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Abstract—Multi-access edge computing (MEC) refers to deploy-
ing computation resources, known as cloudlets or edge servers,
near the edge of the mobile network. Services like augmented
reality (AR) benefit from MEC by service placement, which refers
to installing service-specific software and allocating resources on
cloudlets. Service placement in MEC improves service quality and
potentially reduces costs compared to centralized cloud computing
approaches. The main stakeholders in MEC are infrastructure
providers (IPs), who manage the MEC infrastructure, and service
providers (SPs), who offer services to users. Both have unique
technical and economic perspectives, such as resource demands,
resource availability, and costs. Information asymmetries exist as
only IPs have access to information about their resources, and only
SPs have information about service usage and resource demands.
This work addresses challenges of service placement in MEC from
a multi-stakeholder, techno-economic perspective. We introduce a
model including the stakeholders’ technical and economic goals
and information asymmetries. To solve this problem efficiently, we
propose a multi-stakeholder bargaining mechanism, termed Nash
Backward Induction with Linear Equilibrium Strategies (NBI-
LES). In a case study with 544 users and 16 SPs, we achieve 79%
of the optimal reduction in traffic given by a centralized optimal
service placement strategy.

Index Terms—Game theory, information asymmetries, multi-
access edge computing, nash bargaining, service placement, techno-
economic modeling.

I. INTRODUCTION

MULTI-ACCESS Edge Computing (MEC) refers to de-
ploying computational resources near the edge of the

mobile network [1]. These resources are called cloudlets or
edge servers. Cloudlets are small data centers within the one-
hop communication range of the users’ mobile devices. Re-
cently, MEC has emerged as a new computing paradigm where
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centralized computing approaches such as cloud computing
fall short [2]. Service placement in MEC refers to installing
service-specific software on the cloudlet to enable a service
to run on the cloudlet. In addition, each service placed on the
cloudlet should be allocated computation and storage resources
to process the users’ service requests. In the following, when we
refer to service placement, we include both the installation of the
service-specific software and the allocation of computation and
storage resources. Since the IP has deployed limited computation
resources in the MEC network, the SPs must share these limited
resources.

The benefits of service placement in MEC lie in the improve-
ment of service quality and the potential reduction of operational
cost of networks [3] since the amount of communication from
the edge through the network core is reduced, e.g., by more
than 80% of bandwidth in a virtual reality context [4] and by up
to 95% in an augmented reality (AR) context [5]. In addition,
multiple types of services, including mobile gaming [6], smart
home applications, or mobile crowdsensing [7], can benefit from
service placement in MEC. Another important application of
service placement in MEC is the caching of artificial intelligence
(AI) models [8] and the inference of deep learning models at the
edge of the wireless network [9].

A typical MEC system consists of users, service providers
(SPs), infrastructure providers (IPs), and the cloud [10]. The
users access a service, e.g., mobile gaming or AR application,
by sending a service request. Each SP offers one of these
services to users and is responsible for processing their service
requests. To process the users’ service requests, the SPs must
use communication resources provided by the mobile network
and computation resources provided by the IPs or the cloud.
Thus, the SP performs the computation on a cloudlet in the MEC
network or the cloud. The resources of the MEC network are
provisioned by the IPs, where each IP may deploy one or more
cloudlets at an access point [11]. For a service placement, i.e.,
processing the users’ service requests on a cloudlet, we assume
that the SP and the IP have to bargain about a price for the service
placement. Using cloud resources, the SP has to pay a fixed price
to provide the cloud resources.

To place a service on a cloudlet, both the IP and the SP must
agree on the service placement. The SP has to pay for the service
placement, and the IP must install its service-specific software
on its cloudlet and provide computation and storage resources.
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Therefore, we consider the SPs and the IPs to be the primary
decision-makers in the service placement problem. Each SP’s
goal is to provide its service to users at the lowest possible cost
for the resources. The goal of each IP is to maximize its profit
from the resource provisioning.

A. Research Challenges

The success of MEC requires a suitable service placement
strategy to maximize both the IP’s and the SP’s revenue. Fur-
thermore, novel bargaining mechanisms must consider fairness
between the different stakeholders and ensure efficient use of the
IPs’ resources. However, designing a service placement strategy
in MEC means overcoming three significant challenges:

1) Considering the Techno-Economic, Multi-Stakeholder
Perspective: The MEC network consists of multiple stakehold-
ers, which are autonomous decision makers [1], [27]. The IP
and the SPs act as individual rational stakeholders with their
decision-making capabilities. Furthermore, each stakeholder has
its individual technical and economic perspective, the so-called
techno-economic perspective [27]. Considering service place-
ment from the technical perspective requires careful analysis
of the available resources and demands of all stakeholders.
Considering service placement from the economic perspective
requires analysis of the payments and costs of each stakeholder
and finding a suitable pricing scheme. In the multi-stakeholder
case, we must consider the fairness and efficiency of the provided
solutions as discussed in [27] and [19]. Fairness of the proposed
solution ensures that all stakeholders profit from using MEC;
thus, participating is an incentive. Having an efficient solution
ensures that the MEC network’s communication and computa-
tion resources are utilized to achieve maximum performance.
This techno-economic and multi-stakeholder perspective is im-
portant for a suitable service placement strategy in MEC net-
works [2].

2) Considering Information Asymmetries: Information
asymmetries (IAs) occur as the SPs and the IP have different
information available in a bargaining situation [6]. For example,
the IP knows its available resources, specifically communication
and computation resources, and the cost associated with using
those resources. The SP knows about the expected service
usage and the number of resources required to operate the
service. Usually, the IPs and the SPs do not want to reveal
this information. Therefore, in the multi-stakeholder case,
finding an approach that allows bargaining without complete
information to find an agreement and a suitable payment for
service placement is essential.

3) Solving the Combinatorial Service Placement Problem
Given Heterogeneous Services and Limited Resources: Service
types such as mobile gaming, AR, smart home, or mobile crowd-
sensing have heterogeneous communication and computation
resource requirements. Additionally, the users’ demand for each
of these services dynamically changes over the course of a
day. Furthermore, the IP has deployed only limited computation
resources in the MEC network; thus, the SPs must share these
limited resources. This results in an NP-hard combinatorial
problem of finding the optimal service placement strategy, as

shown in [17] and [28]. Therefore, service placement algorithms
either rely on suboptimal heuristics to solve the service place-
ment problem or use a low-complexity approximation of the
problem to handle a large number of different services and adapt
quickly to changing demands.

B. Related Works

Table I shows an overview of the related works. Previous
works focusing on efficient service placement strategies from
the perspective of a single stakeholder are [12], [13], [14],
[15], [16], [17]. In [12], the authors take the SPs’ perspective
and propose a centralized optimization framework for service
placement in MEC networks to minimize the delay required
for service request processing. The authors of [13] optimize the
end-to-end delay in MEC using a low-complexity game-based
approach to increase quality-of-service (QoS) by jointly con-
sidering the access network delay and the position of service
placement while also considering the service placement cost.
The authors of [14] take the IP’s perspective and propose a
low complexity centralized optimization approach using branch
and bound and interior point methods to minimize the service
placement cost while keeping a time constraint for all services.
Efficient deployment of latency-critical virtual network function
chains in MEC using a low complexity algorithm has been
studied in [15] and [16]. In [12] and [14], assumptions include
that the whole information of the MEC network, including all re-
sources, services, and demands, is available to a central network
orchestrator. In [17], the authors consider the IP’s perspective
and formulate a profit maximization problem for each cloudlet,
which they solve using the interior point method. The service
placement problem is solved for each cloudlet individually.
Although the aforementioned works [12], [13], [14], [15], [16]
and [17] significantly contributed to overcoming the challenge
of efficient service placement, the multi-stakeholder perspective
is missing in these works.

Related works [6] and [18], [19], [20], [21], [22], [23], [24],
[25], [26] considered the multi-stakeholder perspective. In [18],
the authors propose using Nash Bargaining to find an agreement
for the service placement and pricing between the IP and the SPs.
Assumptions include all the information about the resources and
cost factors between the IP and the SPs. The authors of [19]
propose to use Nash Bargaining for resource sharing between
multiple SPs. Each SP has a utility depending on the amount
of allocated resources. In [20], the authors propose a two-level
optimization framework to optimize the IP’s profit while mini-
mizing the SPs’ cost. Each SP has a limited budget for resources;
therefore, setting the price too high may reduce the availability
of services. In [21], the authors propose an auctioning-based
mechanism to allocate the MEC resources of the IP to different
heterogenous SPs. The SPs report their resource demand and
QoS requirements to the IP and the IP determines a resource
allocation and a price for the service placement. In [22], the
authors model the service placement as an extended Fisher
market. They present a convex optimization problem to find the
market equilibrium of the proposed model of the extended Fisher
market. In the aforementioned works [18], [19], [20], [21], [22],
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TABLE I
AN OVERVIEW OF RELATED WORK IN THE RESEARCH AREA OF SERVICE PLACEMENT IN MEC

assumptions include that all stakeholders, namely IPs and SPs,
share all their information regarding resources and cost factors.
We argue this assumption is unrealistic, as SPs and IPs do not
want to share their information.

