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ABSTRACT Status Update System (SUS) are monitoring applications in the Internet of Things (IoT).
They are formed by a sender that monitors a remote process and sends status updates to a receiver over a
wireless data channel. The goal of the sender is to find a monitoring and transmission strategy that keeps
the information at the receiver fresh, i.e., that minimizes the Age of Information (AoI) at the receiver. To
be able to monitor and transmit at the optimal points in time, the sender needs to accurately track the
quality of the data channel and the AoI at the receiver. The quality of the data channel is a source of
uncertainty, as it is unknown to the sender. In fact, there is no possibility to be absolutely certain about
the quality of the data channel at any time. The AoI at the receiver is only known at the transmitter when
acknowledge (ACK) or negative acknowledge (NACK) feedback signals from the receiver are successfully
decoded. However, in real applications, the feedback channel is a second source of uncertainty since it
is prone to errors, thus the transmission of ACK/NACK messages might fail. Additionally, the random
energy harvesting process is a third source of uncertainty. This means, the monitoring and transmission
decisions have to be made amidst these multiple sources of uncertainty. To overcome this challenge, we
introduce the so-called belief distribution and propose a novel joint monitoring and transmission strategy at
the sender based on reinforcement learning. Our new approach, termed Continual Belief Learning, exploits
the belief distribution to minimize the AoI at the receiver. Through extensive numerical simulations, we
show that our proposed approach yields a significantly lower average AoI compared to state-of-the-art
transmission strategies for AoI minimization in SUS.

INDEX TERMS Age of Information, Belief Learning, Internet of Things, Status Update Systems

I. INTRODUCTION

MODERN Internet of Things (IoT) devices enable
widespread monitoring, e.g., of remote environmental

processes [1], [2] or industrial facilities [3]. Such monitoring
applications of IoT devices are commonly known as Status
Update Systems (SUSs). A SUS is formed by a sender and
a receiver. The sender performs the monitoring and sends
status updates to the receiver over a wireless communication
channel. For successful monitoring, the sender must keep
the status updates at the receiver fresh. The freshness of
the status updates can be evaluated using different metrics
depending on the considered scenario, e.g., Age of Informa-
tion (AoI), Age of Incorrect Information (AoII), Peak Age
of Information (PAoI), or Query Age of Information (QAoI).

An extensive overview on the topic of age related metrics is
given in [4].

Among the available metrics, one of the most popular is
AoI. AoI was first introduced in [22], [23], and measures the
time elapsed since the generation of a status update [22].
In order to keep the AoI at the receiver low, and thus
information about the monitored process fresh, the sender
needs to devise monitoring and transmission strategies and to
track the correct reception of the transmitted status updates at
the receiver. Using its monitoring and transmission strategy,
the sender decides when to monitor the remote process and
when to transmit status updates. The challenge in devising
such strategies for SUS comes from the fact that the sender
is usually battery operated. As a result, the limited available
energy needs to be efficiently allocated for monitoring and
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Metric
Battery Operated

Sender
Energy

Harvesting
Joint Optimization of

Transmission & Monitoring
Imperfect

Feedback Channel
Markov Erasure

Channels
Year

[5] AoI ✓ 2019

[6] AoI ✓ 2020

[7] AoI ✓ 2023

[8] AoII ✓ 2020

[9] QAoI ✓ ✓ 2022

[10] AoI ✓ ✓ ✓ 2023

[11] AoI ✓ ✓ 2023

[12] AoI ✓ ✓ 2024

[13] AoI ✓ ✓ 2024

[14] AoII ✓ ✓ ✓ 2024

[15] AoI/AoII/QAoI ✓ ✓ ✓ 2023

[16] AoI ✓ ✓ ✓ 2021

[17] AoI ✓ ✓ ✓ 2024

[18] PAoI ✓ ✓ ✓ 2021

[19] AoI ✓ ✓ ✓ 2021

[20] AoI ✓ 2022

[21] AoI ✓ ✓ ✓ ✓ 2024

This work AoI ✓ ✓ ✓ ✓ ✓ 2024

TABLE 1: Summary of related work on age minimization. This work is based on our conference paper [21].

transmission in order to ensure the freshness of the status
updates at the receiver. Another challenge is that the sender
is uncertain about the channel state, the AoI at the receiver,
and the energy harvesting process, which is necessary in-
formation to find the optimal monitoring and transmission
strategy.

To illustrate the use of SUSs, consider an IoT-based
environmental monitoring system, as in [2]. In this exam-
ple, a battery-operated gas sensor is deployed to monitor
air quality in remote or hazardous locations. The sensor
detects pollutants and transmits this data over a wireless
communication channel. Due to the limited energy supply
and potentially unstable communication links, the system
must efficiently allocate resources for monitoring and data
transmission while maintaining the freshness of information.

In this work, we address scenarios like the one described
above and provide a solution that optimizes the use of avail-
able energy for monitoring and transmitting status updates,
despite multiple sources of uncertainty. Before we explain
the concept of our solution in more detail, we first discuss
the state of the art by reviewing related work on the topic.

Existing works on age based metrics in SUS focus on
the design of strategies at the sender that minimize the
respective age related metric at the receiver under different
assumptions. Table 1 provides an overview of recent research

in this area. The table contains information about the content
of each individual publication, including our previous work,
and compares it to this paper1. For each paper, we indicate
by a check mark, whether it a) considers a battery operated
sender, b) includes a model of an energy harvesting process
at the sender, c) jointly optimizes monitoring and transmis-
sion in contrast to only optimizing transmission times, d)
considers an imperfect feedback channel, and e) takes into
account the existent time correlations in the data channel by
modeling it as a Markov erasure channel. Additionally, we
specify which age-based metric is optimized in each pub-
lication, along with the publication’s respective publication
date.

In [5]–[9], the AoI, QAoI, or AoII are optimized for a
battery operated sender without modelling an energy har-
vesting process and without jointly optimizing monitoring
and transmission at the sender. Instead, the authors use
models with constant or random sampling processes. The
authors assume that the sender operates under the constraint
of a fixed and limited amount of available energy. The
authors of [10]–[13] additionally model a random energy
harvesting process for charging the battery. These works [5]–
[13] differ in the respective optimized metric and in their

1Note that this journal paper is based on our conference paper [21].



data channel model, i.e., by ignoring channel correlations
in time or by modeling the channel as a Markov erasure
channel. In these settings, different transmission strategies
are proposed depending on the amount of energy available
for transmission and the knowledge the sender has about the
behaviour of the SUS. Such knowledge can include the data
channel quality between the sender and the receiver, or the
probability of a status update generation.

Joint monitoring and transmission strategies are investi-
gated in [14]–[19]. In this case, the sender actively decides
both, when to monitor the remote process and when to
transmit a status update to the receiver. In [14]–[17], the
authors assume a perfect feedback channel. The authors
of [18] and [19] examine two cases: one where feedback
is consistently available, representing a perfect feedback
channel, and another where feedback is never available,
representing the complete absence of a feedback channel.
They do not explore the case of an imperfect feedback
channel.

The authors of [20] take a first step to investigate the
impact of imperfect feedback channels in SUS. They focus
on the derivation of closed-form expressions for AoI under
different error models for the feedback channel. They do not
consider the sender’s limited energy.

