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Abstract—In the context of 6G, Status Update Systems have
become a pervasive component. Typically comprising a sender
and a receiver, the system functions as follows: the sender
observes a remote process and transmits status updates via an
unreliable wireless channel. The sender’s objective is to optimize
the relevance and timeliness of the information received by the
receiver by minimizing the Age of Incorrect Information (AoII),
defined as the duration since the receiver had correct information
regarding the observed process. AoII is a metric that captures
both the timeliness of status updates and their semantic content.
However, measuring AoII at the sender necessitates knowledge
of the remote process’s state at any given moment, which is
only attainable if the sender constantly senses. This poses a
significant challenge, particularly when sensing a new status
update is energy-intensive, given the fact that the senders are
small devices, often powered by energy-harvesting techniques.
To address this, we propose a novel approach, Continual Belief
Learning, to optimize the AoII under energy constraints. We
derive a belief distribution over all possible AoII values, propose
a corresponding update procedure for this distribution, and use
it to learn the best sensing and transmission strategies at the
sender. We validate the performance of our approach through
detailed numerical simulations, using measurement data from the
SKAB dataset. The simulations demonstrate the superiority of
Continual Belief Learning, achieving gains of up to approximately
40% when compared to established reference schemes.

I. INTRODUCTION

With 6G networks set to enable ubiquitous Internet of
Things (IoT) connectivity, remote monitoring systems also
known as Status Update Systems (SUSs) are expected to
play an essential role in future digital ecosystems and cyber-
physical systems. A SUS typically consists of a battery-
operated sender and a receiver, and its task is to monitor a
remote process. The sender is equipped with a sensor to sense
the process and generate status updates. These updates are sent
to the receiver over a wireless communication channel. The
receiver uses the status updates to react to the changing state
of the underlying monitored process. SUSs have numerous ap-
plications in 6G-enabled domains, ranging from environmental
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monitoring in smart cities [1] and agriculture [2], to industrial
IoT [3], and healthcare systems [4].

The sender’s sensing and transmission capabilities are
limited by the amount of energy in its battery. Therefore,
many SUSs rely on Energy Harvesting (EH) techniques to
recharge the sender’s battery. Using EH, the sender can exploit
enviromentaly-friendy energy sources, e.g., solar, thermal, or
vibrational [5]. Given the stochastic nature of these sources,
the sender’s battery charging follows a random process that
can be effectively modeled using Markov chains.

SUSs rely on the freshness of the status updates at the
receiver to enable timely responses to the changes in the mon-
itored process. The main challenge in SUSs is to find sensing
and transmission strategies for the sender to maintain this
freshness, while considering the limited energy resources. A
popular metric to quantify the freshness of the status updates at
the receiver is the Age of Information (AoI), which measures
the time elapsed since the generation of a status update [6],
[7]. However, minimizing the AoI can lead to the unnecessary
transmission of irrelevant information when the monitored
process changes slowly, or when the monitored process returns
to its previous state. To overcome these limitations, the authors
of [8]–[10] introduce the Age of Incorrect Information (AoII),
defined as the time elapsed since the receiver last had correct
information about the monitored process. Considering the
AoII allows the sender to significantly reduce its energy
consumption because the status updates are transmitted only
if they are relevant to the receiver. However, to calculate
the AoII, the sender has to sense the monitored process in
every time step such that the correctness of the information at
the receiver can be evaluated. This is particularly challenging
for the battery-operated senders when sensing a new status
update is energy-intensive. Thus, the design of joint sensing
and transmission strategies to minimize the AoII in EH SUS is
a novel and unexplored research direction that is both highly
relevant and timely.

Recent works have mainly focused on the design of trans-
mission strategies to minimize the AoII when the energy re-
quired for sensing is negligible and the sender is able to sense
the remote process in each time step [11]–[14]. Assuming
a fixed amount of energy is available, the optimality of the
threshold-based transmission strategy to minimize the AoII is
proved for a two-state remote process in [11], and for remote



processes with multiple states in [12]. These approaches rely
on perfect causal knowledge of the channel quality, the battery
state and the AoII at the receiver, a requirement which is hard
to fulfill in real applications. A threshold-based solution to
minimize AoII when EH senders are considered is proposed
in [13]. Although the authors overcome the strict requirement
of perfect knowledge about the channel quality and the battery
state, a single AoII threshold is used irrespective of the
sender’s available energy, which is in general suboptimal.
This limitation is investigated in [14], where we propose a
learning solution exploiting the threshold-based characteristic
of the optimal transmission strategy for EH senders. Note,
however, that sensing the remote process in each time step is
still required, which may result in unnecessary sampling of
the monitored process and misuse of the available energy.