The authors of [29] propose an admission control mechanism
for an SP to accept or defer service requests coming from end
users. The end users as well as the SP are considered to be
stakeholders with their own utility functions, where the SP has
to balance its revenue and the provided QoS. In [6] and [29] only
one SP is considered.

Prior works that consider information asymmetries are [6]
and [23], [24], [25], [26]. In [6], the authors propose a multi-
stakeholder bargaining procedure with partial information shar-
ing. This approach is based on the NBS with IAs regarding
the cost factors of the respective bargaining partner. In contrast
to [6], multiple SPs are considered, and the limited resources of
the IP are modeled. In [23], the authors propose a Stackelberg
game with incomplete information to solve the IP’s pricing
problem and the SPs’ placement decision. Assumptions include
that the cloudlets have an infinitely long queue and unlimited
resources. In the Stackelberg game, the authors model the SPs as
passive price takers without their own bargaining power. The au-
thors of [24] propose a double auction mechanism, where a cen-
tralized auctioneer takes bids for selling and buying resources.
The centralized auctioneer acts as an individual stakeholder who
profits from the difference between buying and selling prices.
This adds additional costs for service placement in the MEC
network. Furthermore, the authors did not consider the solution’s
fairness, and the proposed approach is highly computationally
complex. In [25], the authors propose a two-stage dynamic game
of incomplete information. In the first stage, the IP decides
on the resource prices and service placement. In the second
stage, the users decide whether to use the service provided.
In [26], the authors propose a Bayesian optimization approach
for the pricing of the SP. They select a price and a set of ser-
vices for placement and learn the reward-maximizing placement
strategy.

Known strategies from the literature [30] and [31] on how
to overcome or reduce IAs are signaling, screening, monitor-
ing, and information exchange. In this work, we focus on the
IA reduction method of signaling, which refers to the vol-
untary sharing of information by the stakeholder possessing
the information with the respective bargaining partner before
agreeing on the payment and service placement, as discussed
in [32].

As discussed, the prior works are limited in several ways.
First, the multi-stakeholder perspective is lacking in [6], [12],
[14], [17], [23] and [26]. Second, the IAs are not considered
in [18], [19], [20] and [22]. Third, the perspective of efficiency
and fairness is lacking in [20], [23], [24], [25] and [26]. To the
best of our knowledge, we are the first to consider the service
placement problem in MEC from a multi-stakeholder, techno-
economic perspective, including IAs and considering limited
resources.

C. Contributions

This work’s main contribution is a novel multi-stakeholder
bargaining mechanism that enables bargaining between the IP
and the SPs under IAs. In the studied scenario, we consider
one IP and multiple SPs with their individual utility functions
consisting of technical and economic elements. We also consider
IAs between the IP and the SPs. In our model, we adopt the sim-
plifying assumption that bargaining occurs with a single IP. This
approach is based on the premise that bargaining with multiple
IPs can effectively be represented as simultaneous individual
bargainings with each IP. Existing service placement approaches
cannot handle the IAs between multiple stakeholders, resulting
in degraded overall system performance. In particular, we pro-
pose a novel multi-stakeholder bargaining mechanism termed
Nash Backward Induction with Linear Equilibrium Strategies
(NBI-LES), whose goal is to find a fair and efficient solution to
the service placement problem. In our NBI-LES approach, the
IP and the SPs individually calculate their best LES strategy
based on their information and belief about the bargaining
partners’ information. The main contributions of this work are
summarized as follows.
� We model a bargaining situation between SPs offering

many heterogeneous services and the IP. We include a
fine-granular model of all relevant technical and economic
attributes influencing service placement decisions. Further-
more, we discuss the different aspects of IAs between
the SPs and the IP and provide a model that includes
the stakeholders’ beliefs about the respective bargaining
partners.

� We propose a novel bargaining mechanism termed Nash
Backward Induction with Linear Equilibrium Strategies
(NBI-LES). We derive the optimal strategies for each
stakeholder considering the given IAs and show that they
are equivalent to the linear equilibrium strategies (LES),
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Fig. 1. Overview of the system model.

meaning no stakeholder would improve by changing its
approach.

� To overcome the challenge of exponentially growing com-
putational complexity of the service placement problem,
we propose a discretization approach of the available com-
putation and storage resources into virtual machines (VMs)
to achieve a solution with linearly growing complexity.

� We evaluate the performance of the proposed NBI-LES
algorithm in a realistic case study. We analyze a data set
containing the service usage of 544 users accessing various
service types from 16 service providers. Furthermore, we
use realistic models of the cost associated with data transfer
and computation.

The rest of this paper has the following structure. In Section II,
we introduce the MEC system model with the relevant stake-
holders, and in Section III, we present the proposed NBI-LES
algorithm. The evaluation of the proposed NBI-LES algorithm
in an extensive case study follows in Section IV, and finally,
Section V concludes the paper.

II. SYSTEM MODEL

A. Overview

Fig. 1 shows the system model. The two relevant stakeholders
are the IP and the SPs, the main decision-makers in MEC’s
service placement. The IP owns and operates the resources
at the edge, i.e., the base station (BS), the cloudlet, and the
backhaul network. The backhaul network connects the edge of
the network, i.e., the BS and the cloudlet, to the core network.
The BS uses a wireless link to transfer data to the users’ devices.
Further, the BS hosts a cloudlet, a computation resource close to
the users, offering low-latency access to the services placed on

it. In contrast to the centralized cloud, edge computing devices,
such as cloudlets, have limited computation resources [33]. We
consider N different SPs that each offer one service to the users.
Each SP requires communication, computation, and storage
resources in the network to offer its service. The computation
and storage resources are available either in the centralized cloud
or in the cloudlet provided by the IP. The users pay for the access
to the service.

The IP bargains with each SP individually about whether or
not to place the service on the cloudlet and which price has to
be paid for the service placement. This individual bargaining
protocol allows the IP as well as the heterogeneous SPs to make
individual agreements, which improves the efficiency of the
resource allocation.

We assume a non-cooperative setting, as described in [34],
where SPs compete and bargain individually rather than forming
groups or coalitions, which reflects the market dynamics in
many practical scenarios. This means that each SP individually
performs a one-to-one bargaining with the IP, i.e., SP 1 negotiates
with the IP, then SP 2 negotiates with the IP until finally SPN and
the IP bargain about the service placement. In our terminology,
SP 1 denotes the SP that begins bargaining with the IP, while SP
n represents the SP in the n-th bargaining step.

Each bargaining has two possible outcomes: a service place-
ment agreement or no agreement. An agreement results in the
service being deployed on the cloudlet and the SP paying the
IP. When the IP places the service of SP n on the cloudlet,
we denote this by an indicator variable xn = 1. In this case,
the IP receives a payment kn from SP n. In the case of no
agreement, the SP continues to rely on cloud computing, which
we denote by xn = 0. When the IP does not place the service
on the cloudlet, there is no payment from the SP to the IP
(kn = 0). To simplify the notation, we introduce the service
placement profile x = (x1, . . . , xN ) and the payment profile
k = (k1, . . . , kN ). Table II shows the mathematical symbols
introduced in the system model.

B. Service Providers

We consider a set N = {1, . . . , N} of SPs, each offering
one service to its users. The users of SP n access the service
by sending service requests and paying the SP n for access to
the service. To process these service requests, the SP needs to
use communication, computation, and storage resources in the
network. The services are heterogeneous, so the communication
and computation requirements are different for each service
request. For each service, we consider all users’ communication,
computation, and storage resource demand. These demands are
individually aggregated over all the users’ service requests. SP
n denotes the aggregated communication demand as DSP

n and
the aggregated computation demand as XSP

n . Furthermore, we
denote the sum of all users’ payments as kUsers,SP

n .
Depending on the bargaining result, there are two possibilities

to provision these resources: The provisioning of resources
occurs either directly at the network edge using MEC in the
case of an agreement or the centralized cloud through cloud
computing in the absence of an agreement. In the following, we
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TABLE II
OVERVIEW OF THE NOTATION AND THE INFORMATION ASYMMETRIES BETWEEN THE IP AND THE SPS

discuss the two different cases: 1) the SP uses cloud resources,
and 2) the SP uses service placement in MEC.

