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Abstract—In this paper, we investigate the efficient compres-

sion, transmission, and processing of high-volume sensor data
collected from physical systems (PSs) to enable timely and
accurate digital twin (DT) synchronization over resource-limited
wireless networks. The sensors distributed in the PSs compress
their sensed data prior to transmission to a base station (BS)
for DT updating. However, due to the lack of a centralized
decision-making unit, each sensor independently selects its own
compression ratio to balance between its transmission time and
compression overhead. To coordinate the compression across the
sensors and ensure efficient DT updating globally, we formulate
the problem as a Stackelberg game, where the BS acts as the
leader for allocating communication/computing resources, while
the sensors act as followers to optimize their data compression.
By deriving each sensor’s best response (BR), we further propose
a low-complexity iterative algorithm to compute the Stackel-
berg equilibrium. Simulation results show that incorporating
data compression significantly reduces DT synchronization time.
Furthermore, the proposed algorithm achieves near-optimal
performance, closely matching the centralized joint optimization
scheme with almost no price of anarchy.

I. INTRODUCTION

Digital Twins (DTs) functioning as digital replicas of
physical systems (PSs) present a transforming technology for
future society. By collecting real-time data from a PS, a DT
can be created and hosted on a cloud server to provide a
comprehensive digital representation of the PS. Moreover,
DTs can support extended reality services and enable seam-
less interaction with their physical counterparts. To ensure a
successful integration of DTs into the sixth-generation (6G)
wireless communication system [1], it is essential to achieve
accurate and timely synchronization between the DT and
its associated PS. However, meeting the strict demands for
low latency, high reliability, and high data rates during this
synchronization process remains a substantial challenge.

Recently, a wide range of research [2]–[4] has addressed
the topic of DT synchronization in different aspects. In
[2] and [3], game-theoretic approaches were employed to
optimize communication and computing for effective DT
synchronization. Specifically, [2] optimized synchronization
intensity by strategically selecting virtual service providers
for Internet of Things (IoT) devices, while [3] minimized
synchronization delay by intelligently selecting relay nodes
in vehicular networks. In [4], the authors proposed a relaying
scheme using buffer-aided mobile relays and determined the
optimal trajectory to fully exploit both communication and
computing resources during DT synchronization.

However, the aforementioned works [2]–[4] primarily focus
on the efficient allocation of communication and computing
resources. In this paper, we aim to extend and enhance
these approaches by integrating sensor data compression into
DT synchronization. Data compression is a well-established
technique for eliminating redundancy and reducing transmis-
sion overhead, thereby accelerating data delivery in commu-
nication, sensing, and task offloading applications [5]–[7].
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Nevertheless, compression also induces extra overhead in data
processing. Consequently, directly applying the synchroniza-
tion approaches in [2]–[4] to compressed sensor data, as
done in [8], can be strictly suboptimal, as they neglect the
fundamental trade-off between data reduction and processing
overhead. Instead, joint optimization of data compression,
communication, and computing for DT synchronization be-
comes crucial, but has not yet been explored in the existing
literature. Furthermore, joint optimization typically requires a
centralized decision-making unit, which is, however, overly
complicated for DT synchronization with distributed sensors.

This paper aims to address both challenges identified above.
To demonstrate the advantages of incorporating data compres-
sion into DT synchronization without complicating the mathe-
matical notations, we focus on investigating the lossless com-
pression method in this paper. Lossless compression ensures
exact recovery of the original data at the receiver, making it
suitable for various downstream applications. It is also a key
component in many practical compression solutions. A recent
lossless compression scheme has been shown to significantly
reduce the size of large language models (LLMs) without
compromising their accuracy [9].

Under this setting, we further develop a Stackelberg game-
based resource allocation framework that jointly optimizes
data compression, communication, and DT computing. Our
proposed framework allows each sensor in the PS to inde-
pendently compress its sensed data before transmitting the
compressed data to the base station (BS) for updating the DT,
without a centralized unit. Meanwhile, the decision-making
across the sensors are coordinated for globally efficient DT
synchronization by enabling the BS to lead the communica-
tion/computing resource allocation. Our contributions include:

• We formulate a Stackelberg game to model DT synchro-
nization with lossless data compression at the distributed
sensors in the PS. This game-theoretic framework jointly
optimizes sensor-side data compression along with com-
munication/computing resource allocation at the BS for
efficient DT updating without a centralized unit.