On-demand sensing when the sender has a fixed amount
of available energy is investigated in [15]. Specifically, the
authors consider that the receiver estimates its own AoII and
based on this estimation, requests the sender to sense the
remote process and to transmit a status update. Even though it
is a first step into reducing the number of sensing decisions, the
authors aim at minimizing the estimated mean AoII and dis-
regard the additional information about the AoII distribution.
Moreover, they assume the sensing and transmission decisions
are coupled. Considering them separately can lead to further
reduction of the required energy.

In this paper, we propose a novel method termed Contin-
ual Belief Learning (CBL) to find an efficient sensing and
transmission strategy that minimizes the AoII. Our approach
considers sensing and transmission as separate decisions to
efficiently manage the available energy. As the sender does not
know the exact AoII without sensing the monitored process in
every time step, the sender maintains a belief distribution over
all possible AoII values and uses this distribution to learn the
best sensing and transmission decisions for minimizing the
AoII at the receiver. The contributions of this paper can be
summarized as follows:

• We introduce the concept of a belief distribution for the
AoII-minimization problem to overcome the necessity
to sense in every time step. Additionally, we propose a
computationally efficient update algorithm for the belief
distribution. The benefits of this belief distribution are
two-fold: With it, we can derive the expected current
AoII, and we can accurately describe the senders knowl-
edge about the current AoII at the receiver and use it to
optimize the sender’s sensing and transmission decisions.

• We employ our CBL algorithm to exploit the knowledge
about the AoII provided by the belief distribution de-
scribed above. In contrast to existing methods, e.g., Q-
learning, CBL is able to learn in every time step indepen-
dent of whether the sender currently knows the precise
AoII or not. Moreover, by using the AoII distribution,
our approach has a notable advantage over a Q-learning
variant that only uses the expected AoII.

• To validate the capability of our approach, we conduct

Fig. 1: System Model

extensive numerical simulations on data taken from the
SKAB test bed [16], which provides measurements of
several sensors in a water circulation system. We show
that our approach outperforms several reference strategies
including Q-learning and performs close to the theoretical
optimum derived via the value iteration algorithm.

The rest of this paper is organized as follows. In Sec. II the
considered system model is described. In Sec. III we model
the AoII minimization problem as a Markov decision process.
The belief distribution update algorithm as well as our CBL
approach are introduced in Sec. IV. Its performance is then
analyzed in numerical simulations presented in Sec. V.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a SUS consisting of a
monitored process, a sender with a battery, and a receiver.
Time is divided in steps of equal duration indexed by t ∈ N.

The underlying monitored process is modeled as a Markov
process with N distinct states. The current state is denoted by
Xt ∈ {X1, X2, . . . , XN} in time step t. The state transition
probability PX(Xi, Xj) = P(Xt+1 = Xj | Xt = Xi)
represents the probability of transitioning from state Xi to
state Xj after time step t.

In their buffers, the sender and the receiver both store their
respective most recent status update of the monitored process,
which is denoted by XS

t at the sender and by XR
t at the

receiver. XS
t and XR

t are also referred to as the state at the
sender and the state at the receiver, respectively.

In each time step t, the sender takes one of the actions from
A = {(µt, νt)|µt, νt ∈ {0, 1}}, where µt = 1 indicates that
the sender senses and µt = 0 indicates otherwise. Similarly,
νt indicates whether the sender decides to transmit.

In case the sender idles (νt = µt = 0), XS
t = XS

t−1
and XR

t = XR
t−1. If the sender senses, XS

t = Xt. If the
sender transmits, the status update is sent over a data channel
which is modeled as a packet erasure channel with channel
quality pc ∈ (0, 1]. After a successful transmission, XR

t = XS
t .

We assume that status updates are received within the same
time step. If the transmission was unsuccessful, XR

t = XR
t−1.

After each transmission attempt, the receiver sends either an
acknowledgment (ACK) to indicate successful transmission or
a negative acknowledgment (NACK) to indicate transmission
failure through a feedback channel. We assume the feedback
channel to be both error-free and instantaneous.



To measure the freshness of information at the receiver, we
use the AoII at the receiver, which is the time elapsed since the
receiver had a correct estimate of the monitored state, denoted
as ∆t and given by

∆t =

{
0, if Xt = XR

t ,
min(∆t−1 + 1,∆max), otherwise.