1) Cloud Computing: In this paragraph, we discuss the case
of the SPs offering their service using cloud resources. SP n
needs to pay for using the communication, computation and
storage resources in the cloud. In particular, we assume that SP
nhas negotiated a fixed price per resource in the cloud. We model
the communication cost between the users’ mobile devices and
the cloud using a cost factorβSP

n for each unit of data transmitted.
Additionally, the SP must payαSP

n for each computation resource
required in the cloud. We denote the storage cost in the cloud
for the service by SP n by ΦSP

n . In the case of cloud computing,
the utility of SP n is

USP
n (xn = 0, kn) = kUsers,SP

n − βSP
n DSP

n − αSP
n XSP

n

− ΦSP
n , (1)

which is the difference between the aggregated payments
kUsers,SP
n of its users and the total cost for communication,

computation and storage.
2) Service Placement in Multi-Access Edge Computing: In

this case, the SPnhas successfully negotiated with the IP to place
its service on the cloudlet. The IP installs the service-specific
software of SP n on the cloudlet and provisions the necessary
computation and storage resources to process the users’ service
requests of the service provided by SP n on the cloudlet. This
significantly reduces the latency, improving the users’ Quality-
of-Service (QoS). To account for the improved QoS, we assume
that users are potentially willing to pay more for the service. For
this, we introduce an increase in paymentLSP

n . Note thatLSP
n can

be zero if the users are unwilling to pay more for an increased
QoS.

The SP has to pay kn monetary units to the IP for the
placement. Determining kn is part of the bargaining procedure,
discussed in Section III. Despite the utilization of MEC, there
remains a need to communicate with the cloud and execute

computations at the cloud, e.g., for synchronization with a
database [6]. We denote D̃SP

n as the communication demand
to the cloud and X̃SP

n as the computation demand in the cloud.
The utility of the SP n using MEC is

USP
n (xn = 1, kn) = kUsers,SP

n + LSP
n − βSP

n D̃SP
n

− αSP
n X̃SP

n − kn, (2)

which is the difference between the users’ payments, the re-
maining cost in the cloud, and the payment to the IP for service
placement.

The linear utility function (2) is based on two assumptions:
First, no saturation effects are considered, meaning the utility of
each SP is linearly dependent on the cost parameters βSP

n , αSP
n ,

the communication demand D̃SP
n and computation demand X̃SP

n ,
without diminishing returns from increased resource demands
or higher costs. Second, we assume risk neutrality, meaning that
the SPs aim to maximize expected profit without incorporating
terms related to risk, which are typically non-linear.

The payoff which SP n gains in case of a service placement
is

P SP
n (kn) = USP

n (xn = 1, kn)− USP
n (xn = 0, kn)

= LSP
n + αSP

n

(
XSP

n − X̃SP
n

)
+ βSP

n

(
DSP

n − D̃SP
n

)
− kn (3)

which is the difference between the utility of edge computing
and the utility in the case of cloud computing.

We define the reservation price vSP
n of SP n as the high-

est payment the SP is willing to make for service placement.
This reservation price appears when the payoff from (3) is
P SP
n (vSP

n ) = 0. This can be determined as

vSP
n = LSP

n + αSP
n

(
XSP

n − X̃SP
n

)
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+ βSP
n

(
DSP

n − D̃SP
n

)
. (4)

We assume that each of the SPs is individually rational, i.e.,
they only agree to a payment kn which results in a positive
payoff P SP

n (kn) ≥ 0 from (3). In the bargaining with the IP,
SP n is therefore never willing to make a payment kn > vSP

n

which is larger than its reservation price vSP
n . Therefore vSP

n is
the maximum price that SP n is willing to pay for the service
placement.

C. Infrastructure Provider

The IP owns and operates the cloudlet, including the backhaul
network between the BS and the cloud. To derive the utility
function of the IP, we first consider the negotiation with one SP.
When negotiating with SP n, there are two cases: Either the SP
n provides the service using cloud computing, i.e., not using the
cloudlet of the IP, or the IP provides the service of SP n using
MEC, i.e., relying on the IP’s infrastructure. In the following,
we discuss those two different cases.

1) Cloud Computing of SPn: In the case of cloud computing
of SP n, indicated by xn = 0, there is no payment from SP n to
the IP. The IP incurs a given costβIP for each data unit transferred
between the users and the core network on the IP’s backhaul
network. Therefore, the utility is

U IP
n (xn = 0, kn) = −βIPDSP

n , (5)

which is the cost for data transfer from the user to the cloud
resources.

2) Multi-Access Edge Computing of SPn: In the case of edge
computing of SP n, i.e., xn = 1, the SP n and the IP must agree
on a payment kn for the usage of the cloudlet. When using the
cloudlet, the IP’s cost comprises computation, communication
and storage costs. Computation on the cloudlet incurs a cost
of αIP for each computation resource. Furthermore, for each
communication resource required between the users and the
cloud, there is a cost of βIP. The infrastructure cost for storage
is ΦIP

n . The utility of the IP in the case of edge computing is

U IP
n (xn = 1, kn) = kn − αIPXSP

n − βIPD̃SP
n − ΦIP

n , (6)

i.e., the difference between the payment kn of the SP n and
the cost for computation, communication and storage resources.
Analogous to the SPs, we also assume a linear utility function (6)
for the IP, without saturation effects and under the assumption
of risk neutrality.

Analogous to the payoff (3) of the SPs, we define the payoff
of the IP for an agreement with SP n as the difference between
the utility for edge computing (6) and for cloud computing (5).
The payoff of the IP in case of an agreement with SP n is

P IP
n (kn) = U IP

n (xn = 1)− U IP
n (xn = 0)

= kn − αIPXSP
n − βIP

(
D̃SP

n −DSP
n

)
− ΦIP

n . (7)

From the payoff, we can derive the reservation price

vIP
n = αIPXSP

n + βIP
(
D̃SP

n −DSP
n

)
+ΦIP

n (8)

which is the cost for the resources required for the service
placement of SP n. We refer to vIP

n as the IP’s physical cost
of the service placement, as (8) includes all the costs associated
with the provisioning of the computation, communication and
storage resources.

By X IP, we denote the IP’s limited computation resources at
the cloudlet. To model the limited resources, we introduce the
constraint

N∑
n=1

xnX
SP
n ≤ X IP (9)

for the computation resources at the cloudlet.
The total utility of the IP is the sum

U IP(x,k) =

N∑
n=1

U IP
n (xn, kn) (10)

over all potential agreements with all N SPs.

D. Information Asymmetries

We consider different types of IAs in the scenario: IAs regard-
ing costs and utility functions and IAs regarding the availability
of resources. In Table II, we highlight these IAs by displaying
the information of the IP on the left side and the information of
the SPs on the right side.

1) Information Asymmetries Regarding the Available Re-
sources: The IP knows the amount X IP of (its own) available
computation resources, which is unknown to the SPs. Further-
more, each SP does not know the number N − 1 of other SPs
competing for the resources. The IP knows the number N of
its bargaining partners. This is an advantage in the bargaining
procedure, as the IP knows how limited the resources are.

2) Information Asymmetries Regarding Costs and Utility
Functions: The IP and the SPs do not share information about
their cost factors and utility functions, as they contain sensitive
business model information. If, for example, the IP knew the ex-
act cost factor and utility function of an SP, the IP could price its
resources exactly at the reservation price of the SP and maximize
the IP payoff. Therefore, no bargaining would occur, and the SP
would not receive any payoff. Thus, we assume that the IP and the
SPs do not know the cost factors and utility functions (1), (2), (5)
and (6) of their bargaining partners. Therefore, the respective
bargaining partners’ payoffs (3) and (7) are unknown. However,
this information is essential for settling the payment kn between
the SPn and the IP, in a manner reflecting optimal payoffs for the
IP and the SP. For example, a high reservation price vSP

n of SP n
would mean that the IP could demand a higher payment for the
service placement. Although SPs and IP do not know the exact
reservation prices of each other, the SPs and the IP can obtain
some information about their bargaining partner’s reservation
price, e.g., using publicly available information sources [6].
To model these IAs, we assume that both the SPs and the IP
can calculate a probabilistic model of the bargaining partner’s
reservation price. A common approach in bargaining theory
to model the belief over the bargaining partner’s payoff is a
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uniform distribution between a lower bound and an upper bound
[35], [36].