In most cases, the data channel is modelled as a packet
erasure channel without considering correlations in time,
see [5]–[8], [11], and [14]–[21]. Only in [9] and [10], the
authors consider a Markov erasure channel model, which is
able to model the channel more realistically, by considering
the channel’s typically time-correlated behaviour.

In our previous work [21], we addressed the problem of
minimizing AoI in a system with a battery-operated, energy-
harvesting sender and an imperfect feedback channel mod-
eled as a packet erasure channel. To tackle the uncertainty
introduced by the feedback channel, we introduced the con-
cept of a belief distribution, enabling the sender to estimate
the AoI at the receiver based on available information.

In this work, we model the data channel as a Markov
erasure channel as proposed in [24]. This model is able to
capture the fact that, in real applications, the data channel
quality fluctuates over time [25]. Modelling the state of the
data channel using a Markov chain has two consequences:
On the one hand, it allows the sender to exploit the corre-
lation in time to find a strategy to minimize the AoI at the
receiver. On the other hand, the sender is uncertain about
the current state of the Markov chain modelling the channel
quality and therefore, has to estimate first this state before
being able to exploit this additional knowledge.

Similarly, instead of a perfect feedback channel, we model
the feedback channel as a Markov erasure channel. A perfect
feedback channel implies that the sender perfectly knows
whether a transmitted status update is correctly received or
not. Thus, it is able to accurately track the AoI at the receiver.
However, in real applications the feedback channel is prone
to errors and the feedback might get lost. This poses an

additional challenge for the design of transmission strategies
because the monitoring and transmission decisions have to
be made under uncertainty about the receiver’s AoI.

In addition to the uncertainty brought by the data and
feedback channels, the third source of uncertainty we con-
sider in this paper is a random energy harvesting process as
in [10]–[19]. Under these uncertainty sources, we investigate
the design of joint monitoring and transmission strategies
that minimize the AoI in a SUS with a battery operated
energy harvesting sender.

The contributions of this paper can be summarized as
follows:

• To minimize the AoI at the receiver, we propose a
learning-based joint monitoring and transmission strat-
egy at the sender, termed Continual Belief Learning,
which is able to handle the multiple sources of uncer-
tainty. To this aim, we extend the concept of belief
distribution introduced in [21] to additionally include
the additional uncertainty the sender has about the
quality of the data channel.

• We consider the time-correlated nature of the data
channel to improve the sender’s transmission and mon-
itoring decisions. Specifically, we exploit the forward
mechanism to track the data channel state and use this
information in our Continual Belief Learning approach
to adjust the sender’s decisions based on the current
data channel state and its prediction for future data
channel states.

• Through extensive numerical simulations, we show
that our proposed Continual Belief Learning approach
yields a significantly lower average AoI at the receiver
compared to state-of-the-art transmission strategies for
AoI minimization in SUS.

Our new approach is termed Continual Belief Learning.
Belief Learning as presented in [21] only learns as long as
the sender is certain about the current AoI at the receiver.
In our new model, this is no longer practical. Therefore,
our proposed Continual Belief Learning is able to learn
continually, even when the sender is uncertain about the
current AoI at the receiver and about the current data channel
state. This continual learning allows us to exploit the time
correlations of the data channel.

The rest of the paper is organized as follows. In Sec. II we
introduce the system model. The AoI minimization problem
is formulated as a Markov Decision Process (MDP) in Sec.
III. Our proposed solution is presented in Sec. IV, followed
by numerical results in Sec. V. Sec. VI concludes the paper.

II. SYSTEM MODEL
The considered SUS is depicted in Fig. 1. It consists of a
battery-operated sender, a receiver and two wireless channels
connecting them, i.e., a data channel for the transmission of
status updates, and a feedback channel for the transmission
of acknowledge (ACK) and negative acknowledge (NACK)
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FIGURE 1: The considered SUS is formed by a battery-
operated sender and a receiver.

messages. We consider a time slotted system where a finite
time horizon T is divided into time slots of equal length
indexed by t ∈ N.

In each time slot t, the sender decides on one of four
possible actions. They are formed by the combination of
monitoring and transmitting, denoted by mt, lt ∈ {0, 1},
respectively. Every time the sender decides to monitor the
remote process, i.e., mt = 1, the generated status update is
placed in a data buffer at the sender. The data buffer has
a size of one, meaning that only the last generated status
update is stored2. The resulting actions (mt, lt) are: monitor
the remote process (1, 0), monitor the remote process and
transmit the newly generated status update (1, 1), transmit
the stored status update (0, 1), or remain idle (0, 0). The
sender utilizes the energy stored in its battery to perform
each of these actions. Monitoring the remote process requires
µ ∈ N energy units while transmitting a status update
requires ν ∈ N energy units. The sender’s battery is assumed
to have a finite capacity Bmax ∈ N and we denote the
current battery level as bt ∈ {0, 1, . . . , Bmax}. The battery’s
recharging is done through an energy harvesting process
modeled by the discrete random variable H . H is uniformly
distributed over the set H = {0, 1, . . . , hmax} with hmax ∈ N.
At the beginning of each time slot, a realization ht ∈ H of H
denotes the number of energy units harvested in the previous
time slot. The battery level bt denotes the total number of
energy units available in time slot t and is updated in each
time slot as

bt+1 = max(0,min(Bmax, bt −mtµ− ltν + ht)). (1)

The status update at the sender’s data buffer is character-
ized by the time stamp τS , which indicates the time slot of
its generation. In any time slot t, the AoI ∆S,t of the status

2Note that we aim at keeping the status updates fresh, so having a larger
data buffer to store older status updates does not improve the performance.

FIGURE 2: The Markov chain CDq determines the data
channel quality in each time slot.

update in the sender’s data buffer is defined as

∆S,t := t− τS. (2)

For the transmission of the status updates, i.e., lt = 1,
we model the wireless data channel between the sender and
the receiver as a packet erasure channel. Using this model,
the transmitted status update is successfully decoded at the
receiver with a probability pD,t ∈ (0, 1], which depends on
the current data channel state qD,t. We denote the probability
for a successful transmission while being in state qD,t as
pD,t = pD(qD,t).

The dynamics of the data channel state qt are modelled as
a Markov chain CDq . The transition probabilities for CDq are
collected in a matrix A, where each matrix element Ai,j is
given by

IP(qD,t+1 = qjD|qD,t = qiD) = Ai,j ∀i, j, (3)

where qiD for i ∈ {1, ..., |CDq |} are states in CDq . Fig. 2 shows
an example of the Markov chain when the data channel has
two possible states: qD,+, indicating a higher data channel
quality and qD,− indicating a lower data channel quality.
Typically, the probabilities to stay in the same state, i.e.
p+→+ and p−→− are considerably higher than those for
changing the state, i.e. p+→− and p−→+. This results in a
bursty behaviour in the sense that errors are time-correlated.
The data channel qualities for each state qiD are given by the
matrix E = [Ei,0, Ei,1]i=0,...,|CD

q |, where

pD(q
i
D) = Ei,1, (4)

and
1− pD(q

i
D) = Ei,0. (5)

This model can be reduced to the special case of a simple
packet erasure channel by using a single state Markov chain,
i.e. by setting |CDq | = 1.