(1)

In our model, we consider ∆max as the maximum allowable
value of ∆t before considering the status as outdated. If the
status update at the receiver is outdated, the AoII at the receiver
is always ∆max. In order to save energy, the sender may decide
not to sense in every time step and thus may not always know
the exact current state of the monitored process. Consequently,
the sender does not know the AoII in every time step. However,
the sender knows the probability for each possible AoII-value
given its knowledge about XS

t and XR
t . This knowledge is

called the belief distribution at the sender.
Both, sensing and transmission consume energy from the

sender’s battery of finite capacity Bmax. The battery is
recharged using energy harvesting. The amount of harvested
energy is discrete and denoted as Et ∈ E such that E =
{0, 1, . . . , Emax}. The energy harvesting process is time-
correlated, i.e., the amount of harvested energy in time step
t depends on the amount of harvested energy in the previous
time step t− 1. The corresponding probabilities are given by
PE(E|E′) = P(Et = E |Et−1 = E′). The harvested energy
in time step t is initially stored in the sender’s battery, and
can be used for sensing and transmitting in time step t or in
later time steps. The amounts of energy required for sensing
(Es ∈ N) and for transmitting (Etx ∈ N) are assumed to be
constant over time. Additionally, we assume that the amount
of energy used when idling is negligible.

The battery level Bt+1 in time step t + 1 depends on the
battery level Bt in time step t, the amount of harvested energy
Et, the battery capacity Bmax, and the action At taken by the
sender:

Bt+1 = min
(
Bt + Et − µt · Es − νt · Etx, Bmax

)
. (2)

The sender is limited to select only actions for which sufficient
energy is available in the battery, such that

Bt ≥ µt · Es + νt · Etx. (3)

III. PROBLEM FORMULATION

We formulate the problem as a Markov Decision Process
(MDP) M = (S,A,P, c). The set S of states contains states
S = (E,B,X,XS, XR,∆), where E ∈ E represents the
harvested energy, B ∈ {0, 1, . . . , Bmax} denotes the battery
level, X,XS, XR ∈ {X1, X2, . . . , XN} the state of the
monitored process, and the status updates currently stored in
the sender’s and the receiver’s buffer, respectively. ∆ denotes
the AoII at the receiver. The set of actions A is defined as
A = {0, 1} × {0, 1}, where the first component µ of the
action determines whether the sender senses the monitored
process and the second component ν of the action determines

whether the sender transmits the currently stored status update
to the receiver. The transition probability P(S,A, S′) =
P(St+1 = S′|St = S,At = A) is implicitly defined based
on the energy harvesting process, the channel quality, and
the transition probabilities of the monitored process. Note
that P is unavailable to the sender. The cost function c is
defined as c(S,A, S′) = ∆′, where ∆′ is the AoII at the
receiver in S′. The state of M in time step t is denoted by
St = (Et, Bt, Xt, X

S
t , X

R
t ,∆t).

Based on this, the optimization problem is to find the
optimal strategy π∗ : S → A, such that

π∗ = argmin
π

lim
T→∞

1

T
E

[
T−1∑
t=0

c(St, At, St+1)

]
. (4)

IV. PROPOSED SOLUTION

In this section, we describe our proposed solution to the
problem formulated in Sec. III. First, we explain how we
derive a belief distribution for the AoII at the sender. Second,
we derive an algorithm to update this belief distribution in
every time step. Third, we present CBL, which we use to
minimize the AoII by exploiting the knowledge from the belief
distribution. Please note that we assume that the sender is
able to estimate the transition probabilities of the monitored
process.

A. Belief Distribution

The sender does not sense the monitored process in every
time step and, consequently, does not have full knowledge
about the AoII at the receiver. The knowledge Kt at the sender
in time step t only contains the information about the current
state XS

t at the sender, the current state XR
t at the receiver,

the current action At, and the knowledge Kt′ of previous time
steps t′ < t. However, the sender is able to estimate the current
AoII at the receiver by using a belief distribution. This belief
distribution consists of two components:

• A distribution DX
t : X → [0, 1] over the states of

the monitored process, indicating for every state Xi the
probability to be in this state Xi in the current time step,
and

• A tensor D∆
t : X × X × {0, . . . ,∆} → [0, 1] consisting

of a probability distribution D∆
t (X,XR) over all possible

AoII-values for every pair of states X,XR of the moni-
tored process and at the receiver, respectively.