Each SP n can model its belief over the IP’s reservation price
vIP
n using a probability density function

fSP
n (vIP

n ) =

{ 1
vIP
n−vIP

n
, for vIP

n < vIP
n < vIP

n

0, else,
(11)

which is a uniform distribution between a lower boundvSP
n and an

upper bound vSP
n . The difference between vSP

n and vSP
n is inversely

proportional to the amount of information available to SP n. In
a practical scenario, the SP has to estimate the lower bound vIP

n ,
which is the minimum price the IP would accept for service
placement. The SP can obtain the lower bound vIP

n , e.g., by an
estimation of the costs for the additional hardware and energy
of the IP for service placement as described in [37]. The upper
bound vIP

n of the IP’s reservation price can be obtained, e.g., by
using prices for service placement [38].

Analogously, the IP models its belief about each SP’s reser-
vation price as

f IP
n (vSP

n ) =

{ 1
vSP
n −vSP

n
, for vSP

n < vSP
n < vSP

n

0, else.
(12)

Similar to the case of the SP, the IP has to estimate its up-
per bound vSP

n by using public price lists of cloud providers,
e.g., [39]. Its lower bound vSP

n can be obtained by estimating the
reduction in cloud and backhaul cost of the SP, e.g., as discussed
in [40].

Note that the SP and the IP cannot employ learning ap-
proaches, as observing the true values of the bargaining partner’s
reservation prices is impossible.

E. Social Welfare

We define the social welfare as the sum of the utilities of all
SPs and the IP:

Ψ(x,k) =

N∑
n=1

USP
n (xn, kn) + U IP(x,k)

=

N∑
n=1

xn(v
SP
n + vIP

n ). (13)

The social welfare Ψ(x) = Ψ(x,k) is therefore independent
of the payment profile k [41]. Consequently, the social welfare
Ψ(x) measures the benefit for the whole network based on the
chosen service placement profile x.

The payment profile k determines the distribution of the
payoff of the service placement between the IP and the SPs.

F. Fairness

Another important measure of the provided solution is fair-
ness. SPs may not place their service at the edge if they do
not benefit from it. Therefore, it is an important incentive that
the benefits of MEC are shared in a fair manner between all
stakeholders. A common approach to measure fairness is the
Jain’s index, e.g., as discussed in [19]. The Jain’s index for the

payoffs of all SPs which have their service placed is given by

J (x,k) =

(∑N
n=1 P

SP
n (kn)

)2

(∑N
n=1 P

SP
n (kn)2

)(∑N
n=1 xn

) , (14)

which is the quotient of the squared mean value of the payoffs
and the expected value of the squared payoff. A Jain’s index of
J (x,k) = 1 indicates a fair service placement and pricing, i.e.,
all stakeholders have the same payoffs. The least fair solution is
indicated by J (x,k) = 1

(
∑N

n=1 xn)
.

G. Problem Formulation

We argue that a formulation of the service placement problem
as an optimization problem, e.g., as proposed in [42] and [43],
is not realistic in a practical scenario, as we consider the SPs
and the IP to act as selfish stakeholders with their individual
decision-making capabilities. Furthermore, a centralized opti-
mization approach requires a central entity with full knowledge
of all SPs and the IP.

Moreover, the goal is not only to maximize efficiency but
also to enhance fairness [19]. The Nash Bargaining Solution
(NBS) [44] provides a fair and efficient outcome [45]. However,
we argue that the NBS cannot be calculated directly, e.g., as
proposed in [18], as no central entity with complete information
can calculate the NBS.

1) One-to-One Bargaining With Information Asymmetries:
When only one SP n exists, we can describe the situation as
a buyer-seller problem with IAs. In this case, the SP n acts as
buyer, paying for the use of the available computation resources
X IP on the cloudlet, while the IP acts as seller, provisioning the
resources to the SP n. The IP aims to maximize the payment
kn and will never accept any price below its reservation price
vIP
n . The SP aims to minimize the payment kn and will never

accept any price higher than its reservation price vSP
n . As a result,

an agreed-upon price between the two parties must lie in the
interval kn ∈ (vIP

n , v
SP
n ). No efficient placement exists in the case

of vIP
n > vSP

n [6]. We define the one-to-one bargaining problem
between one IP and one SP as

P1 : argmax
xn,kn

(USP
n (xn, kn)− USP

n (0, 0)) (15)

·(U IP
n (xn, kn)− U IP

n (0, 0))

s.t. xnX
SP
n ≤ X IP (16)

which is the NBS with the computing resource constraint (16).
The solution of (15) cannot be calculated directly because of the
IAs.

2) One-to-Many Bargaining With Information Asymmetries:
In the case of N > 1 SPs requesting a service placement on the
IP’s cloudlet, we must consider the one-to-many bargaining. The
SPs have reservation prices vSP

n , and the IP has reservation prices
vIP
n for the bargainings. In a scenario with unlimited resources,

the case would simplify to N independent one-to-one bargain-
ings as discussed in [6]. As we assume limited cloudlet resources
given by (9), we need to account for that in our bargaining
mechanism. Due to the scarcity of resources, the cloudlet cannot
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host every service. This corresponds to an opportunity cost that
we must reflect in the reservation price. Therefore, we formulate
the reservation price for the IP as the sum

ṽIP
n = vIP

n + vIP,opp
n (17)

of the physical cost vIP
n (8) and opportunity cost vIP,opp

n associ-
ated with the service placement.

III. PROPOSED NASH BACKWARD INDUCTION WITH LINEAR

EQUILIBRIUM STRATEGIES ALGORITHM

This section presents our proposed bargaining mechanism for
solving the service placement problem. The two main challenges
we need to overcome are IAs and limited resources. In the
bargaining situation with N SPs, the service placement con-
sidering the limited resources of the IP is challenging as the IP
has opportunity costs that each agreement with an SP induces.
Unlike [23] and [25], which model the IP as a price-setting leader
and the SPs as price-taking followers in a Stackelberg game, we
propose a bargaining framework between the SPs and the IP.
This approach more accurately reflects the bargaining powers
of both the IP and the SPs.

A. Sequential Bargaining Mechanism

Our proposed bargaining mechanism is a sequential bargain-
ing approach, i.e., the IP bargains with each SP individually.
We depict the sequential bargaining mechanism in Algorithm 1.
Initially, each SP reports its computation resources demand X̃SP

n

to the IP (line 3). After allN SPs have signaled whether they want
to participate in the bargaining, the IP calculates its optimal strat-
egy (lines 4-9). Simultaneously, the SPs calculate their optimal
offer strategies (line 12). Afterward, the individual one-to-one
bargainings start (lines 14-21). There are N bargaining rounds;
each bargaining is between one SP n ∈ {1, . . . , N} and the IP.
Due to potential agreements in previous rounds, the amount of
available resources X IP might decrease each bargaining round.
We denote the available resources in bargaining round n as X IP

n .
For each bargaining round, we propose to use a double auction

mechanism, as described in [46] and [47]. In this mechanism,
the SP n and IP simultaneously suggest a price for the service
placement. The IP makes an offerkIP

n and the SPnmakes an offer
kSP
n in bargaining round n. If kSP

n > kIP
n , i.e., the SP is willing to

pay more than the IP requests, then the service of SP n is placed
on the cloudlet and the final agreed payment

kn =
kIP
n + kSP

n

2
(18)

is the average of the two offers. IfkSP
n < kIP

n , i.e., the SP is willing
to pay less than the IP requests, then no agreement is reached.
Either way, the bargaining concludes with a reveal of both offer
prices. This mechanism is considered fair as both offers of IP
and SP receive equal weights.

The challenge is now to calculate the optimal offerkIP
n of the IP

and the optimal offerkSP
n of the SPs. Logically, the IP and each SP

will optimize the respective offers to maximize their expected
payoff. Any stakeholder’s optimal offer strategy is dependent
not only on its own reservation price but also on the reservation

Algorithm 1: Proposed NBI-LES Algorithm.
1: Input: Reservation prices vSP,n and vIP,physical,n

2: Input: Belief about the f IP
n (vSP

n ), fSP
n (vIP

n )∀n
3: All N SPs report XSP

N to the IP
4: � The IP calculates its optimal offers
5: The IP computes πIP

N (X IP
N ) �(20)

6: for n = N − 1, . . ., 1 do
7: The IP computes vIP

n (X
IP
n ) �(22)

8: The IP computes πIP,agg
n (X IP

n ) �(24)
9: The IP computes kIP

n according to the LES �(25)
10: end for
11: � Each SP calculates its optimal offer
12: Each SP computes kSP

n according to the LES �(27)
13: � Sequential bargaining
14: for n = 1, . . ., N do
15: SP n makes the offer kSP

n , the IP kIP
n .