• For each sensor, we analytically derive its best strategy
for compression to balance between its transmit time
and compression overhead. Based on this, we develop
a low-complexity iterative algorithm to compute the
Stackelberg equilibrium.

• Simulation results show that the derived equilibrium
solution significantly reduces DT synchronization time,
with almost no price of anarchy being paid.

II. SYSTEM MODEL

In this section, we present the system model for DT
synchronization with sensor data compression.

A. DT Synchronization with Sensor Data Compression
As depicted in Figure 1, a cloud server is responsible for

creating and synchronizing a DT of a dynamic PS, using
data collected from K sensors in the PS, where sensor k is
located at us

k, k ∈ K ≜ {1, . . . ,K}. Thereby, each sensor
transmits Dk bits to the BS every TPS seconds, while the latter
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Fig. 1. Illustration of DT synchronization with data compression.

then forwards the data to the cloud server over a high-speed
communication link. Based on Shannon’s sampling theorem
[10], this allows to accurately track any dynamics with a
bandwidth of 1/TPS Hz in the PS.

Due to limited radio resources for communication, each
sensor first utilizes data compression to reduce the data
volume before transmission to the BS. The cloud server then
decompresses and further processes the received data. There-
fore, DT synchronization with data compression encompasses
the whole process of data compression, communication, de-
compression, and DT updating, as elaborated below.

1) Data Compression and Decompression: We employ
lossless compression at the sensors such that the cloud server
can exactly recover the sensed data without degrading the ac-
curacy of DT models. Following [5]–[7], the data volume after
compression is given by Dk/βk, with βk ∈ [1, βmax] denoting
the compression ratio. Here, βk = 1 and βk = βmax indicate
no data compression and the highest possible compression
ratio for lossless data compression, respectively.

While the amount of compressed data to be transmitted
decreases with βk, reducing the time needed for transmission
to the BS, this unfavorably increases the time needed to
compress the sensor data. Therefore, a fundamental trade-off
between transmission time and compression overhead exists.
To capture this trade-off, the computational complexity of
compression is modeled as [5]

η (βk, ϵ) = eβk·ϵ − eϵ, (1)

where ϵ is a constant defined by the compression algorithm.
The compression complexity η (βk, ϵ) is zero when βk = 1,
and grows exponentially as a higher compression ratio is used.
The time required to compress the sensed data at the sensors
is given by

T comp
k (βk) = Dk · η (βk, ϵ)/f

S
k , (2)

where fS
k is the compression speed of a sensor.

Note that, due to large processing capabilities of the cloud
server, the time required to decompress the transmitted data is
negligible compared with T comp

k . For this reason, it is ignored
in this paper, similar to [7].

2) Data Communication: The sensors employ orthogonal
frequency-division multiple access (OFDMA) to transmit the
compressed data to the BS while effectively avoiding mul-
tiuser interference. To this end, the total bandwidth of B Hz
is split into several nonoverlapping subchannels, which are
allocated to the sensors for communication with the BS.
Specifically, bk denotes the bandwidth assigned to sensor
k ∈ K and the available data rate for communication is defined
using Shannon’s capacity formula as

rk (bk) = bk · log2

(
1 +

|Hk|2 · pk
N0 · bk

)
, (3)

with the transmit power pk, noise power spectral density N0,
and complex channel gain Hk ∈ C. The channel gain from

the k-th sensor to the BS is further modeled as

Hk =
√
A0 ·

∥∥uBS − us
k

∥∥−α/2 · hk, (4)

where A0 and α ≥ 2 denote the path loss at a reference
distance of 1m and the path loss exponent, respectively. Here,
A0/ (dk)

α defines the path loss of the channel and hk ∈ C
denotes the complex channel fading coefficient [4]. Finally,
the time needed by sensor k ∈ K to transmit the compressed
data to the BS is given by

T tr
k (βk, bk) = Dk/ (βk · rk (bk)) . (5)

3) DT Computing: For processing the sensor data and
updating the DT, the cloud server has a processing capacity of
CDT Hz for all K sensors. Based on the allocated processing
speed fDT

k , the time required to process the data from sensor
k ∈ K and synchronize the DT is given by

TDT
k

(
fDT
k

)
= Dk · ck/fDT

k , (6)

where ck is the computational complexity of DT processing.