Given the knowledge Kt of the sender in time step t, the
definitions of DX

t and D∆
t are given by:

DX
t (Xi) := P(Xt = Xi|Kt), and (5)

D∆
t (Xi, Xj ,∆) := P(∆t = ∆|Xt = Xi, XR

t = Xj ,Kt).



Proposition IV.1. Given the belief distribution (DX
t , D∆

t ) in
a time step t, the sender is able to derive the expected AoII
as follows:

E(∆t|Kt) =
∑
X∈X

DX
t (X)

∆max∑
∆=0

∆ ·D∆
t (X,XR

t ,∆). (6)

Proof. The equation is a direct consequence of the definition
of the belief distribution and the fact that the sender knows
about the state XR

t at the receiver in every time step:

E(∆t|Kt) =

∆max∑
∆=0

∆ · P(∆t = ∆|Kt) (7)

=

∆max∑
∆=0

∆ · P(∆t = ∆|Kt, X
R
t = Xj) (8)

=
∑
X∈X

P(Xt = Xi|Kt)

∆max∑
∆=0

∆ ·D∆
t (X,XR

t ,∆) (9)

=
∑
X∈X

DX
t (X)

∆max∑
∆=0

∆ ·D∆
t (X,XR

t ,∆) (10)

Note that the distribution of all possible values of ∆t given
the knowledge Kt at the sender can be derived as

P(∆t = ∆|Kt) =
∑
X∈X

DX
t (X) ·D∆

t (X,XR
t ,∆). (11)

Additionally, note that the sender can also derive further
metrics from the belief distribution, such as the median AoII,
the worst-case AoII, or risk-related metrics like the conditional
value at risk.

In the following section, we present an algorithm to update
this belief distribution in every time step.

B. Belief Distribution Update

The pseudo code for the belief distribution update is given
in Alg. 1. It requires the transition probability matrix PX of
the observed process, the belief distribution DX

t−1, D
∆
t−1 of the

previous time step t − 1 and the information µt whether the
sender decided to sense in the current time step t.

Initially, at t = 0, ∆0 = 0, hence D∆
0 (Xi, Xj ,∆) = 1∆=0

for (Xi, Xj ,∆) ∈ X × X × {0, . . . ,∆max}.
In lines 1-6, DX

t−1 is updated depending on whether the
sender decides to sense, in which case the sender is certain
about the current state of the monitored process, Dt collapses
and becomes a unit vector (lines 2-3). In case the sender
does not decide to sense, the probability for each state is
updated using the transition probability matrix PX (line 5).
In the remaining lines 7-25, the tensor D∆

t−1 containing the
possible AoII-distributions is updated. For each state Xi ∈ X ,
the matrix D∆

t−1(X
i) is only updated if DX

t (Xi) > 0 (lines
7-8). The distribution D∆

t (Xi, Xi) is always known to be
[1, 0 . . . , 0] and is not updated (line 10). In lines 11-21, the
distribution D∆

t (Xi, Xj) is first set to [0, . . . , 0] and then

Algorithm 1: Belief Distribution Update
Input : Transition Matrix PX , previous belief distributions DX

t−1,
D∆

t−1, decision µt

Output : Updated belief distributions DX
t , D∆

t
if µt = 1 then

DX
t ← [0, . . . , 0]

DX
t [Xt−1]← 1

else
DX

t ← DX
t−1 · PX

foreach Xi ∈ X do
if DX

t (Xi) > 0 then
foreach Xj ∈ X do

if Xi ̸= Xj then
D∆

t (Xi, Xj ,∆)← [0, . . . , 0]

foreach Xk ∈ X do
r ← shift(D∆

t−1(X
k, Xj), 1)

if νt = 1 then

D∆
t (Xi, Xj) +=

DX
t−1(Xk)

DX
t (Xi)

· r
else

D∆
t (Xi, Xj) +=
DX

t−1(Xk)

DX
t (Xi)

· PX(Xk, Xi) · r

return DX
t , D∆

t

incrementally updated by adding the respective share for each
possible previous state Xt−1 = Xk (line 12). This share is
calculated by first shifting the old distribution D∆

t (Xk, Xj) by
one to the right to obtain r (line 13). The last entry of r is given
by the sum of the last two entries of D∆

t (Xk, Xj). The first
entry of r is 0. Depending on whether the sender decided to
sense, r is then multiplied by a factor. If the sender senses in t,
r is multiplied by the probability DX

t−1(X
k) that the observed

process was in state Xk in the previous time step divided by
the probability DX

t (Xi) that the monitored process is currently
in state Xi. If the sender does not sense in t, r is additionally
multiplied by the transition probability PX(Xk, Xi). The
result is then added to the distribution D∆

t (Xi, Xj) (lines 14
- 17). Finally, the updated belief distribution is returned.