16: if kIP
n ≤ kSP

n then
17: xn = 1, kn = 1

2 (k
IP
n + kSP

n ) �(18)
18: X IP

n+1 = X IP
n −XSP

n

19: else
20: xn = 0, kn = 0
21: X IP

n+1 = X IP
n

22: end if
23: end for
24: return service placement profile x, payment profile k

price and offer strategy of the other parties. Furthermore, due to
IAs, the optimal strategy depends on the belief about the others’
reservation prices.

B. The Strategy of the Infrastructure Provider

The following section will discuss IP’s strategy for calculating
reservation prices and optimal offers. Afterwards, we discuss
the SPs’ strategies to find the optimal offers. At the end of
this section, we discuss the computational complexity of this
bargaining approach. At first, we calculate the reservation prices
of the IP. To calculate the opportunity cost vIP,opp

n , we use
backward induction. The backward induction consists of an
initialization step and the subsequent induction steps.

1) Initialization: Using the backward induction, the initial-
ization starts in the last bargaining round N with SP N . The
sequential bargaining mechanism ends when the IP finishes
negotiations with SP N . Consequently, the bargaining with SP
N does not influence other negotiations. As a result, vIP,opp

N = 0
holds. Therefore, we can use the bargaining with SP N as our
starting point for the backward induction. The IP calculates its
expected payoff to calculate the expected profit when bargaining
with SP N . The expected value of a random variable X is
denoted by E{X}. For the IP, the expected payoff is given by

πIP
N (kIP

N ) = E
{
P IP
N

(
kIP
N

)}
=

∫ ∞

kIP
N

(
kIP
N + kSP

N

2
− vIP

N

)
pSP

(
kSP
N

)
dkSP

N (19)
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when bargaining with SP N . To maximize its expected payoff
πIP
N (kIP

N ), the IP has to optimize its offer kIP
N before the bargain-

ing. This is difficult due to the fact that (19) is dependent on the
SP’s offer kSP

N , which is unknown to the IP. Intuitively, if the SP
is willing to pay a lot for the service placement, i.e., kSP

N is high,
it is advantageous for the IP to make a higher offer. Conversely,
if the SP is willing to pay little for the service placement, i.e.,
kSP
N is small, it is advantageous for the IP to make a lower offer.
This is an interdependent problem, where the IP’s optimal

strategy depends on the SP’s strategy and vice versa. For this,
there are infinite equilibria for the interdependent strategies [35].
For a subset of offer strategies, namely offer strategies for
which the offers of IP and SP increase strictly monotonically
with the reservation prices except for bound values, we can
find a unique equilibrium [36]. This is known as the Linear
Equilibrium Strategy (LES). In the following, we argue that the
IP and the SPs choose their offers according to the LES. This
allows us to determine the IP’s optimal offer kIP

N .
As the SP N is the last SP in the bargaining, we know that

vIP,opp
N = 0 holds. This is because SP N is the last SP in the

bargaining sequence. Therefore, the resources not given to SP
N are not used. Consequently, the reservation price ṽIP

N = vIP
N

contains only the resource prices, and the opportunity cost is
zero. Considering the limited resources, a service placement is
only possible if the IP has enough resources to satisfy the demand
of SP N , that is, X IP

N ≥ XSP
N . The expected payoff of the IP is

given as

πIP
N (X IP

N ) =

{
πIP,LES(vIP

N ) if X IP
N ≥ XSP

N

0 if X IP
N < XSP

N
(20)

which is a step function of the available resources X IP
N in the last

bargaining round N .
2) Backward Induction Steps: To employ the LES mecha-

nism, all left to do is calculate the reservation prices ṽIP
n of the

bargaining round with SP n. We calculate this by backward
induction. Instead of calculating vIP

n as a scalar value for the
bargaining with SP n, we determine the reservation price as a
function of the available resourcesX IP

n , i.e., vIP
n (X

IP
n ). The IP can

determine its reservation price by looking up the value assigned
to XIP,n.

Consider now that the IP bargains with SP N − 1. The IP has
already concluded the bargainings with SP 1 to SP N − 2. At
the beginning of the negotiation, the IP has resources X IP

N−1

available. The outcome of the negotiation influences the re-
sources the IP has available for bargaining with SP N . If the
negotiation is successful, the service of SP N − 1 is placed on
the cloudlet and requires XSP,N−1 resources. The IP has then
X IP

N−1 −XSP
N−1 resources available for the bargaining with SP

N . If there is no agreement between IP and SP N − 1, the IP
has X IP

N−1 resources available for negotiation with SP N . The
opportunity cost vIP,opp

N describes the expected payoff the IP
cannot realize due to a placement of SP N − 1.

The reservation price of the IP in bargaining round N − 1 is
calculated as follows. First, we determine the opportunity cost

vIP,opp
N−1 = πIP

N

(
X IP

N−1

)− πIP
N

(
X IP

N−1 −XSP
N−1

)
, (21)

which describes the expected payoff the IP cannot realize due
to a placement of SP N − 1. This is the difference between the
expected payoff πIP

N (X IP
N−1) when no agreement is made, and

the expected payoff πIP
N (X IP

N−1 −XSP
N−1) when the service of

SP N − 1 is placed.
Now we can calculate the reservation price function

ṽIP
N−1

(
X IP

N−1

)
= vIP

N−1 + vIP,opp
N−1 l

= vIP
N−1 + πIP

N

(
X IP

N−1

)
− πIP

N

(
X IP

N−1 −XSP
N−1

)
, (22)

which, according to (17), is the sum of the cost for the resources
vIP
N−1 and the opportunity cost vIP,opp

N−1 .
Based on the reservation price function, we can calculate the

expected payoff function as

πIP
N−1

(
X IP

N−1

)
=

{
πIP,LES

(
vIP
N−1

(
X IP

N−1

))
if X IP

N−1 ≥ XSP
N−1

0 if X IP
N−1 < XSP

N−1.
(23)

The expected payoff function describes the additional payoff
the IP can expect by bargaining with SP N − 1 compared to a
scenario where SP N − 1 does not exist.

The aggregated expected payoff function is the payoff the IP
expects from the remaining bargaining process. It is the sum of
all individual expected payoff functions

πIP,agg
N−1

(
X IP

N−1

)
= πIP

N−1

(
X IP

N−1

)
+ πIP

N

(
X IP

N−1

)
(24)

with the available resources X IP
N−1 in bargaining round N − 1.

Analogously, the backward induction is repeated until the
bargaining round n = 1 is reached. After finishing the backward
induction, the IP has calculated its reservation price functions
vIP
n (X

IP
n ) for every bargaining round n ∈ {1, . . ., N}.

3) IP’s Offer Strategy: The last missing step for the IP is to
calculate its optimal offer for the bargaining based on its reser-
vation price functions vIP

N (X IP
n ) from the backward induction.

Using the calculated values of vIP
N (X IP

n ) and the belief (12) about
the SP’s reservation price, we can determine the optimal offer
kIP
n in bargaining round n.
Theorem 1: The optimal offer of the IP in round n according

to the Linear Equilibrium Strategy is given by

kIP
n =

⎧⎨
⎩

2
3v

SP
n + 1

3s0 for ṽIP
n (X

IP
n ) ≤ max(s0, vSP

n )
−s0 + vIP

n
2
3 (ṽ

IP
n (X

IP
n )− vIP

n ) + s0 else
(25)

with s0 = 3
4v

IP
n + 1

4v
SP
n .

Proof: The proof is analogous to the proof found
in [36]. �

The optimal offer strategy of the IP is shown in Fig. 2. The
optimal offer strategy is a piece-wise linear function of the IP’s
reservation price, which is common for offer strategies under
IAs [36]. For the analysis of the IP’s strategy, it is important
to remember that a higher offer kIP

n is better for the IP, as the
payment from the SP to the IP is the mean value of the IP’s and
the SP’s offers, as seen in (18).
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Fig. 2. IP’s optimal offer strategy according to Theorem 1 for a varying
reservation price ṽIP

n (X IP
n ) of the IP.

The optimal offer kIP
n from Theorem 1 consists of two cases:

In the first case, the IP’s reservation price is below a threshold
ṽIP
n (X

IP
n ) ≤ max(s0, v

SP
n )− s0 + vIP

n . This threshold depends
on the SP’s estimation of the lower bound vIP

n of the IP’s
reservation price. When this condition is met, the optimal offer
is fixed at kIP

n = 2
3v

SP
n + 1

3s0, independent of the IP’s actual
reservation price. This allows the IP to exploit the SP’s under-
estimation of vIP

n , making an offer higher than what would be
expected based on the IP’s true reservation price. In the second
case, where the IP’s reservation price exceeds the threshold
ṽIP
n (X

IP
n ) > max(s0, v

SP
n )− s0 + vIP

n , the IP’s offer increases
linearly with the reservation price ṽIP

n (X
IP
n ). In this case, the

optimal offer increases because of the IP’s growing opportunity
and placement costs.

