster for the Fixed Price approach
than for the NBI-LES with increasing IAs. The proposed NBI-
LES is, therefore, more robust against IAs, as both the IP and
the SPs are involved in the pricing, whereas in the Fixed-Price
approach, the IP sets the price based on its own information. If
the information about the SPs’ reservation prices is inaccurate,
the Fixed Price approach performs significantly worse than the
NBI-LES approach. In the proposed NBI-LES approach, the
SPs signal their willingness to pay in the form of the offer
kSPn , which reduces the IAs.

Finally, we analyze the average distribution of the cloudlet
service time for the different use cases in Fig. 15 over the
course of a day. We can see that the use case “video streaming”
has approximately 60% of the total cloudlet service time.
This is because large amounts of video data can be stored
directly at the edge, which is economically very efficient.
Furthermore, we can see that different use cases have different
usage patterns over the day. The maximum service usage for
“mobile AR” is around 19:00, whereas for “video streaming”
it is around 23:00. This highlights the importance of a dy-
namic service placement strategy, like the proposed NBI-LES
algorithm, that adapts to users’ current demands.



V. CONCLUSION AND FUTURE WORK

We studied the MEC service placement problem in this
paper, considering multiple stakeholders. We have analyzed
each relevant stakeholder’s technical and economic perspec-
tives, namely the IPs and the SPs. Additionally, we have
modeled IAs concerning the cost factors and the available
resources of the respective bargaining partner. To solve the
service placement problem, we argue that a fair and efficient
solution is required. Fairness is required to ensure that all
stakeholders profit from the service placement and, therefore,
are motivated to participate. Efficiency is required to utilize
the MEC network’s resources to achieve the best performance
in terms of cost reduction and data traffic reduction. We
have proposed a novel bargaining approach, termed NBI-LES,
which combines backward induction and Nash bargaining. We
derive the LES, which represents the equilibrium for all the
stakeholders in the bargaining procedure. Simulation results
show that, compared to a traditional fixed price approach,
our proposed NBI-LES algorithm performs significantly better
regarding resource utilization, and the amount of data sent to
the cloud can be significantly reduced.

Future works could analyze the impact of SPs forming
groups or coalitions to improve their bargaining power in
relation to the IP.
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