This proposed update algorithm maintains a constant space
complexity by avoiding the need to track the full history of
possible state sequences since the last sensed update from the
monitored process. Instead, it aggregates all potential state
sequences that could lead to each possible current state of
the monitored process at every step.

C. Continual Belief Learning

Algorithm 2: Continual Belief Learning
Input : Learning rate α, discount factor γ, exploration rate εt, max steps

Tmax

Output : Learned Q-values Q
Initialize belief distributions DX

0 , D∆
0

Initialize Q-table Q
for t← 0 to Tmax − 1 do

Choose action At ∼ εt-greedy on Q(St)
Receive new information Kt+1 about St+1 using At

Update belief distributions DX
t+1, D∆

t+1 // See Alg. 1

Compute estimated state distribution DS
t+1 for St+1

Update Q-values Q according to Eq. 13



Using the belief distribution and Prop. IV.1, it is possible
to apply the standard tabular Q-learning algorithm to solve
the problem. However, standard Q-learning is not necessarily
able to learn efficiently using only an estimate of the AoII.
Instead, we employ CBL, which we developed specifically for
cases in which the agent is given a probability distribution
over the states of the underlying MDP. For an earlier version
of this algorithm please refer to [17]. In the new version used
in this work, our algorithm is capable of learning in every time
step, independent of whether the current AoII is known to the
sender or not.

In Alg. 2, we provide the pseudo code for CBL. It requires
a learning rate α, a discount factor γ, εt as the probability for
exploration in time step t, and the number Tmax of learning
time steps. The belief distribution is initialized as described
in Sec. IV-B (line 1). Additionally, a Q-table Q is initialized
with zeros (line 2). In lines 3-10, the algorithm iterates over the
learning time steps t = 0 to t = Tmax − 1. During each time
step t, the action At is chosen using an εt-greedy policy on
Q(St) (line 4). This means that with probability εt, a random
action is chosen and with a probability 1 − εt, the action is
chosen according to the following equation:

At = argmax
A∈A

∑
S∈S

DS
t (S) 1[argmaxA∈A Q(S,A)=a], (12)

Next, the state of the environment is updated from St to St+1

and the sender obtains its new knowledge Kt+1 (line 5). It
can then update its belief distribution using Alg. 1 (line 6)
and computes the new estimated state distribution DS

t+1 based
on the belief distribution (line 7). Finally, the sender updates
its Q-values according to the following equation:

Q(Ŝ, At)← (1−DS
t (Ŝ)α)Q(St, At) (13)

+DS
t (Ŝ)α

∑
S′∈S

DS
t+1(S

′)(−c(Ŝ, At, S
′) + γV (S′)).

V. NUMERICAL EVALUATION

A. Simulation Setup

We validate our approach using N = 100 identical repeti-
tions of an experiment with Tmax = 10 000 in five different
status update systems referred to as scenario A to E. In
scenario A, we train and test the strategies using a synthetically
created observed process. In scenarios B to E, we train and test
the strategies using measurement data from the SKAB test bed
[16]. The data set provides data points from sensors installed
on a water circulation system, measuring different physical
quantities in every second. From these data points, we derive
10-state Markov chains for each scenario. The respective
sensors we use for validation are an accelerometer (scenario
B), a current sensor on the electric motor (C), a thermometer
on the engine body (D), and a voltmeter on the motor (E).
While scenario C to E are similar to the synthetic data,
scenario B contains sudden fluctuations in the measurement
data, making the process more difficult to predict.