C. The Strategies of the Service Providers

The SP n has no information about the availability of the IP’s
resources X IP

n in the current bargaining round n, i.e., the SP n
does not know whether the computation resources are plenty or
scarce. Furthermore, the SPn has no information about the costs
associated with the resource usage of the IP. For the SP n, the
expected payoff is given by

πSP(kSP
n ) = E{P SP

n (kn)}

=

∫ kSP
n

−∞

(
vSP
n − kIP

n + kSP
n

2

)
pIP(kIP

n )dk
IP
n (26)

which is the expected value of the payoff based on its offer kSP
n .

Based on the belief (11) about the IP’s reservation price and the
reservation price vSP

n of SP n, the SP n can calculate its optimal
offer.

Theorem 2: The optimal offer of the SP n according to the
Linear Equilibrium Strategy is given by

kSP
n =

⎧⎪⎨
⎪⎩

2
3v

SP
n + 1

3s0 for vSP
n ≤ min

(
s1, v

IP
n

)
−vIP

n + s0
2
3

(
vIP
n − vIP

n

)
+ s0 else

(27)

with s0 = 3
4v

IP
n + 1

4v
SP
n and s1 = 3

4v
SP
n + 1

4v
IP
n .

Proof: The proof is analogous to the proof found
in [36]. �

The optimal offer strategy of the SP is shown in Fig. 3. For
the analysis of the SP’s strategy, it is important to remember that

Fig. 3. SP’s optimal offer strategy according to Theorem 2 for a varying
reservation price vSP

n of the SP.

a lower offer kIP
n is favorable for the SP, as a lower kIP

n results
in a lower payment from the SP to the IP according to (18).
In Fig. 3, we can see also a piece-wise linear optimal strategy.
For lower reservation prices of the SP, the optimal offer increases
linearly with the SP’s reservation price vSP

n . After the threshold
vSP
n ≥ min(s1, vIP

n )− vIP
n + s0, the SP does not increase its offer

any further and the SP’s optimal offer is fixed to kSP
n = 2

3 (v
IP
n −

vIP
n ) + s0. This is an effect of the IAs, as the SP can exploit the

limited information of the IP.

D. Computational Complexity

To execute the LES bargaining mechanism, we need to cal-
culate the reservation price functions and the IP’s expected
payoff functions. Each of these functions from (23) is a step
function as every function is the sum and concatenation of
other step functions. To fully describe such a function, each
resource amount is stored where the function changes its value,
and the corresponding function value is sufficient. If the SPs
can demand an arbitrary amount of resources XSP

n ∈ R, the
number of resource amounts where the reservation price func-
tions change value grows exponentially with each step of the
backward induction. Thus, the bargaining mechanism has a
computational complexity of O(2N ).

We argue that, in reality, it is reasonable to assume that
resources are organized in discrete computation instances, like
virtual machines at a cloudlet. This is common practice for
MEC providers [38]. By making this assumption, the possi-
ble combinations of demands XSP

n of the SPs and the IP’s
available resources X IP reduce to an integer number of these
computing instances. Therefore, we can significantly reduce the
computational complexity of our proposed NBI-LES approach.
In our case, the SPs can only demand multiples of a single
computational instance, i.e., only integers of instances. As a
result, the step functions of the IP’s reservation price can only
change their value at integer resource amounts. This reduces
the computational complexity to O(XIP ·N) and allows for
computation of the bargaining mechanism when the number N
of SPs is large.

E. Effects of the Bargaining Order

The order of SPs in the sequential bargaining process can
influence the outcome at step n due to the IP’s opportunity cost
vIP,opp
n , which depends on n. This can lead to variations in the
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TABLE III
OVERVIEW OF THE ANALYZED USE CASES

utility for both the SP and the IP during individual negotiations.
In the complete information case discussed in [41], an early-
mover advantage is observed, where the first SP enjoys a higher
expected payoff due to an increased likelihood of reaching an
agreement and securing service placement.

However, our primary focus in this work is on evaluating the
efficiency and fairness of the overall network. Therefore, we
concentrate on aggregate metrics such as total utility, resource
utilization, and average resource prices. As shown in [41], the
bargaining order does not affect these aggregate metrics, nor
does it impact the overall efficiency of the proposed solution.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed
NBI-LES approach and compare it to state-of-the-art algorithms
using a real service usage dataset. We will first discuss the service
usage dataset and the selection of the different MEC service use
cases. Afterward, we present the model for the cost factors, IAs,
and resources.

A. Case Study and Data Set

We obtained data on the use of services from different SPs
to study the performance and effectiveness of our approach in
the simulation. We are unaware of a public dataset that provides
usage information at the appropriate granularity for various SPs
with heterogeneous use cases. We collected the data in a field
study to use reasonably realistic smartphone usage as a basis
for the simulations. Overall, K = 544 participants from the US
took part in the study for about three weeks, starting on 30th of
November until 23rd of December 2022. We aggregated the data
over all K = 544 users and 36 services to obtain an average
service usage time per service.

We consulted related literature [5], [6], [48], [49], [50]
and [51] to gain an overview of possible use cases for the
MEC scenario. We chose a subset of use cases for simplicity
and analyzed them regarding their traffic and computational
load. We determine service use case categories according to
computational and data traffic demands, which can be either
high or low. Table III visualizes three of these combinations
providing possible use cases with different requirements re-
garding computation and traffic, i.e., computation high and
traffic low (computation-heavy), computation low and traffic
high (traffic-heavy), and computation high and traffic high
(multiple-heavy). We excluded the fourth imaginable use case
with low computation and traffic load, as we consider this use
case least appropriate for MEC as there is only low potential
for efficient use in MEC. Hence, only three use case categories
remain: computation-heavy, traffic-heavy, and multiple-heavy.
We selected the N = 16 most popular services in our dataset

from these use case categories. We chose the use cases “mobile
AR”, “video streaming”, and “video analytics”. Based on the
usage time duration of a service, we can determine the compu-
tational resource demand XSP

n and data traffic of each service
type. The type of service and the associated MEC use case plays
a particular role, as the resource demand XSP

n differs between
different service types.

Regarding the computation and traffic reduction by offloading
a service to the edge in respective use cases, we based our
parameters on existing studies [5], [6], [48], [49] and [51],
that have implemented and evaluated similar services. When
the studies above presented different values for the computa-
tional or data traffic demands, we averaged these values for the
respective use cases. We measure the computational demand
XSP

n in virtual CPUs (vCPUs). First, we consider the use case
“mobile AR” from the use case category “computation-heavy”.
In case of a mobile AR game, the data traffic demand is as
low as 0.028MB/h [6], while a Full HD video stream might
require 4.6 GB/h, e.g. when a video stream is augmented live. We
average this to a data traffic demand of DSP

n = 2.3 GB/h. As the
“mobile AR” use case requires large amounts of computation
resources, we assume XSP

n = 4 vCPUs per service instance.
For the use case “video streaming” from the use case category
“traffic-heavy”, we assume XSP

n = 1 vCPU per service for a
relatively low computation load. At the same time, we consider
data traffic demand to be 4.6 GB/h, assuming Full HD video
streaming. Finally, we inspect the use case “video analytics”
from the use case category “multiple-heavy”. For this use case,
we estimate a 4K video stream to require between 4.6GB/h and
15GB/h, averaging to about DSP

n = 9.65 GB/h of data traffic
demand. Simultaneously, we assume this to be a computation-
heavy use case. Hence, we presumeXSP

n = 4 vCPUs per service
instance.

We estimate the cost factors based on real-world IPs like [38]
and [39]. We differentiate cost factors associated with cloud
computing αSP

n , βSP
n ,ΦSP

n and the cost factors αIP,ΦIP
n associated

with MEC, which are presented in Table IV.

B. Evaluation Setup

In our evaluation, we consider the service placement to be
performed every hour for a T = 24 days, resulting in a total
of T · 24 = 576 different service placements. We assume a
constant number X IP of available vCPUs at the cloudlet for
the entire period. The order of SPs in each bargaining procedure
is randomly selected to mitigate the effects of bargaining order,
as discussed in Section III-E. For a consistent comparison, the
same bargaining order is used for all approaches considered.