B. DT Synchronization Time
Lastly, we define the total time occupied by sensor k ∈ K

for compression, transmission, and processing of its data as

T total
k

(
βk, bk, f

DT
k

)
= T comp

k + T tr
k + TDT

k . (7)

It is assumed that each sensor is able to start compressing,
transmitting, or processing its data independently, without
waiting for other sensors. The time required to complete the
DT update of the whole PS is defined by the maximum of
T total
k and is referred to as DT synchronization time.

III. PROBLEM FORMULATION

Based on (7), the fundamental trade-off in DT synchro-
nization between data compression and data transmission
is also dependent on DT computing. In order to address
such complicated trade-offs for ultimately lowering the DT
synchronization time, it requires intelligently optimizing the
selection of the compression ratio βk, the allocated bandwidth
bk, and the DT processing speed fDT

k . However, there ex-
ists no central unit that has control over all variables. On
the contrary, each sensor is responsible for independently
choosing its own compression ratio while the BS allocates the
bandwidth and DT processing speed, both following distinct
objectives. Motivated by these strategic interactions between
the sensors and the BS, in this section, we further propose
a multi-follower Stackelberg game-based resource allocation
framework for DT synchronization with data compression.

Base station
(leader)

Sensor k∈K
(follower)

bk, f
DT
k

βk

Fig. 2. Illustration of the introduced multi-follower Stackelberg game for DT
synchronization with data compression.

A. Stackelberg Game Formulation
Figure 2 illustrates the proposed Stackelberg game, where

the BS acts as the leader in allocating the available bandwidth
bk and DT processing speed fDT

k . In reaction to the resource
allocation from the BS, each sensor acts as a follower that
optimizes its compression. Specifically, for a given bk, sensor



k aims to minimize the time required for data compression and
transmission to the BS as defined in their own cost function

U f
k (βk; bk) = T comp

k (βk) + T tr
k (βk, bk) . (8)

Problem P f
k describes the sub-game of the k-th follower.(

P f
k

)
: min

βk

U f
k (βk; bk) (9)

s.t. C1.f : 1 ≤ βk ≤ βmax. (9a)

Constraint C1.f ensures a valid βk ∈ [1, βmax]. On the other
hand, the BS aims to coordinate the self-interested sensors.
Based on the βk, k ∈ K, the BS aims to coordinate the
sensors by minimizing the maximum DT synchronization time
T total
k

(
βk, bk, f

DT
k

)
. Therefore, the cost function is defined as

U l (b, f ;β) = max
k∈K

T total
k

(
βk, bk, f

DT
k

)
, (10)

where b ≜ {bk|k ∈ K}, f ≜
{
fDT
k |k ∈ K

}
, and β ≜

{βk|k ∈ K}. Problem P l
DT defines the sub-game of the leader.

(
P l
DT

)
: min

b,f
U l (b, f ;β) (11)

s.t. C1.l :
∑K

k=1
bk ≤ B, (11a)

C2.l :
∑K

k=1
fDT
k ≤ CDT. (11b)

Constraints C1.l and C2.l restrict the bandwidth and DT
processing speed allocation, respectively.

B. Stackelberg Equilibrium
Given each bk determined by the leader, the solution of a

follower’s sub-game P f
k is defined by the best response (BR)

below

BR (bk) ≜

{
βk : min

1≤βk≤βmax
U f
k (βk; bk)

}
, (12)

which specifies the optimal βk that minimizes the sensor’s
cost function. By playing their sub-games, the sensors and
the BS, namely the followers and the leader, aim to reach an
equilibrium strategy, referred to as the Stackelberg Equilib-
rium (SE). According to [11], the SE consists of the optimal
resource allocation b∗, f∗ and the optimal compression ratios
β∗ that satisfy βk

∗ ∈ BR(bk) and

U l (b∗, f∗;β∗) ≤ U l (b, f ;β) , ∀βk ∈ BR(bk) , (13)

where (·)∗ is used to indicate the best decisions of the sensors
and the BS. Upon reaching the SE, neither sensors nor the BS
would like to change their decision [12].

IV. PROBLEM SOLUTION

To derive the SE solution for the introduced Stackelberg
Game, we first characterize the BR of the sensors in closed
form. Subsequently, following the backward-induction [12]
approach, the derived BR is utilized in the leader’s problem to
find the optimal resource allocation for the BS. Finally, based
on these results, the SE solution for DT synchronization with
data compression is calculated using an iterative algorithm.