In each run, we use Tlearn = 10 000 learning time steps
and T = 10 000 testing time steps. We further set pc = 0.9,

∆max = 10, α = 0.05, εt = 0.9999t, Es = Etx = 1,
assuming sensing and transmitting have the same energy
consumption, Bmax = 10, E = {0, 1, 2}, PE(0, 0) = 0.7,
PE(0, E

′) = PE(E
′, 0) = 0.3 for E′ ∈ {1, 2}, and

PE(E,E′) = 0.35 for E,E′ ∈ {1, 2}.
We compare our approach to five reference strategies: (i)

A random strategy choosing each of the four possible actions
with the same probability, (ii) a greedy strategy, which always
senses and transmits as soon as it has enough energy, (iii)
a threshold based strategy, which senses and transmits as
soon as the estimated AoII exceeds an optimal threshold (see
[13]), (iv) Q-learning based on the estimated AoII, and (v) a
value iteration based strategy, which serves as an upper bound.
Note that value iteration eventually finds the optimal strategy,
but needs the exact transition probabilities not only of the
monitored process, but also of the learned MDP including the
energy harvesting process and the channel quality, which are
not available at the sender. Additionally, value iteration needs
to know the exact value of the AoII in every time step, which
is also not available at the sender.

B. Results

In Fig. 2, we display the learning behaviour of CBL and
compare it to that of Q-learning in the first 1 000 learning
time steps. We first average over all N runs and then plot a
running mean over time. CBL is able to exploit the additional
knowledge about the AoII-distribution to learn faster and to
converge to a lower average AoII. The improvement in average
estimated AoII as derived in Prop. IV.1 during the learning
phase ranges from 9.7% for scenario B to 28.8% for scenario
D. For scenario A, C, and E, the respective improvements are
28.3%, 15.2%, and 19.8%. Standard deviations are visualized
as small shaded areas of the corresponding width in each
plot. CBL significantly reduces standard deviations in all five
scenarios. For scenario A, the average standard deviation
for CBL is 39.3% lower than the standard deviation for Q-
learning. For scenario B to E, the improvements in standard
deviations are 48.1%, 2.4%, 38.0%, and 17.4%.

In Fig. 3, we show the average AoII of our approach
compared to the five reference strategies. Standard deviations
are visualized by error bars. CBL outperforms the random,
greedy, threshold and Q-learning strategies and performs close
to the optimal value iteration strategy, which benefits from
unrealistic additional knowledge about the AoII and about the
system. Note that the random strategy chooses between all four
possible actions, while the threshold and greedy strategies only
use the actions (0, 0) and (1, 1). Therefore, the performance of
the random strategy surpasses the performance of the greedy
and the threshold strategy in two scenarios. Furthermore,
the optimal AoII threshold for transmission derived as in
[13] is 0 in all five cases, reducing it to a greedy strategy,
which explains that the performance of both strategies only
differs because of different realizations of the random variables
related to the channel and the energy harvesting process.
In the synthetic scenario A, CBL achieves an average AoII
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Fig. 3: Comparison of the mean AoII over 10 000 testing time
steps for the reference strategies.
of 0.6850, improving the random, greedy, threshold, and
Q-learning strategy by 56.0%, 55.7%, 55.9%, and 34.4%,
respectively. The AoII is only 6.1% higher than the optimal
AoII obtained by the value iteration strategy. For scenario
B, improvements range from 17.6% compared to Q-learning
to 43.5%, when comparing to the threshold-based strategy.
The sudden fluctuations in scenario B make it particularly
challenging to find a reasonable strategy, which can be seen in
the comparably good performance of the random strategy and
the comparably large gap between CBL and the optimal value.
For scenario C, CBL achieves again 51.9%, 46.6%, 46.5%,
and 34.8% lower AoII than the random, greedy, threshold,
and Q-learning strategy. The difference to the optimal value is
only 4.0%. The improvements in scenario D and E are again
similar: In the same order, they are 59.0%, 61.5%, 61.2%, and
38.7% for scenario D and 51.3%, 45.2%, 44.9%, and 32.8%
for scenario E, while the AoII for the value iterations strategy
is only 10.6% and 4.6% lower.

VI. CONCLUSION

In this study, we examined a system comprising a sender and
receiver, where the sender schedules sensing and transmission
to minimize the AoII under constrained energy. As sensing at
every time step incurs a cost, we introduced a belief distribu-
tion for AoII, enabling the sender to make informed decisions
while conserving energy. Employing Continual Belief Learn-
ing, our approach efficiently reduces the AoII by leveraging
probabilistic knowledge. Evaluations with real-world water

circulation data confirmed the superior performance of our
approach over reference schemes, highlighting its potential for
energy-efficient 6G networks. Future work may explore further
use cases of CBL in diverse environments, such as agriculture,
large-scale industrial systems, or smart city sensor networks,
each with distinct channel conditions. In remote areas, for ex-
ample, satellite-based communication could introduce unique
challenges that impact CBL’s performance and require specific
adaptations. REFERENCES
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