We determine the resource demands XSP
n of any given

SP through two variables. The first is the service instance
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TABLE IV
EVALUATION PARAMETERS

requirement (SIR), which indicates how many computation
resources must be allocated to the service-specific software for
each category. For example, one service instance of the use
case “mobile AR” may require 4 vCPUs, whereas the use case
“video streaming” requires only 1 vCPU per service instance.
The second important variable is the total service usage duration
tservice, which is the total time the users access a service in a given
hour. We assume that a duration of tservice = 3600s of app usage
requires one service instance to process the user demands. We
then calculate the total demand as XSP

n = �SIR · tservice

3600 �. Since
the IP sells vCPUs only in discrete units, we round up the demand
to the next highest integer to ensure sufficient computation
resources are allocated to each service instance.

To determine the reservation prices of the SPs, we first cal-
culate the reservation price vSP

n of each SP according to (4).
Additionally, we assume that noise is present to model the
uncertainty of the reservation prices. We assume that to each
reservation price vSP

n , a uniformly distributed random variable
vNoise
n ∼ U(−σSPvSP

n , σSPvSP
n ) is added. If not stated otherwise,

we set σSP = 0.5, i.e., the reservation price fluctuates 50%
around the reservation price vSP

n .
For the IP, we calculate the physical cost vIP

n for service place-
ment according to (8). We assume that each SP can accurately
estimate this cost because each SP knows its own computation,
communication, and storage resource demand and can attain
the physical computation cost per resource through other edge
computation providers. In a scenario with unlimited resources,
the physical cost vIP

n corresponds to the reservation price ṽIP
n

of the IP, i.e., ṽIP
n = vIP

n , as the SPs do not need to compete
for the resources in the case of unlimited resources. Therefore,
the physical cost vIP

n of computation is the lower bound of the
IP’s reservation price. The other extreme scenario describes the
case that resources are very scarce, i.e., the sum of the SPs’
resource demands

∑N
n=1 X

SP
n is much larger than the number

X IP of available vCPUs. In such a case, the highest price the
IP could reasonably demand is the upper bound of the SP’s
reservation price vSP

n . The upper bound of the IP’s reservation
price equals, therefore, the SP’s reservation price upper bound.
Consequently, each SP can model its belief function of (11) as
a uniform distribution between vIP

n and vSP
n .

C. Evaluation Metrics

The IP and the SPs have different technical and economic
parameters, so assessing the system’s performance depends on

the considered perspective. We argue that different evaluation
metrics must be considered to measure the system’s perfor-
mance.

1) Resource utilization: The resource utilization R(x) is
defined as the number of computation resources, i.e.,
vCPUs, used in the service placement. This is defined as
R(x) =

∑N
n=1 xnX

SP
n .

2) Cloudlet service time: We consider the time users access
services placed on the cloudlet. A higher cloudlet service
time corresponds to a higher service quality for the users,
as more service requests are processed directly on the
cloudlet.

3) Reduced data traffic to the cloud: We consider the amount
of data that can be processed locally on the cloudlet instead
of sent to the central cloud.

4) Social Welfare: As described in Section II-E, social wel-
fare is used to measure the system’s efficiency.

5) Jain’s index: As described in Section II-F, we use Jain’s
index to measure the system’s fairness.

6) Price of the resources: We consider the average price kn
per resource.

7) Profits of the IP and SPs: We consider the individual
payoffs generated by the service placement of the SPs,
see (3), and the IP, see (7).

D. Baseline Algorithms

To evaluate our proposed NBI-LES, we compare it with
traditional pricing approaches. We use the following algorithms
to benchmark our proposed NBI-LES.
� Fixed price per resource determined by the IP, which is

abbreviated as Fixed Price: The IP sets a fixed price p per
vCPU for every SP in this method. Each SP then decides
if it accepts a service placement for the given price. This
approach is derived from state-of-the-art approaches [23]
and [25] and is the most commonly used in practice by
major cloud providers like AWS [39] or Azure. An SP n
will agree to service placement if the payment kn = pXSP

n

for service placement is smaller than its reservation price,
i.e., vSP

n > kn. For better comparison, we assume that the
SPs decide on the service placement in the same order they
bargain with the IP in our LES mechanism. The SPs’ and
IP payoffs are calculated according to (3) and (7). The IP
will choose the price p per vCPU to maximize its expected
payoff for the service placement process considering the
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Fig. 4. Average resource utilization in vCPUs as a function of X IP.

IAs. This price p depends on the number X IP of available
resources and is calculated through backward induction.

� Centralized popularity-aware service placement, which is
abbreviated as POP. Using this approach, the services with
the highest usage time tservice are placed on the cloudlet by a
centralized network orchestrator [52] with full information
available. The IP charges for each vCPU a fixed price
p = 2vIP

n , which reflects the IP’s reservation price and a
profit margin. The payment for the service placement is
then given by kn = pXSP

n . This approach only considers
the popularity of each service, i.e., it aims to maximize
the probability that a service request is processed on the
cloudlet. However, it neglects the aspects of efficient re-
source utilization and disregards the economic considera-
tions of the SPs and the IP.

� Centralized optimal service placement, which is abbrevi-
ated as OPT: The OPT strategy describes which service
placement decisions x a centralized network orchestrator
with perfect information, i.e., without IAs, would take to
maximize the social welfare Ψ(x) (13). This is a state-
of-the-art approach from [12], which we adapted to the
given scenario. Resource demands XSP

n and reservation
prices vSP

n , vIP
n are known to a central network orchestrator.

The payments for the service placements are chosen to be
kn = vSP

n +vIP
n

2 , i.e., the profit is split equally between the
IP and the SP. We can formulate the centralized service
placement problem as

max
x

Ψ(x) (28)

s. t. xn ∈ {0, 1} (29)

N∑
n=1

xn ·XSP
n ≤ X IP, (30)

where Ψ(x) is the social welfare from (13). The resulting
centralized optimal service placement x is obtained using
a solver.

E. Results and Discussion

In Fig. 4, we assess the resource utilization for the proposed
NBI-LES, Fixed Price, POP, and OPT algorithm for a varying
number X IP of available vCPUs. For a low number of available

Fig. 5. Average cloudlet service time as a function of the time of day,
X IP = 30.

vCPUs, i.e., X IP < 10, the NBI-LES, POP, and OPT algorithms
achieve a high resource utilization. For a high number of re-
sources, the proposed NBI-LES algorithm achieves a resource
utilization within 83% of the OPT algorithm and a 50% (71%)
higher resource utilization than the POP and Fixed Price algo-
rithm respectively. The POP and OPT outperform the Fixed Price
algorithm as they require a central network orchestrator and
the SPs and the IP to report all their information. The resource
utilization is not equal to 100% even for the OPT algorithm, as
the service placement is not economically viable for all SPs for
every hour. For some services, where either the current demand
is low or the benefits from MEC are not large, it is advan-
tageous to use cloud resources instead of service placement
in MEC.

The cloudlet service time over the course of a day for X IP =
30 vCPUs is shown in Fig. 5. For this, the data over the whole
period of 24 days has been averaged for each hour of the day.
The maximum service time of the cloudlet is at around 23:00
hours. For the OPT approach, the cloudlet service time at 23:00
is 137 hours, i.e., 137 hours of service usage time from all users,
and for all N SPs between 23:00 and 0:00 has been performed
on this cloudlet. The NBI-LES has a cloudlet service time of
123 hours, 89.8% of the OPT algorithm. The Fixed Price and
POP algorithms perform significantly worse and achieve only
40.7% (30%) of the cloudlet service time the proposed NBI-
LES provides. Both the Fixed Price and the POP algorithms
suffer because the price kn for the computation resources is not
adjusted for each SP. This makes service placement beneficial
for SPs with a high reservation price vSP

n , which is above the
price. The price from the Fixed Price algorithm is calculated
according to the current total demand for resources. The price
of the POP algorithm only depends on the profit margin and
physical cost of the IP.

We show the reduced data traffic to the cloud in Fig. 6. The
reduced data traffic fluctuates for a low number of vCPUs,
X IP < 10. This is because several computation-heavy services
can only be placed if the available vCPUs exceed the demand.
Therefore, if the number of vCPUs is increased, a service with
higher computational demand will replace a service with higher
data traffic demands, decreasing the reduced data traffic to
the cloud. For a sufficient number X IP > 40 of vCPUs, the
OPT algorithm saves 38GB/h. The NBI-LES achieves 79%
of data reduction compared to the OPT approach and performs
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Fig. 6. Reduced data traffic to the cloud in GB/h as a function of X IP.

Fig. 7. Average social welfare as a function of X IP.