The receiver stores a successfully decoded status update
in its data buffer. As in the sender’s case, we assume
the receiver’s data buffer has a size of one. Similarly, we
characterize the status update at the receiver’s data buffer by
its time stamp τR. We define the AoI ∆R,t at the receiver as

∆R,t := t− τR. (6)

In every time slot, the receiver provides feedback to the
sender over an imperfect feedback channel. If a status update



is successfully decoded, the receiver transmits an ACK.
If not, a NACK is sent. Mirroring the model of the data
channel, we model the feedback channel as a Markov erasure
channel. This means that the feedback message is success-
fully decoded at the sender with probability pF,t ∈ [0, 1],
which depends on the current state of the feedback channel
qF,t. The state qF,t changes according to the dynamics of a
Markov chain CFq .

III. PROBLEM FORMULATION
The sender’s monitoring and transmission strategy allows it
to decide which action (mt, lt) to perform in each time slot.
In this section, we formulate this decision-making problem
as an MDP M. M is formed by a state space S, an
action space A, a cost function c and a transition probability
function P .

In time slot t, the state st = (∆S,t,∆R,t, bt, qt) ∈ S
consists of the AoI ∆S,t at the sender, the AoI ∆R,t at the
receiver, the sender’s battery level bt and the data channel
state qt. We consider a finite state space S := {0, 1, . . . ,∆}×
{0, 1, . . . ,∆} × {0, 1, . . . , Bmax} × {1, . . . , |CDq |} in which
the AoI values at the sender and the receiver are limited
by a maximum value ∆. We assume that old information
with higher AoI than ∆ has no value for the receiver.
If the AoI at the sender is ∆ or higher, transmission is
allowed, but no longer beneficial. The state of the feedback
channel is not considered as part of the system state, because
although the sender’s decision depends on the available
feedback, it does not depend on the specific knowledge
about the feedback channel’s quality. The action space
A := {(0, 0), (0, 1), (1, 0), (1, 1)} contains the sender’s pos-
sible actions at = (mt, lt). If the current battery level is
insufficient to execute the chosen action, i.e. bt < µmt+νlt,
the sender idles instead. The cost function c assigns a cost
to each state transition from st to st+1 under an action at.
We define the cost as

c(st, at, st+1) = Ct := ∆R,t+1. (7)

The physical meaning of Eq. (7) is that the sender is
penalized linearly with the AoI at the receiver. According to
the Markov assumption, as the information at the receiver
becomes older, it provides increasingly less insight into
the underlying process. The transition probability function
P : S × A × S → [0, 1] assigns a probability to every state
transition under an action at.

A strategy π ∈ Π = AS is a solution of the MDP. It
deterministically assigns an action at to every state st. Our
goal is to design a monitoring and transmission strategy at
the sender that minimizes the average AoI ∆R at the receiver
defined as

∆R =
1

T

T−1∑
i=0

∆R,i. (8)

The optimization problem is then given as:

π∗ = argminπ∈Π

(
T∑

t=1

c(st, π(st), st+1)

)
(9)

subject to

π(st) ·
[
µ
ν

]
≤ bt, ∀t = 1, . . . , T. (10)

The optimal policy that minimizes ∆R is denoted by
π∗. The challenge in determining the optimal policy π∗ at
the sender stems from the sender’s uncertainty regarding
its environment. This uncertainty arises from three main
factors: First, the sender’s lack of knowledge about the
current state of the data channel, second, the fact that the
feedback is not always available since pF ∈ (0, 1], and third,
the stochastic behaviour of the energy harvesting process.
As a consequence, the sender is uncertain about the current
data channel state qD,t and the AoI ∆R,t at the receiver.
Consequently, also pD,t, Ct and st are uncertain.

IV. CONTINUAL BELIEF LEARNING
In this section, we propose a joint monitoring and trans-
mission strategy based on reinforcement learning to find a
policy that minimizes ∆R under uncertainty. Our strategy,
termed Continual Belief Learning, is based on the idea of
building a belief distribution to track the state of the system
in a probabilistic manner. In the following subsections, we
formally define the belief distribution and describe how to
update it based on monitoring and transmission decisions.
Next, we present Continual Belief Learning.

A. Belief Distribution
Definition 1. Let S be the state space, ∆ ∈ N be the
maximum value for the AoI and Bmax ∈ N be the size of the
battery. The belief distribution in time slot t is then defined
as an array

Bt ∈ B = R(∆+1)×(∆+1)×(Bmax+1)×|CD
q | (11)

with entries βt
i,j,k,q , where

i, j ∈ {0, ...,∆},
k ∈ {0, ..., Bmax}, and

q ∈ {1, ..., |CDq |}.
Moreover, Bt satisfies

∆∑
i=0

∆∑
j=0

Bmax∑
k=0

|CD
q |∑

q=1

βt
i,j,k,q = 1 (12)

and
βt
i,j,k,q ∈ [0, 1] ∀ i, j, k, q. (13)

The belief distribution Bt indicates how likely it is for
the system to be in state st = (∆S,t,∆R,t, bt, qD,t) in time
slot t given the sender’s available information. The belief
distribution is hence a four-dimensional tensor, where each
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dimension corresponds to one variable in the state, namely
∆S, ∆R, b, and qD. For a state s = (∆S,∆R, b, qD),
we introduce the shorthand notation Bt(s) for the entry
βt
∆S,t,∆R,t,bt,qD,t

, which denotes the senders estimate of the
probability to be in the state st.

In the following, we provide a detailed explanation of how
Bt represents certainty and uncertainty about the state:

If the sender is completely certain about the current state
in time slot t, the belief distribution Bt is concentrated in just
one entry. Mathematically expressed, whenever the sender is
certain about the state:

Bt(st) = 1, (14)

and
Bt(s) = 0, (15)

for each s ̸= st. In general, uncertainty is expressed by a
belief distribution that is not concentrated in a single entry.

The belief distribution can be concentrated in one or more
of the dimensions without being concentrated in only one
entry. In the considered system model, the sender always
knows the AoI ∆S,t at the sender and the battery state bt.
This results in Bt being concentrated in its first and third
dimension. Mathematically, this translates to:

βt
i,j,k,q = 0, (16)

whenever i ̸= ∆S,t or k ̸= bt.
The sender is only temporarily certain about the AoI ∆R,t

at the receiver. ∆R,t is known to the sender only for time
slots t in which one of the following conditions is met:

• The sender transmits an update and receives an ACK
feedback,

• the sender transmits an update, is certain about ∆R,t−1

and receives a NACK feedback, or
• the sender does not transmit an update but was certain

about ∆R,t−1.

Every time one of these conditions is met, Bt collapses in
the dimension corresponding to ∆R,t, meaning that

βt
i,j,k,q = 0, (17)

whenever j ̸= ∆R,t.
If CDq consists of more than one state and if at least two of

these states are visited with a probability greater than 0, the
sender never receives certain information about the current
data channel state qD,t. This means, there is a permanent
uncertainty about qD,t at the sender. Mathematically, this
translates to Bt being distributed in its forth dimension, s.t.

∆∑
i=0

∆∑
j=0

Bmax∑
k=0

βt
i,j,k,q > 0 (18)

for all data channel states q ∈ {1, ..., |CDq |}.