A. Strategy Analysis for the Followers
Note that in problem (9), each follower has its own

objective function and constraints. As such, its decision is

independent of the other followers and thus, the BR of sensor
k ∈ K can be derived by solving problem (9).

We first show that strong duality holds for problem (9). To
this end, an auxiliary variable µk > 0 is introduced to replace
1/βk in (8). Subsequently, the objective function is rewritten
as

fk (xk; bk) ≜
Dk

fS
k

· eβk·ϵ +
Dk

rk (bk)
· µk, (14)

for xk ≜ [βk, µk]
⊺, and the optimization problem of the

follower is reformulated into(
P f,2
k

)
: min

{βk≤βmax,µk>0}
fk (xk; bk) (15)

s.t. C1.f : 1 ≤ βk, (15a)
C2.f : 1/µk ≤ βk. (15b)

Since the completion time increases with 1/βk, the additional
constraint C2.f ensures that problem P f,2

k is equivalent to (9).
Note that P f,2

k is a convex optimization problem that satisfies
Slater’s condition, for which strong duality holds in P f,2

k [13].
Based on the strong duality result, we now derive the

followers’ BR in closed form by solving the corresponding
dual problem of P f,2

k . To define the dual problem, we first
introduce the dual variables λ1,k, λ2,k ≥ 0 for constraints
C1.f and C2.f , respectively. Accordingly, the dual vector
λk=[λ1,k, λ2,k]

⊺ and the Lagrangian function

Lk (λk,xk; bk) = fk (xk; bk) + λ⊺
k g (xk) with (16a)

g (xk) =

(
1− βk

1/µk − βk

)
(16b)

are defined. The dual problem of P f,2
k can be defined as

(P f,3
k ) : max

λk≥0
D (λk; bk) (17)

with the dual function given by

D (λk; bk) ≜ min
xk

Lk (λk,xk; bk) (18)

s.t. C1.f and C2.f.

The optimal solution to the minimization problem in (18) can
be analytically derived, despite its constrained form, as shown
in the following lemma.
Lemma 1. The optimal compression ratio β∗

k and the optimal
value of the auxiliary µ∗

k are functions of the dual variables
λk ≥ 0 as given by

β∗
k = min

{
1

ϵ
ln

(
fS
k

ϵ·Dk
(λ1,k + λ2,k)

)
, βmax

}
, (19)

µ∗
k =

√
λ2,k · rk (bk) /Dk. (20)

Proof. The first-order derivative of the Lagrangian function
Lk (λk,xk; bk) with respect to the DT processing speed fDT

k
is given by

∂

∂βk
Lk (λk,xk; bk) =

ϵ ·Dk

fS
k

· eβk·ϵ − λ1,k − λ2,k. (21)

Thus, the optimal β∗
k in (19) can be obtained by finding the

root for ∂
∂βk

Lk (λk,xk; bk) within the interval βk ≤ βmax.
Meanwhile, the optimal value of the auxiliary variable µ∗

k can
be similarly derived based on the first-order derivative with



respect to µk,

∂

∂µk
Lk (λk,xk; bk) =

Dk

rk (bk)
− λ2,k · 1

(µk)
2 , (22)

for which a positive root can be easily identified.

Thanks to Lemma 1, we can easily obtain a sub-gradient
[14] for the dual function in (18) as

g (x∗
k (λk)) =

(
1− β∗

k
1/µ∗

k − β∗
k

)
, (23)

which can be further utilized to solve the dual problem in
(17). This is achieved via an iterative gradient ascent search
defined by

λ
(l+1)
k =

[
λ
(l)
k + h

(l)
λ ◦ g

(
x∗
k

(
λ
(l)
k

))]+
, (24)

where (·)(l) denotes the iteration index l,◦ is the element-wise
multiplication operator, and [·]+≜max{0, ·}. We set λ(0)

k as
the initial value of the dual vector and determine the step size
h
(l)
λ via line search.

B. Strategy Analysis for the Leader
Meanwhile, for given λk, we can derive the optimal strategy

of the leader via backward induction. Specifically, by substi-
tuting the followers’ solution x∗

k (λk) in (7), the completion
time T total

k is rewritten as

T total
k

(
bk, f

DT
k ;λk

)
=

Dk

fS
k

η (β∗
k , ϵ)+

Dkµ
∗
k

rk (bk)
+
ckDk

fDT
k

. (25)

Moreover, the optimization problem P l,2
DT of the leader is

redefined as(
P l,2
DT

)
: min

b,f
max
k∈K

T total
k

(
bk, f

DT
k ;λk

)
(26)

s.t. C1.l and C2.l.