60% (100%) better than the POP and Fixed Price algorithm,
respectively.

We assess the social welfare of (13) for the proposed NBI-
LES, Fixed Price, POP, and OPT algorithm in Fig. 7 for a
varying number of available computation instances X IP. The
social welfare is monotonically increasing since more available
computation resources X IP enable more service placements.
The higher number of service placements corresponds with an
increase in payoff for both IPs and SPs, which in turn increases
social welfare. When resources are scarce, SPs willing to pay
a higher price, i.e., with a higher reservation price vSP

n , will
receive the service placements. Furthermore, the social welfare
approaches a limit when available resources X IP increase. This
limit exists due to the finite demand XSP

n of SPs. We can see that
our proposed NBI-LES algorithm performs 14.2% better than
the Fixed Price approach, 26.3% better than the POP algorithm,
and achieves 96% of the optimal social welfare. From these
results, we can also conclude that a uniform price for all SPs, as
used by the Fixed Price and POP approach, leads to a decrease
of social welfare.

In Fig. 8, the social welfare is shown over the whole period of
T for the NBI-LES, Fixed Price, POP, and OPT approach. Social
welfare varies daily as the users’ service usage and, therefore,
the SPs’ resource demands change. The proposed NBI-LES
algorithm provides higher social welfare than the POP and Fixed
Price algorithms on days with high demand as well as on days
with low demand.

Fig. 9 shows the Jain’s index (14) as a function of the available
vCPUs for the proposed NBI-LES algorithm and the Fixed Price
algorithm. As the OPT and the POP algorithms are centralized

Fig. 8. Average social welfare as a function of the day, X IP = 30.

Fig. 9. Average of the Jain’s index as a function ofX IP, the black bars indicate
the variance.

Fig. 10. Average price kn per vCPU as a function of the available vCPUs.

approaches, we do not consider their fairness. The black dashed
line indicates the least fair solution, i.e., J (x,k) = 1

N , where
only one stakeholder takes all the profit. For a lower num-
ber of resources X IP = 10, the proposed NBI-LES algorithm
achieves an average Jain’s index of 0.3, while the Fixed Price
only achieves 0.2. These low numbers are because only a few
services can be placed on the cloudlet, which results in an unfair
distribution that benefits the SPs with the highest profit from
service placement. For more resources, the fairness increases, as
more SPs can use MEC and place their services on the cloudlets.
Our proposed NBI-LES algorithm significantly increases the
fairness compared to the Fixed Price approach because the IP
adapts its price for each SP. This is beneficial for the IP as well
as the SPs because more service placements are possible. The
fairness measured by the Jain’s index does not approach perfect
fairness J (x,k) = 1 due to the IAs.
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Fig. 11. Profit of the SP as a function of the available vCPUs.

Fig. 12. Profit of the IP as a function of the available vCPUs.

Fig. 10 shows the average price kn paid per vCPU. For
comparison, the blacked dashed line shows the IP’s physical
cost vIP

n (8) per computation resource. Both the Fixed-Price
Approach and the proposed NBI-LES approach adapt their
prices to the current demand and available vCPUs. For a lower
amount of available vCPUs, the price is higher. The price is
lower for X IP < 4, as only SPs with a very low computational
demand can place the service on the cloudlet. The price of the
proposed NBI-LES algorithm is lower than that of the Fixed
Price approach, which enables SPs with a lower reservation price
to achieve a service placement. This increases the fairness of the
service placement and allows for better resource utilization. The
POP algorithm’s fixed price is p = 2vIP

n , corresponding to the
average price per vCPU of the proposed NBI-LES algorithm.

Fig. 11 depicts the sum of the profit of all SPs for the NBI-LES,
POP, and Fixed Price algorithm. The POP algorithm provides
a larger profit for the SPs, as the prices are lower when the
resources are scarce, as shown in Fig. 10. Furthermore, the price
is not adapted for each SP; therefore, SPs with a high reservation
price profit from the low price that the POP algorithm provides.
As the POP algorithm is a centralized approach, no IAs between
the SPs and the IP are considered, making real-world implemen-
tation difficult. The proposed NBI-LES algorithm outperforms
the Fixed Price approach by 16.6% regarding the SPs’ profit.

Fig. 12 depicts the profit of the IP from the service placement
for the entire time periodT depending on the number of available
vCPUs. When the IP has more vCPUs available at the cloudlet,
the NBI-LES algorithm generates higher profit for the IP. This
leads to higher price offers kIP

n of the IP for SPs with higher
expected reservation prices and lower price offers for SPs with

Fig. 13. Profit of the SPs as a function of the available information σIP.

Fig. 14. Profit of the IP as a function of the available information σSP.

lower expected reservation prices. In comparison, when the IP
sets a fixed price for all SPs, it must choose between price per
resource and the number of service placements. If the IP sets a
high price, it will receive high payments, but from only a few
SPs, thus not using many cloudlet resources. In contrast, if the IP
sets a lower price, more services will be placed on the cloudlet,
but the profit per resource is lower. This lower flexibility of the
Fixed Price method leads to lower overall profits for the IP for
the Fixed Price approach. In the comparison between the IP’s
profit from Fig. 12 and the SPs’ profit from Fig. 11, we can
see that the SPs have a lower total profit than the IP. This can be
explained by the fact that the SPs are unaware of the numberX IP

of available vCPUs, which is a disadvantage in the bargaining
procedure.

Furthermore, we investigate the effect of the degree of IAs on
the performance of the NBI-LES and Fixed Price approach. The
centralized approaches have complete information. Therefore,
the OPT and POP algorithms are not considered. We vary the
information available σIP and σSP of the bargaining partner’s
reservation prices, where a larger value of σIP (σSP) corresponds
to greater IAs. In the first experiment, shown in Fig. 13, we
vary the uncertainty σIP about the IP’s reservation price and
analyze how this affects the profit of the SPs. We can see that
for the NBI-LES approach, the profit of the SPs decreases with
increasing σIP. For the Fixed Price approach, the SPs’ profit is
constant over σIP, as the SPs are not involved in the pricing of
the resources. For the Fixed Price approach, the IP determines
the price without involving the SPs.

In the second experiment, shown in Fig. 14, we vary the
uncertaintyσSP about the SPs reservation prices and analyze how
this affects the profit of the IP. Here, we can see that the profit of
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Fig. 15. Cloudlet service time for the proposed NBI-LES algorithm as a
function of the time of day.

the IP decreases much faster for the Fixed Price approach than
for the NBI-LES with increasing IAs. The proposed NBI-LES
is, therefore, more robust against IAs, as both the IP and the
SPs are involved in the pricing, whereas in the Fixed-Price
approach, the IP sets the price based on its own information. If
the information about the SPs’ reservation prices is inaccurate,
the Fixed Price approach performs significantly worse than the
NBI-LES approach. In the proposed NBI-LES approach, the SPs
signal their willingness to pay in the form of the offer kSP

n , which
reduces the IAs.

Finally, we analyze the average distribution of the cloudlet
service time for the different use cases in Fig. 15 over the course
of a day. We can see that the use case “video streaming” has
approximately 60% of the total cloudlet service time. This is
because large amounts of video data can be stored directly at
the edge, which is economically very efficient. Furthermore, we
can see that different use cases have different usage patterns
over the day. The maximum service usage for “mobile AR” is
around 19:00, whereas for “video streaming” it is around 23:00.
This highlights the importance of a dynamic service placement
strategy, like the proposed NBI-LES algorithm, that adapts to
users’ current demands.

V. CONCLUSION AND FUTURE WORK

We studied the MEC service placement problem in this paper,
considering multiple stakeholders. We have analyzed each rele-
vant stakeholder’s technical and economic perspectives, namely
the IPs and the SPs. Additionally, we have modeled IAs concern-
ing the cost factors and the available resources of the respective
bargaining partner. To solve the service placement problem, we
argue that a fair and efficient solution is required. Fairness is
required to ensure that all stakeholders profit from the service
placement and, therefore, are motivated to participate. Efficiency
is required to utilize the MEC network’s resources to achieve the
best performance in terms of cost reduction and data traffic re-
duction. We have proposed a novel bargaining approach, termed
NBI-LES, which combines backward induction and Nash bar-
gaining. We derive the LES, which represents the equilibrium
for all the stakeholders in the bargaining procedure. Simulation
results show that, compared to a traditional fixed price approach,
our proposed NBI-LES algorithm performs significantly better

regarding resource utilization, and the amount of data sent to the
cloud can be significantly reduced.

Future works could analyze the impact of SPs forming groups
or coalitions to improve their bargaining power in relation to the
IP.
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