Algorithm 1 Update P t(qD)

Require: Transition Matrix A,
Require: Emission Matrix E,
Require: Previous Feedback F

1: A′ ← A⊤ − I

2: A′ ←
[
A′1

]T
3: b← [0, 0, 1]⊤

4: π(qD)← Solve A′ × π(qD) = b ▷ estimate stat. distribution

5: P t+1(qD)← π(qD) ▷ initialize probabilities

6: for all f ∈ F do

7: if f = −1 then ▷ no feedback

8: P t+1(qD)← A× P (qD) ▷ predict next state

9: else ▷ With feedback f

10: P t+1(qD)← diag(E[o])× P (qD) ▷ update with E

11: P t+1(qD)← P (qD)∑
q′
D

P (q′
D

)
▷ normalize over all states q′D

12: end if

13: end for

14: return P t+1(qD) ▷ return final state probabilities

B. Belief Distribution Update
The system’s state evolves based on the arrival of sys-
tem updates, the harvested energy, the data channel, the
feedback channel, and the actions selected. To track the
estimated probability for each state, Bt is updated in each
time slot using the information available at the sender,
i.e., (mt, lt), bt,∆S,t, the structure of CDq , and the possibly
decoded ACK/NACK feedback.

As mentioned above, the sender is uncertain about the
data channel state and about the AoI at the receiver. The
data channel state can first be considered separate from the
uncertainty about the AoI at the receiver. This is because
the data channel state has an influence on the AoI at the
receiver, but not vice versa. This means, we can first find all
the probabilities P t+1(qD) to be in data channel state qD in
time slot t+ 1. To this end, we use a forward algorithm as
described in Alg. 1.

Alg. 1 addresses the uncertainty about the data channel
state. To this end, the algorithm first estimates the stationary
distribution of the Markov chain that governs the data
channel state transitions (lines 1-5). This estimate of the
stationary distribution reflects the long-term behavior of the
data channel, independent of the initial state.

In case even the transition matrix A and the emission ma-
trix E of CDq are unknown, advanced estimation algorithms
like the Baum-Welch algorithm [26] can be used. Based on
the obtained A and E, Alg. 1 can be executed. Here, we
assume that A and E are available at the sender.

Once the stationary distribution is calculated, it is used as
the initial probability distribution describing the estimated
probabilities for each data channel state. The algorithm then



Algorithm 2 Updating Bt

1: if an ACK is received then
2: update ∆R,t+1 ▷ Eq. (6)
3: Bt+1 ← (0, . . . , 0)

4: βt+1
∆S,t+1,∆R,t+1,bt+1,q

← P t+1(q) ∀q
▷ sender is certain about ∆R,t+1

▷ belief distribution is concentrated in a single column
5: else
6: βt+1

i,j,k,q ← βt
i,j,k,q ∀i, j, k, q

▷ old belief distribution is copied
7: if mt = 1 then
8: βt+1

0,j,k,q ←
∑∆

i=0 β
t+1
i,j,k,q ∀j, k, q,

9: βt+1
i,j,k,q ← 0 ∀i ∈ {1, . . . ,∆}, j, k, q

▷ sender monitors remote process
▷ sender is certain that ∆S,t+1 = 0

10: end if
11: if lt = 1 and no feedback is received then
12: βi,j,k,q ← (1−pD(q))βt+1

i,j,k,q+1i=j(pD(q)
∑∆

l=0 β
t+1
i,l,k,q)

13: ∀i, j, k, q
14: βt+1

i,j,k,q ← βi,j,k,q ∀i, j, k, q
▷ sender transmits, success uncertain

▷ both outcomes are reflected in the belief distribution
15: end if
16: if bt ̸= bt+1 then
17: βt+1

i,j,bt+1,q
← βt+1

i,j,bt,q
∀i, j, q,

18: βt+1
i,j,bt,q

← 0 ∀i, j, q,
▷ battery level is updated

19: end if
20: if ∆S,t ̸= ∆S,t+1 then
21: βt+1

∆S,t+1,j,bt+1,q
← βt+1

∆S,t,j,bt+1,q
∀j, q

22: βt+1
∆S,j,bt+1,q

← 0 ∀j, q
▷ AoI at the sender is increased

23: end if
24: βt+1

i,j,k,q ← βt+1
i,j−1,k,q ∀i, j ∈ {0, . . . ,∆− 1}, k, q

25: βt+1
i,∆,k,q ← βt+1

i,∆,k,q + βt
i,∆,k,q ∀i, k, q

▷ AoI at the receiver is increased
26: βt+1

i,j,k,q ← P t+1(q) · βt+1
i,j,k,q · (

∑
i′
∑

j′
∑

k′ β
t+1
i′,j′,k′,q)

−1

27: ∀i, j, k, q
▷ data channel probabilities are updated

28: end if
29: return Bt+1 ▷ return the updated belief distribution

iteratively updates this distribution based on the feedback
received in previous time steps (lines 6-13), which can be
either ACK (1), NACK (0), or no reception (−1). The latter
case (no reception) is used for time slots in which the sender
does not attempt to transmit as well as for time slots in which
no feedback is received after a transmission attempt. In both
of these cases, the sender does not get any information which
could be used to update the probabilities for the states of the
data channel.

Alg. 1 iterates over the list F of previous feedback. For
each feedback f , one of the two following cases is true:

1) No Reception (f = −1): The estimated probabilities
for each data channel state are updated based on the
transition probabilities of the data channel. This step
reflects the uninformed expected evolution of the data
channel state when no further information about the
data channel is available.

2) ACK/NACK (f = 1 or f = 0): The probabilities are
adjusted by the emission probabilities, which represent
the likelihood of receiving a specific observation given
the current data channel state. This step incorporates
the received feedback to refine the estimate of the data
channel’s current state.

After iterating over F , the algorithm yields a probability
distribution over the possible data channel states (line 14).
This forward estimation approach combines the knowledge
about the behavior of the data channel with real-time feed-
back to provide an accurate estimate of the current data
channel state.

After addressing the uncertainty about the data channel
state by estimating P t+1(q) with Alg. 1, we proceed by up-
dating Bt. We are now able to also address the uncertainty
about the AoI at the receiver. There are four different cases
of how the uncertainty about the current AoI at the receiver
evolves.

1) If an ACK is decoded at the sender, the sender has
complete information about the AoI ∆R,t+1 at the
receiver, irrespective of any uncertainty about ∆R,t in
the previous time slot.

2) If a NACK is decoded at the sender, the sender can
deduce that the current transmission attempt was not
successful and that the AoI at the receiver rises. In this
case, previous uncertainty about the AoI at the receiver
remains.

3) The same holds if there was no transmission of a
status update. Previous uncertainty about the AoI at
the receiver remains.

4) If there was no reception of a feedback, the sender
has no information whether the current transmission
was successful. Therefore, in addition to previous un-
certainty, a new layer of uncertainty is added regarding
the latest transmission attempt and the resulting AoI
at the receiver.

These four cases are reflected in Alg. 2, which summarizes
the update procedure of Bt.

If an ACK is decoded at the sender (line 1), ∆R,t+1 can
be determined based on ∆S,t (line 2). To update the belief
distribution accordingly, we first set all entries to 0 (line 3).
As the sender is certain about ∆S,t+1,∆R,t+1, and bt+1, we
set the entry βt+1

∆S,t+1,∆R,t+1,bt+1,q
to the previously calculated

probabilities P t+1(q) for every q (line 4). In this case, the
only remaining source of uncertainty is the data channel
state.