Note that for given λk, the completion time
T total
k

(
bk, f

DT
k ;λk

)
is strictly convex in bk and fDT

k .
Thus, problem P l,2

DT is a convex optimization problem and
can be conveniently solved using e.g. CVX solver [15].
C. Proposed Iterative Algorithm

It remains to derive the SE of the introduced Stackelberg
game, which is readily achieved via an iterative algorithm
that integrates the gradient ascent search in (24). The overall
procedure is presented in Algorithm 1, which requires inputs
about the initial value dual variables λ

(0)
k for all K sensors.

In each iteration, indexed by l, the leader solves problem P l,2
DT

to obtain the optimal resource allocation and exchange it with
the followers (cf. lines 2 and 3). Subsequently, each sensor
k ∈ K employs the gradient-ascent search in (24) to update
λ
(l)
k and compute the corresponding β

(l)
k (cf. lines 5 and 6).

The updated decisions of the leader and the followers are
used to calculate the maximum completion time T total and
the difference to the last iteration ∆T

(l)
total (cf. lines 8 and

9). The procedure continues until the difference between two
iterations ∆T

(l)
total is smaller than ξ or the maximum number

of iterations is reached. As stated in Proposition 2, under
mild conditions Algorithm 1 will converge to the SE of the
introduced Stackelberg game. The complexity and scalability
of Algorithm 1, utilizing the interior-point method, can be
approximated using big-O notation as O(K3.5Lmax).

Proposition 2. For sufficiently large Lmax, Algorithm 1
converges to the solution (b∗, f∗) and β∗, which defines a
unique SE of the Stackelberg game introduced in (9) and (11).
Proof. First of all, since the sensors’ problems are always fea-
sible, the existence of BR (bk) is guaranteed. This implies that
the domain R ≜ {(b, f ,β) | (b, f) feasible to (12) and βk ∈
BR (bk) ,∀k ∈ K} is a nonempty and compact set. As the
cost-function of the BS U l (b, f ;β) is a continuous function in
(b, f ,β), the SE should always exist. Furthermore, each sub-
game can be transformed into a convex optimization problem,
whose objective function is either convex or strictly convex
with respect to (b, f ,β). Thus, R is a convex set. As (13)
minimizes a strictly convex function over a convex set, the SE
solution is unique. Lastly, a sufficiently large Lmax guarantees
convergence of the gradient-ascent searches to the sensors’
BRs, following which Algorithm 1 converges to the SE of
the introduced Stackelberg game.

Algorithm 1 Iterative Algorithm for Finding the SE

Input: Initial λ(0)
k for all sensors k ∈ K and iteration index l=0.

Output: Optimal bandwidth allocation b∗, DT processing speeds f∗, and
compression ratios β∗.

1: repeat
2: Set l= l + 1.
3: Obtain the resource allocation b(l) and f (l) by solving the problem

of leader P l,2
DT ▷ Eq. (26)

4: for all k ∈ K do
5: Use b(l) and f (l) to receive λ

(l)
k via one step of the gradient-

ascent search. ▷ Eq. (24)
6: Use λ

(l)
k to update β

(l)
k in β(l) ▷ Eq. (19)

7: end for
8: Use b(l), f (l), and β(l) to update U l

(
b(l), f (l);β(l)

)
. ▷ Eq. (10)

9: Calculate the difference to the last iteration ∆T
(l)
total.

10: until ∆T
(l)
total ≤ ξ or l ≥ Lmax

11: Set the output b∗=b(l), f∗= f (l), and β∗=β(l).

V. SIMULATION RESULTS

To evaluate the performance of the proposed algorithm, in
this section we simulate a PS with K=4 sensors deployed at
an equal distance of dk=378 m to the BS. Each sensor is able
to utilize a compression speed of fS

k =200 kHz to compress
its data up to a compression ratio of βmax = 3 for lossless
compression. The sensors share the total available bandwidth
B = 100 kHz for communication and the DT processing
capacity of CDT=50 MHz for DT updating.