If the sender does not receive an ACK, either because
it did not attempt to transmit, or because the feedback
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was lost, or because it received a NACK feedback, the
belief distribution is updated using the remaining available
information.

If the sender monitors, i.e., mt = 1 (line 7), then
∆S,t+1 = 1 because the sender has a fresh status update
of the remote process. In this case, the belief distribution is
updated considering that only the entries βt

0,j,k,q are non-
zero (lines 8-9).

If the sender transmits a status update, i.e., lt = 1, without
receiving a feedback (line 11), there is a probability of
pD,t that the transmitted update was successfully received.
Consequently, there is a probability of 1−pD,t that the update
was not received. Both cases have to be reflected in the belief
distribution. This is realized in line 12, where these two cases
are visible as parts of a sum. We store the result of this sum
in an intermediate variable βi,j,k,l. After calculating this sum
for each i, j, k and l, we set βt+1

i,j,k,l to βi,j,k,l (line 14).
Next, considering that the battery levels bt and bt+1 and

the AoI values ∆S,t and ∆S,t+1 are perfectly known at the
sender, the belief distribution is updated for these values. To
this end, if the battery value changes (line 16), we copy the
entry at the position of the old battery value bt to the position
of new battery value bt+1 (line 17). Then we set the entry
at the position of the old value to 0 (line 18). The procedure
for ∆S,t follows in the same manner.

To consider the fact that the AoI ∆R,t at the receiver
increases in each time slot, the values of βt

i,j,k,q are shifted
by one in the jth dimension (line 24). In line 25, the
old probabilities βt

i,∆,k,q are added to the new probabilities
βt+1
i,∆,k,q. This reflects the case that ∆R,t already reached its

maximum value ∆. In lines 26-27, P t+1(q) is used to adjust
the estimated probability for the data channel state in the
forth dimension of Bt. With all values of βt

i,j,k,q updated,
the algorithm terminates and returns the new Bt+1 (line 29).

C. Continual Belief Learning
In this section, we present our proposed Continual Belief
Learning approach to find a strategy πBL that minimizes
the cumulative cost ∆R. In contrast to Belief Learning
as presented in [21], this approach is able to continually
learn in each time slot, even in time slots in which the
sender is not certain about the current state ofM. Continual
Belief Learning is based on ε-greedy Q-learning. However,
and in contrast to this traditional approach, it is able to
handle the uncertainty about the sender’s state. To this aim,
Continual Belief Learning uses a novel modified update rule
for the action value function Q(s, a) which exploits the belief
distribution B. Our algorithm is summarized in Alg. 3.

As in standard Q-learning, Continual Belief Learning
selects actions that minimize ∆R based on Q(s, a). The
values of Q(s, a) are updated according to the selected
actions, the observed states, and the belief distribution B. We
first initialize the learning parameters, as well as Q, and B
(lines 1-2). Additionally, we initialize the state value function
V (line 3). Next, we observe the initial state s0 and update

Algorithm 3 Continual Belief Learning
1: initialize α0, ε0, discount factor γ

2: initialize Q and B with zeros

3: set V (s) = mina∈A Q(s, a), ∀s ∈ S ▷ init. state value function

4: observe initial state s = s0

5: initialize P 0(qD) ▷ Alg. 1

6: initialize B0 based on s0 ▷ Alg. 2

7: set π(s) = argmina∈A Q(s, a) ∀s ∈ S

8: while t ≤ T do

9: select an action at = (mt, lt) ▷ ε-greedy, Eq. (19)

10: perform at ▷ idle, monitor and/or transmit

11: observe bt+1, ∆S,t+1 and calc. P t+1(qD), Bt+1 ▷ Alg. 1, 2

12: update Q ▷ Eq. (20)

13: update V (s)← mina∈A Q(s, a), ∀s ∈ S

14: update π(s)← argmina∈A Q(s, a), ∀s ∈ S

15: update Bt ← Bt+1

16: end while

P (q) and B using Alg. 1 and Alg. 2 (lines 4-6). The policy
π is initialized using the state-value function Q (line 7). In
every time slot t, the action at = (mt, lt) is selected based
on the policy π and the belief distribution B following the
ε-greedy mechanism, i.e., with probability εt the algorithm
explores by randomly selecting an action at ∈ A, whilst with
probability 1− εt the algorithm exploits the past experience
by selecting the action at as

at = argmaxa∈A

∑
s=(∆S ,∆R,b,q)∈S

Bt(s) 1π(s)=a. (19)

To balance exploration and exploitation, we linearly decay
εt over time. Using the available information at the sender,
we calculate P t+1(q) using Alg. 1 and Bt+1 as the update
of Bt using Alg. 2 (line 11). Next, we update Q, V and π
(lines 12-14). The action value function Q is updated using
the belief distribution Bt+1 as

Q(ŝ, at)←(1−Bt(ŝ)αt)Q(st, at)

+Bt(ŝ)αt

∑
s′∈S

Bt+1(s
′)(c(st, at, s

′) + γV (s′))

(20)

where αt is the learning rate. By applying Eq. (20), the
Q-value for each possible true state ŝ with Bt(ŝ) > 0 is
updated. The learning rate is adjusted depending on the
probability that the sender is in state ŝ. Note that the next
state s′ is also uncertain. To account for this uncertainty, a
sum over all possible s′ is applied, where each s′ is again
weighted by its probability Bt+1(s

′). The remaining parts of
the equation mirror the standard variant of Q-learning.



D. Optimality
Continual Belief Learning represents a strict extension of Q-
learning in the following sense: When the belief distribution
remains constantly concentrated in a single entry, Continual
Belief Learning behaves identically to tabular Q-learning and
inherits all its properties, including guaranteed almost sure
convergence under specific conditions [27], i.e., the learning
rates αs,a

t for each state s and each action a must satisfy
∞∑
t=1

αs,a
t =∞, and

∞∑
t=1

[αs,a
t ]2 <∞. (21)

However, when the belief distribution is not constantly
concentrated, the resulting strategy is no longer guaranteed
to converge to the optimal strategy as defined in Sec. III. This
limitation arises because the agent, lacking certainty about
the current state, must approximate the best action based on
its current belief. This approximation is achieved through
Continual Belief Learning.

E. Implementation and Complexity
To implement Continual Belief Learning on a simple IoT
device, such as a Raspberry Pi, the range of observed values
is first discretized into a set of states. For instance, in the
air pollution monitoring example introduced in Sec. I, these
states represent discrete ranges of pollutant concentrations.
The device should be equipped to monitor the state of the
process and its own battery level, and it requires a sender
for transmitting status updates as well as a receiver for
decoding ACK/NACK feedback. Additionally, the device
needs a small memory, typically in the range of kilobytes, to
store the learned transition and emission matrices A and E,
past feedback F , the belief distribution B, and the Q-table.

During operation, if the transition probabilities A for data
channel states and their respective emission probabilities E
are not already known, the device will use the initial time
steps to execute the Baum-Welch algorithm to estimate these
matrices. Once A and E are determined, the device proceeds
with the main loop of Alg. 3 in every time step. The required
computations are lightweight and well-suited for execution
on edge devices. We proceed with a detailed analysis of
Continual Belief Learning’s computational complexity. We
analyze computational complexity in terms of time complex-
ity, which measures the number of operations as a function
of the input size, and space complexity, which quantifies the
memory required relative to the input size.

The action selection in line 9 of Alg. 3 has a time
complexity of O(|S|) = O(∆2 ·Bmax · |CDq |), where we use
Bachmann-Landau notation. The action execution in line 10
is in O(1). Line 11 includes Alg. 1 and Alg. 2 with time
complexities of O(max(|CDq |, |F |)) and O(∆2 ·Bmax · |CDq |).
Updating Q in line 12 has a time complexity of O(|S|2), as
it requires summing over all s′ for each possible true state
ŝ. Lines 13 and 14 have constant time complexity, and line
15 shares the same complexity as Alg. 2. By choosing the
number |F | of feedbacks saved in the memory as |F | < |S|2,

TABLE 2: Simulation Parameters

Parameter Description Value

N number of repetitions 100

∆ AoI cap 40

Tlearn no. of time steps (training) 7.5 · 106

T no. of time steps (testing) 5 · 104

αt learning rate 0.1 − 0.099t(Tlearn)
−1

ϵt prob. of random action selection 0.9 − 0.89t(Tlearn)
−1

µ energy cost (monitoring) 3

ν energy cost (transmission) 1

hmax max. harvested energy per time step 1

Bmax battery capacity 5

the total time complexity of Continual Belief Learning is
O(|S|2) = O(∆4 ·B2

max · |CDq |2), which means that it grows
quadratically in the number of states. It is important to note
that this represents an upper bound, which is only reached if
the belief distribution is non-zero for all possible states. In
practice, this scenario rarely occurs, leading to a significantly
lower computational complexity comparable to tabular Q-
learning.

The space complexity of Continual Belief Learning is
given as O(max(|A|, |E|, |F |, |B|, |Q|)). Since |E| < |A| <
|B| < |Q| and as it is reasonable to choose the number |F |
of feedbacks saved in the memory as |F | < |Q|, the total
space complexity is O(|Q|) = O(∆2 · Bmax · |CDq |), which
is the same as for tabular Q-learning.

V. NUMERICAL EVALUATION
A. Reference Strategies
To compare the performance of our proposed Continual
Belief Learning, we consider four reference strategies.

Value Iteration: This strategy provides the optimal mon-
itoring and transmission strategy under the assumption of a
perfect feedback channel and when perfect knowledge about
M is available. To train the Value Iteration strategy, we as-
sume perfect knowledge about the environmentM. However
after the training, during the simulations, the strategy only
uses information which is available at the sender.

Threshold based [15]: The sender decides to jointly
monitor and transmit, i.e., (mt, lt) = (1, 1), every time the
AoI at the receiver ∆R,t exceeds an optimal threshold as
derived in [15]. In any other case, it idles.

Periodic: This strategy periodically monitors the remote
process and transmits the status update (mt, lt) = (1, 1). The
period Tp is matched to the energy harvesting process, such
that Tp =

⌈
2(µ+ν)
hmax

⌉
.

Random: This strategy monitors the remote process and
transmits the status update (mt, lt) = (1, 1) with probability
pR. As in the periodic case, we match pR to the energy
harvesting process, such that pR = hmax

2(µ+ν) .
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FIGURE 3: Scenario A: Average AoI ∆R at the receiver
vs. the data channel quality pD. pF = 0.8 is fixed.

FDPG [14]: This strategy learns the best transmission
thresholds depending on the current state using a finite
difference policy gradient as proposed in [14]. Every time
the AoI at the receiver ∆R,t exceeds the threshold of the
current state, the sender decides to monitor and transmit,
i.e., (mt, lt) = (1, 1).

B. Simulation Setup
The considered system parameters are given in Table 2 and
are used unless otherwise specified. Our proposed Continual
Belief Learning is trained using Tlearn = 7.5 ·106 time slots.
For the evaluation, each strategy is tested for T = 5·104 time
slots. The presented results are obtained by averaging the
results of N = 100 independent repetitions of the simulation.

The considered Value Iteration and threshold-based ap-
proaches require a perfect feedback channel. For a fair
comparison, when pF < 1, we derive their respective
policies πVI and πTH offline. These approaches build their
own belief distributions B based on the information available
at the sender using Alg. 1 and Alg. 2. In each time slot t,
Bt is updated and the action at is selected based on their
own policies, πVI and πTH, according to (19).

For the Markov chains CDq and CFq , which govern the data
channel quality and the feedback channel quality, we use
two independent and identical Markov chains consisting of
two states q+D and q−D (q+F and q−F respectively). Here, the
states with upper index 0 indicate a channel state with higher
channel quality and the states with upper index 1 indicate a
state with lower data channel quality. The probability to stay
in the states with upper index 0 is 0.995, which is higher
than the probability to stay in the states with upper index 1,
which is 0.95. This means that for 91% of the simulated time
frame, both channels remain in the better state, interrupted
by shorter phases with less favorable channel conditions.
Accordingly, the probability to change the state are 005 and
05, respectively. We use single state Markov chains with
intermediate channel qualities for initial experiments.
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FIGURE 4: Scenario A: Average AoI ∆R at the receiver
vs. the feedback channel quality pF . pD = 0.464 is fixed.
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FIGURE 5: Scenario A: Average AoI ∆R at the receiver vs.
the amount of learned time slots Tlearn of Continual Belief
Learning.

We consider three different scenarios: Scenario A, for
which both CDq and CFq each only have a single state with
an intermediate channel quality, Scenario B, for which only
the data channel varies, meaning that CDq has two states
q+D and q−D, while CFq has only one state, and Scenario C,
for which both the data channel and the feedback channel
vary, meaning that CDq and CFq both consist of two states q+D
and q−D and q+F and q−F , respectively. For these scenarios,
we first examine the results of Continual Belief Learning
for different values of pF and compare it to the reference
schemes. Similarly, we compare the results for different
channel qualities pD. Additionally, we analyse the learning
behaviour of Continual Belief Learning for different values
of pF and different numbers of learning time slots.

C. Simulation Results
We first investigate Scenario A, for which both Markov
chains, CDq and CFq consist of a single state. This means
that both, the data channel quality and the feedback channel
quality are constant during the simulation. The results of
Continual Belief Learning and the reference schemes are
displayed in Fig. 3, 4, and 5.



Fig. 3 shows the results for Continual Belief Learning
compared to all reference schemes for different data channel
qualities pD between 0.1 and 1. Here, we fixed the feedback
channel quality to pF = 0.8. As expected, for all strategies
the average AoI at the receiver increases with decreasing data
channel quality. For each data channel quality, Continual Be-
lief Learning outperforms all non-learning reference schemes
and performs close to Value Iteration. Note that Value
Iteration benefits from the unrealistic assumption of having
perfect knowledge of the model M during training. The
threshold-based strategy performs best out of the three non-
learning reference schemes persistently through all different
data channel qualities. The FDPG strategy struggles to learn
effectively due to the uncertainties in the environment. As a
result, its performance remains consistently close to that of
the threshold-based strategy.