TABLE I
SIMULATION PARAMETERS [4], [5]

Parameter Value Parameter Value
N0 −90 dBm A0 −30 dB
ϵ 3.5 α 2
ξ 10−6 Lmax 30

We start with evaluating a uniform scenario in Section
V-A, where each sensor transmits Dk = 4 kbits to the BS
at the same transmit power pk = 15 dBm ≈ 31.6 mW. At
the cloud server, each sensor also has the same computing
complexity ck = 104 cycles/bit for DT updating. Only the
channel fading gain hk, assuming Rician channel fading as in
[4], is randomly generated for each sensor. Similar to [4], the
standard deviation of the channel fading gain is set to σk=1
and the energy ratio between the line-of-sight (LoS) and non-
LoS (NLoS) components to κ= 10. Such a uniform setting
allows us to evaluate the impact of channel fading, before



Fig. 3. (Top) Maximum completion time T total
k

and (below) average compression ratio β̄ versus
maximum compression ratio βmax.

Fig. 4. (Top) Maximum completion time T total
k

in logarithmic scale and (below) average com-
pression ratio β̄ versus transmit power pk .

Fig. 5. (Top) Maximum completion time T total
k

and (below) average compression ratio β̄ versus
available bandwidth B in logarithmic scale.

extending the evaluation to the joint impact of channel fading
and non-uniform scenarios in Section V-B. The remaining
parameters are defined in Table I.
A. Performance Comparison in A Uniform Scenario

We compare the proposed scheme with several baseline
schemes. Each baseline scheme fixes a subset of the optimiza-
tion variables in the leader’s or the followers’ optimization
problem and optimizes only the remaining variables using
modified Algorithm 1, as stated in the following:

• Baseline scheme 1 fixes the allocation of the DT pro-
cessing speed fDT

k =CDT/K.
• Baseline scheme 2 fixes bandwidth allocation bk=B/K.
• Baseline scheme 3 fixes fDT

k =CDT/K and bk=B/K.
• Baseline scheme 4 uses no data compression (βk=1).

Additionally, Baseline scheme 5 minimizes the cost function
of the BS (10) by jointly optimizing βk, bk, and fDT

k
constrained by (9a), (11a), and (11b) in a centralized manner.

In Figure 3, we evaluate the maximum completion time
T total
k and the average of the optimal compression ratios

β̄ = 1
K

∑K
k=1 β

∗
k for the proposed scheme and all baseline

schemes with varying maximum compression ratios βmax.
Without compressing the data, baseline scheme 4 has the high-
est completion time among all schemes. The other schemes are
able to utilize data compression to lower the maximum T total

k
by increasing βk until reaching an optimal trade-off between
the extra time required to compress the sensed data T comp

k
and the time reduction for transmission T tr

k . Consequently, the
completion time saturates when β̄ surpasses 1.54. Since the
proposed scheme strategically adapts the DT processing speed
fDT
k , bandwidth bk, and compression ratios βk, it reduces the

maximum T total
k by up to 30.9% in comparison to baseline

scheme 4 and by 8.3% compared to baseline schemes 1 and
3. Interestingly, although baseline schemes 1 and 3 achieve
approximately the same completion time, baseline scheme 1
results in a higher β̄. This is because the sensor with the
worst channel gain generally limits the performance, for which
higher bk and fDT

k are assigned in order to keep the overall

completion time low. In baseline scheme 1, fixing fDT
k causes

an even larger bk to be allocated to the worst sensor. This in
turn increases βk for all other sensors.

Figure 4 compares the maximum completion time T total
k

and the compression ratio βk versus the transmit power pk ∈
[1.6 mW, 100 mW]. For all DT synchronization schemes
employing data compression, both T total

k and β̄ decrease
as pk increases since a higher transmit power leads to an
increased transmit data rate, which in turn reduces the need
for data compression and its overhead. At a low transmit
power of pk = 1.6 mW, the proposed scheme significantly
outperforms baseline scheme 4 by 54.6%, owing to the use of
a high βk. However, in the regime of small transmit powers,
the DT synchronization schemes employing data compression
achieve similar performance. This is because the transmission
time T tr

k dominates the DT synchronization time, while the
gain from optimizing bk or fDT

k is only negligible. When
pk becomes large, optimizing the DT processing speed fDT

k
becomes crucial for accelerating DT synchronization. Here,
compared to baseline schemes 1 and 3, the proposed scheme
can reduce T total

k by 12.0%.
In Figures 3 and 4, baseline scheme 2 performs very

close to the proposed scheme. For insights into this, Figure
5 further evaluates the maximum completion time T total

k
and the compression ratio β̄ versus the available bandwidth
B ∈ [100 Hz, 100 kHz]. As expected, increasing B results
in a lower T total