The advantage of Continual Belief Learning compared
to the non-learning strategies is highest for data channel
qualities between pD = 0.5 and pD = 0.2. At pD = 0.4,
the advantage of Continual Belief Learning compared to
the threshold-based strategy and FDPG is a 30.8% lower
AoI. Compared to the periodic strategy, the advantage at
pD = 0.4 amounts to 39.2%. Compared to the periodic
strategy, the advantage with respect to the AoI is 51.6%.
At pD = 0.2, we observe the highest difference of 16.3%
between the performance of Continual Belief Learning and
Value Iteration, which benefits from its perfect knowledge
about M. For pD > 0.4, the average AoI at the receiver
for Continual Belief Learning deviates at most by 10% from
that for Value Iteration.

Fig. 4 shows the average AoI ∆R at the receiver for
different values of pF , while the data channel quality is fixed
at pD = 0.464. pF = 1 means that the feedback channel is
perfect, pF = 0 means that the sender does not receive any
feedback, and 0 < pF < 1 means that feedback is received
only intermittently. The small grey area around each of the
lines represents the standard deviation of the outcomes of
the N = 100 repetitions of the simulation.

The random strategy, the periodic strategy, the threshold-
based strategy as well as FDPG are not affected by the
feedback channel quality pF . This is because the actions
of the random and periodic strategy are not affected by the
sender’s information about the AoI at the receiver. Here,
the threshold-based strategy reduces to a greedy strategy,
transmitting whenever the sender has enough energy avail-
able. Therefore in these simulations, also the threshold-based
strategy is not affected by the sender’s knowledge about
the AoI at the receiver. Hence, the respective average AoI
at the receiver is constant over all examined values of pF
for all three non-learning strategies. The random strategy
causes the highest average AoI at the receiver followed by
the periodic strategy, the threshold-based strategy and FDPG,
respectively. Value Iteration is trained for the case pF = 1
and shows the best performance in this case under the
unrealistic assumption that complete knowledge about the
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FIGURE 6: Scenario B: Average AoI ∆R at the receiver
vs. the data channel quality pD at q+D.
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FIGURE 7: Scenario B: Average AoI ∆R at the receiver
vs. the feedback channel quality p+F .

environment is available during training. As pF decreases,
the average AoI at the receiver for Value Iteration increases,
indicating a continuous reduction in the performance. It
reaches an average AoI comparable to that of the threshold-
based approach for pF = 0.

For 1 ≥ pF ≥ 0.4, Continual Belief Learning performs
close to Value Iteration. E.g., for pF = 1, it achieves an
AoI at the receiver which is only 7.2% higher than the
optimal value. Moreover, for pF = 1, Continual Belief
Learning outperforms the threshold-based strategy by 35.4%,
the periodic strategy by 43.6%, and the random strategy by
56.6%. Note that in this case, Continual Belief Learning
reduces to standard Q-learning, as for a perfect feedback
channel and a stationary data channel, the sender is always
certain about its state. For 1 ≥ pF ≥ 0.4 the sender is able
to effectively use the available feedback during learning.

For 0.4 ≥ pF ≥ 0, the available feedback is too sparse to
still use it to improve the learning. Here, the sender primarily
learns based on its model of the environment, which is rep-
resented by its belief distribution. Interestingly, the learning
process yields excellent results when it is primarily based
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FIGURE 8: Scenario B: Average AoI ∆R at the receiver vs.
the amount of learned time slots Tlearn of Continual Belief
Learning.
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FIGURE 9: Scenario C: Average AoI ∆R at the receiver
vs. the data channel quality pD at q+D. The feedback channel
qualities are pF (q

+
F ) = 0.8 and pF (q

−
F ) = 0.

on the belief distribution or even on the belief distribution
alone. By using the belief distribution for learning, Continual
Belief Learning is able to outperform Value Iteration without
the need for complete knowledge about the environment.
Continual Belief Learning outperforms Value Iteration by
13.2% at pF = 0 and the threshold-based strategy, the
periodic strategy and the random strategy by 13.1%, 24.7%,
and 42.1%, respectively.

We evaluate the learning speed of our proposed Continual
Belief Learning in Fig. 5, where we show ∆R vs. the
number of learning time slots Tlearn for different values of
pF . For every data point, we separately run Alg. 3 with that
specific Tlearn. In this way, no bias from ε-greedy occurs.
Furthermore, for a fair comparison, we test the learned
strategy on a system with pF = 1. The performance of
the Value Iteration algorithm is included at the bottom of
the plot. We see that as Tlearn increases, ∆R,t converges
regardless of the value of pF . This convergence is faster
in the first 5 × 105 time slots and slows down for higher
values of Tlearn. We observe that for pF = 0 and pF = 0.3,
the convergence of ∆R is slower compared to higher values
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FIGURE 10: Scenario C: Average AoI ∆R at the receiver
vs. the feedback channel quality pF at q+F . The data channel
qualities are pD(q+D) = 0.5 and pD(q−D) = 0.1.

of pF . This is caused by higher uncertainty at the sender
about the state. In contrast, for pF > 0.3, the system benefits
from feedback information, such that ∆R decreases faster.
For pF = 0.6 and for pF = 0.9, the respective learning speed
is higher than that for pF = 1. This effect is strongest for the
first learning phase and vanishes later. The reason for this
observation is that by having a pF slightly lower than 1, the
sender can make use of the belief distribution. In contrast to
the case pF = 1, for pF = 0.6 and for pF = 0.9, the belief
distribution does not collapse to a single entry, while the
amount of available feedback is still sufficiently high. This
fact allows the sender to use additional available knowledge
about M provided by its belief distribution, which makes
learning more effective.

The evaluation of Scenario B is shown in Fig. 6, 7, and 8.
Now, the data channel quality is determined by the state of
a binary Markov chain. However, the parameters are chosen
such that over time, the average data channel quality is the
same in all scenarios.

To compare the influence of different data channel qual-
ities, we fix the data channel quality for the channel state
q−D at 0.1 and vary the data channel quality for the channel
state q+D, ranging from 0.1 to 1. The resulting behaviour of
the average AoI at the receiver mirrors exactly the behaviour
for Scenario A. Continual Belief Learning performs substan-
tially better than all the non-learning reference schemes and
FDPG. For pD = 0.4, Continual Belief learning outperforms
FDPG and the threshold-based strategy by 25.7% and the
periodic and random strategies by 34.0% and 46.6%, respec-
tively. The fact that the curve for Continual Belief learning
in Scenario B closely resembles the curve in Scenario A
means that our approach is able to perform in both cases, for
a constant channel quality without time-correlated channel
qualities, as well as for a bursty channel with time-correlated
channel qualities.

The performance of the considered strategies for varying
values of pF is shown in Fig. 7. The observed behaviour



of Continual Belief Learning and the reference strategies is
again similar to the behaviour observed in Fig. 4 for Scenario
A.

The random, periodic and threshold-based strategies
achieve a constant ∆R,t for all values of pF . Again, for
pF = 1, Continual Belief Learning outperforms all reference
strategies apart from Value Iteration. The resulting AoI at
the receiver is 11.1% higher than for Value Iteration, 28.4%
lower than for the threshold-based strategies, 37.6% lower
than for the periodic strategy, and 51.5% lower than for the
random strategy. The behaviour of Continual Belief Learning
for 1 ≥ pF ≥ 0.4 is comparable to the behaviour observed
for the stationary data channel case in Fig. 4. Now, even
under the higher uncertainty in Scenario B, Continual Belief
Learning performs better than the reference strategies for
0.4 > pF ≥ 0. For pF = 0, it achieves an AoI at the
receiver that is 13.3% lower compared to Value Iteration,
12.5% lower than for the threshold-based approaches, 23.4%
lower than for the periodic strategy, and 40.4% lower than
for the random strategy.

The learning behaviour of Continual Belief Learning for
Scenario B is shown in Fig. 8. The learning is faster for the
first 5× 104 time slots and slows down for higher values of
Tlearn. The resulting AoI at the receiver converges for every
value of pF . As in Scenario A, a feedback channel quality
of pF = 0 or pF = 0.3 results in a slower and more volatile
learning process after this initial phase. For pF = 0.6 or
pF = 0.9, we see a small advantage in learning over the case
with pF = 1. Here, the same argumentation as in Scenario
A applies, as for pF = 0.6 and pF = 0.9, Continual Belief
Learning is able to exploit its additional knowledge collected
in the belief distribution.

The results of simulations of Scenario C including two
different states for both the data channel and the feedback
channel are displayed in Fig. 9 and Fig. 10. In both figures,
the general trends are comparable to the trends observed for
Scenario B in Fig. 6 and Fig. 7. The reason for this is that
the quality of the feedback channel, which varies in Scenario
C while it was constant in Scenario B, is not part of the
state of M. This means that the sender’s information about
the feedback channel quality has no direct influence on the
senders decision to transmit.

In Fig. 9, we show the performance of Continual Be-
lief Learning and the reference strategies for data chan-
nel qualities between pD(q+D) = 0.1 and pD(q+D) = 1,
while pD(q−D) = 0.1. This time, there are two feedback
channel states, q+F and q−F . The feedback channel qualities
are pF (q

+
F ) = 0.8 and pF (q

−
F ) = 0, depending on the

current feedback channel state. The latter case models the
possibility that in some periods, the feedback channel fails
completely. The results are almost identical to the results
for Scenario B. However, as expected, for all data channel
qualities, Continual Belief Learning performs slightly better
for Scenario B, in which the uncertainty about the channel

state is lower, as the feedback channel does not experience
periods with quality pF = 0.

In Fig. 10, we again compare the results for different
feedback channel qualities. In the state q−F , the feedback
channel quality is 0. In the state q+F , the feedback channel
quality is given by the values on the horizontal axis between
0 and 1. We can see the same behaviour as in Fig. 7:
Continual Belief Learning performs close to Value Iteration
for 1 ≥ pF (q

+
F ) ≥ 0.4 and outperforms Value Iteration for

smaller values of pF (q
+
F ). It performs substantially better

than the other reference strategies for which the threshold-
based approaches have the lowest AoI at the receiver fol-
lowed by the periodic approach and the random approach.
At pF (q+F ) = 0, Continual Belief Learning performs 14.9%
better than Value Iteration, and 13.6%, 24.2% and 41.4%
better than the threshold-based, the periodic, and the random
strategies, respectively.

To better understand the advantage of Continual Belief
Learning and its ability of learning under uncertainty, we
present the average incidences of each possible state in
Scenario C in Fig. 11 for pF = 0. For comparison, we
display the average incidences for the Value Iteration strategy
in Fig. 12. The displayed incidences are the number of
occurrences of each state during the 5 ·104 testing time steps
after training. For the states in the respective upper row, the
data channel is in the better state with data channel quality
pD = 0.5. In the respective lower row, the data channel is in
a state with lower data channel quality pD = 0.1. From left
to right, the battery state increases from an empty battery
(b = 0) to a full battery (b = 5). In each of the small
quadratic plots, on the horizontal axis we display the AoI
∆R at the receiver. On the vertical axis, we display the AoI
∆S at the sender. Unreachable states with a lower AoI at the
receiver than at the sender are indicated by a grey filling.
Reachable states which are never visited are indicated by
a blue filling. States that are visited 10 or more times are
indicated in red.

In both figures, we can see that states on the diagonal are
frequently visited. This means that the AoI at the receiver
is often the same as the AoI at the sender, matching our
expectations. Furthermore, states with pD = 0.1 are less
frequent than states with pD = 0.5, which is due to the
parameters of the data channels Markov chain CD.

The most notable difference between the incidences for
Continual Belief Learning in Fig. 11 and those for Value Iter-
ation in Fig. 12 is that in the latter, states with higher battery
levels and higher AoI at the receiver occur significantly more
frequently. This suggests that Continual Belief Learning
utilizes the available energy earlier than Value Iteration and
avoids remaining in states with high battery levels and high
AoI at the receiver. This explains its notable advantage in the
case of pF = 0. This is a direct result of Continual Belief
Learning’s ability to learn under uncertainty, a capability that
Value Iteration lacks.
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FIGURE 11: The average incidences of each state when executing the Continual Belief Learning strategy after learning in
Scenario C.

pD = 0.5

pD = 0.1

0 25
0

25
b = 0

0 25
0

25
b = 1

0 25
0

25
b = 2

0 25
0

25
b = 3

0 25
0

25
b = 4

0 25
0

25
b = 5

0 25
0

25
b = 0

0 25
0

25
b = 1

0 25
0

25
b = 2

0 25
0

25
b = 3

0 25
0

25
b = 4

0 25
0

25
b = 5

AoI Receiver ∆R

A
oI

S
en

d
er

∆
S

0

2

4

6

8

10

S
ta

te
In

ci
d

en
ce

FIGURE 12: The average incidences of each state when executing the Value Iteration strategy in Scenario C.

VI. CONCLUSIONS
We considered a SUS in which a sender transmits status
updates of a monitored process to a receiver over a wireless
channel. To measure the freshness of the status update at
the receiver, we considered the AoI. The optimal monitoring
and transmission strategy at the sender requires knowledge
about the channel state and the receiver’s AoI. Knowledge
about the AoI at the receiver can be obtained by means of
a wireless feedback channel between receiver and sender.
Considering that in real applications, the channel state is
not known and the feedback channel is not perfect, we
investigated the design of a monitoring and transmission
strategy at the sender operating under multiple sources of
uncertainty in the sender’s environment. These sources of
uncertainty are the unknown data channel state, the imperfect
feedback channel and the stochastic nature of the energy
harvesting process. We modeled the dynamics of the channel
state using a Markov chain and estimated the current state
using a forward algorithm. Furthermore, we introduced the
concept of a so-called belief distribution and proposed a
monitoring and transmission strategy based on reinforcement
learning, termed Continual Belief Learning. We showed that

Continual Belief Learning allows the sender to exploit the
received ACK/NACK and the time-correlated nature of the
data channel to estimate the data channel state and the
receiver’s AoI and make informed monitoring and transmis-
sion decisions. Through numerical simulations, we showed
that Continual Belief Learning yields a lower average AoI
compared to state-of-the-art transmission strategies for AoI
minimization in SUS.

Future work may explore optimizing not just the AoI,
but also alternative metrics like QAoI, a pull-based ap-
proach where updates are triggered by receiver requests.
Additionally, integrating Continual Belief Learning with
semantic communication is promising. A promising starting
point is to analyse the AoII, which captures the semantic
relevance of updates by quantifying the mismatch between
the actual process and its perception at the receiver. On the
theoretical side, an interesting direction is to further analyze
the convergence properties of Continual Belief Learning,
particularly to prove that it achieves optimality given the
agent’s available information. Finally, extending the scope
from a single sender-receiver pair to network-wide systems
is an interesting future direction.
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