k and a lower β̄. In the lower bandwidth
regime, the proposed scheme significantly outperforms base-
line scheme 2 and 3, due to adaptive optimization of band-
width allocation. However, in the higher bandwidth regime,
the proposed scheme outperforms baseline scheme 1, due to
adaptive allocation of DT processing speed. By strategically
adjusting both bk and fDT

k , the proposed scheme achieves the
lowest T total

k , which reduces the DT synchronization time by
8.9% compared to baseline schemes 2 and 3 at B = 100 Hz
and by 8.9% compared to baseline schemes 1 and 3 at
B = 100 kHz. Figure 5 also implies that adopting fixed fDT

k



Fig. 6. (Top) Completion time
{
T comp
k , T tr

k , TDT
k

}
and (below) compres-

sion ratio βk for K=4 sensors in different scenarios.

and fixed bk, as in baseline schemes 1 and 2, is close-to-
optimal in the low and high bandwidth regime, respectively.

In Figures 3 to 5, the proposed scheme always achieves al-
most the same results as the centralized optimization solution,
where the maximum completion time only deviates by 0.5%.
This suggests that, for the Stackelberg game defined between
the self-interested sensors and the BS, no price of anarchy is
paid in the equilibrium solution, i.e., the SE is efficient.

B. Further Results in Non-Uniform Scenarios
For insights into the coupling and trade-off among commu-

nication, computing, and compression in the proposed scheme,
Figure 6 compares the completion time including T comp

k , T tr
k ,

and TDT
k , and the compression ratio βk of each sensor. In

addition to the uniform scenario considered so far, three
non-uniform scenarios are newly defined and simulated. In
these non-uniform scenarios, the volume of sensor data, the
transmit power, or the compression speed is varied across
the K = 4 sensors according to Dk = υk × 4 kbit, pk =
υk×31.6 mW, or fS

k = υk×200 kHz, respectively, where
υk is a weight assigned to sensor k. We set the weights as
υ1=0.25, υ2=0.75, υ3=1.25, and υ4=1.75, to redistribute
the available resources among the sensors. From Figure 6
we observe that, compared to the default uniform scenario,
redistributing the volume of data Dk across the sensors results
in an increased maximum T total

k . This is because the time
required for compression and transmission at sensor k = 4
which has the highest Dk, significantly increases, even after
allocating more DT processing speed fDT

k to it. However,
although the BR β∗

k (cf. (19)) of each sensor is a function
of Dk in the sensors sub-game (15), the compression ratios
βk of all sensors change only slightly for different volumes
of data Dk. Meanwhile, redistributing the transmit power
pk across the sensors significantly increases the maximum
T total
k . The sensor with the lowest pk defines a bottleneck

during data transmission, even after applying a high βk and
allocating a large DT computation speed. Further, by varying
the compression speeds across the sensors, sensors k = 3
and k = 4 with higher fS

k can increase their compression
ratios βk without penalizing the time needed for compression
and transmission. In contrast, sensors k = 1 and k = 2 with

lower compression speeds need to reduce their compression
ratios to keep the compression time low, which increases the
time for transmission and DT synchronization. In Figure 6,
all sensors always complete DT synchronization within the
same time period for all considered scenarios. This result
suggests that, by jointly optimizing the compression and
resource allocation, the proposed algorithm can adjust flexibly
to different scenarios to minimize the maximum completion
time across the sensors and accelerate DT synchronization.
Note that the compression ratios of all sensors never become
large, in order to best trade off between compression and
communication among all sensors.

VI. CONCLUSIONS

We investigated the joint optimization of sensor-side loss-
less data compression and DT synchronization to balance the
goals of timely DT updating and reducing redundancy in
the sensor data, without a centralized decision-making unit.
Strategic interactions between the sensors (followers) and the
BS (leader) were modeled as a multi-follower Stackelberg
game, where the sensors adjust their compression ratios while
the BS allocates communication and computing resources. By
exploiting the closed-form solution of the followers’ BR, we
defined a low-complexity iterative algorithm for efficiently
calculating the SE strategy. Extensive simulations across a
variety of scenarios demonstrated that the strategic data com-
pression ultimately enables accelerated DT synchronization.
Moreover, the proposed algorithm can efficiently coordinate
the self-interested sensors with the BS to achieve DT synchro-
nization times that are just as low as those achieved by the
centralized joint optimization scheme.
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