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Abstract—In this paper, we consider multiple multi-functional

unmanned aerial vehicles (UAVs) with sensing, communication,
and computation capabilities to simultaneously perform sensing
and provide computing services to ground devices (GDs). The
UAVs process both, the sensed data and the tasks offloaded by
the GDs, onboard. To enable a scalable decentralized design, we
formulate the task offloading problem as a matching game. In
each time slot, each GD proposes to a UAV for task offloading,
aiming to maximize its utility, defined as the time saved through
offloading compared to local computing. Each UAV accepts to
serve a subset of proposing GDs while handling its own sensing
task as well. To balance resource allocation between offloaded
and sensing tasks, each UAV aims to maximize its utility defined
as a weighted sum of the total time saved for GDs minus the extra
time incurred in processing its own sensing data when sharing
partial computing resources with GDs compared to utilizing
the entire computing resources for its sensing task. However,
in practice, GDs may lack prior information about their channel
conditions, the UAVs’ communication and computing resources,
and the task offloading strategies of other GDs, therefore, solving
the task offloading matching game is challenging. To tackle
this, we propose a novel gradient-based Multi-Armed-Bandit
(GMAB) algorithm for task offloading, enabling GDs to learn and
coordinate their offloading strategies in a decentralized manner.
Simulation results show that the proposed GMAB algorithm
outperforms several baseline task offloading schemes in terms
of improving both, GD-side and UAV-side utility, by up to 34.1%
and 37.2%, respectively.

I. INTRODUCTION

Multi-functional unmanned aerial vehicles (UAVs) with
joint sensing, communication and computation (JSCC) capa-
bilities present a promising solution for on-demand, resource-
efficient deployment and provisioning of sixth-generation (6G)
wireless networks, applicable in both standard and emergency
scenarios [1]. A fundamental research challenge, however, lies
in efficiently scheduling interdependent sensing, communica-
tion, and computation tasks across these UAVs while managing
inherently limited resources.

Several studies have explored centralized optimization for
multi-functional UAVs, deploying them either as airborne
edge servers (ESs) to provide computing services to ground
devices [2], or as aerial access points performing JSCC [3],
[4]. In [2], to minimize energy costs and latency incurred in
offloading tasks from ground devices to the UAVs, transmit
power, UAV selection, trajectory design, and onboard central
processing unit (CPU) frequency allocation were jointly op-
timized. [3] optimized sensing scheduling, power allocation,
and trajectories for UAVs performing integrated sensing and
communication while offloading sensed data to a ground ES,
aiming to reduce energy consumption and data collection time.
However, both [2] and [3] assumed perfect knowledge of
the global system characteristics such as wireless channel
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conditions, ES computation capabilities, and other devices’
offloading decisions. These assumptions are often impractical
in real-world applications. In contrast, [4] employed a deep
reinforcement learning (RL) algorithm to jointly optimize
a UAV’s beamforming, computing resource allocation, and
offloading ratio for maximization of computation throughput,
where, unlike [3], the UAV could process part of the sensed
data onboard. However, both [3] and [4] considered a single
UAV, which is often limited in size, weight, and power.
Deploying multiple (multi-functional) UAVs can mitigate these
constraints, but the approaches [3], [4] become computation-
ally intensive as the number of UAVs increases.

Decentralized optimization and learning provide a promis-
ing solution for scalable task scheduling across multiple
multi-functional UAVs without requiring global information.
Decentralized online learning solutions, such as those in [5]–
[7], further eliminate the need for a priori knowledge of system
characteristics by continuously learning it from observations.
In [5], a multi-user multi-armed bandit (MAB) approach was
introduced to maximize the number of accepted tasks by ESs
under strict delay constraints, without prior knowledge of
server processing speed and channel conditions. The authors
of [6] applied a multiagent RL approach to optimize users’
offloading decisions for minimizing the users’ energy con-
sumption and delay of task offloading. While [5], [6] focus on
user-centric objectives such as delay and energy consumption,
they do not consider ES-side objectives. In [7], a learning-
guided matching approach [8] was employed to optimize
decentralized decisions for task offloading and acceptance,
while balancing users’ goal of minimizing energy consumption
and delay with ESs’ aim for revenue maximization.

In this paper, we consider a scenario in which multi-
functional UAVs are deployed to provide computing services
for ground devices (GDs) while the UAVs simultaneously
perform sensing tasks. Each UAV’s onboard CPU manages
the processing for both its own sensing tasks and the tasks
offloaded from the GDs. Each GD selects a UAV for potential
task offloading to minimize its task completion time, or equiv-
alently, to maximize GD’s utility, defined as the time saved
through offloading compared to local computing. To balance
resource allocation between these tasks, each UAV accepts a
subset of proposing GDs to maximize its utility, defined as
a weighted sum of the total time saved for GDs minus the
extra time required for processing its own sensing data when
sharing partial computing resources with GDs compared to
utilizing the entire computing resources for its sensing task.
To enable a scalable decentralized solution, we formulate the
task offloading problem as a matching game. To solve this
problem without a priori information at the GDs, we integrate
learning techniques into the matching game, and propose a
novel gradient-based multi-armed bandit algorithm (GMAB)
for the GDs’ task proposal. Our contributions are as follows:



Fig. 1. Illustration of simultaneous onboard sensing and processing of sensed
data and offloaded tasks using multiple multi-functional UAVs.

• We employ multiple multi-functional UAVs with sensing,
communication and computation capabilities to perform
sensing while providing computing services to GDs, and
process both, sensed data and tasks offloaded by GDs,
using the UAVs’ onboard CPU. To enable a decentralized
solution, we formulate the task offloading problem as a
matching game between GDs and UAVs.

• To tackle the challenge of solving the problem of GDs
lacking prior information about system characteristics,
(e.g., channel condition, the UAV’s communication and
computing resources, and the task offloading strategies
of other GDs), we propose a novel gradient-based multi-
armed bandit algorithm, GMAB, which enables GDs
to learn and coordinate their offloading strategies in a
decentralized manner.

• Simulation results show that, compared with several
baseline schemes, the proposed task offloading algorithm,
GMAB, can simultaneously improve GD-side and UAV-
side utilities by up to 34.1% and 37.2%, respectively.

II. SYSTEM MODEL

This section presents the system model for decentralized
task offloading from GDs to multi-functional UAVs. We fur-
ther analyze the delays experienced in processing the GDs’
tasks and the UAVs’ sensed data.
A. Decentralized Task Offloading to Multi-Functional UAVs

As illustrated in Figure 1, we consider M multi-functional
UAVs, denoted by UAVm, m ∈ M ≜ {1, · · · ,M}, deployed
by a sensing control center to perform sensing tasks, such as
target detection and traffic estimation, in a given area while
hovering over designated positions. Each UAV is equipped
with a sensor and a CPU. The UAVs process the sensed
data onboard before sending the results to the sensing control
center. Additionally, the UAVs serve as ESs to compute tasks
offloaded from K GDs scattered across the area of interest,
which are denoted by GDk, k ∈ K ≜ {1, · · · ,K}. The system
operates in discrete time slots, indexed by t = 1, · · · , T .
During each time slot, each GD may generate a computation
task that can either be processed locally by itself or offloaded
to a UAV over the wireless channel.

At the beginning, the UAVs inform the GDs about their
availability. The considered decentralized task offloading in-
volves two phases, task proposal and task acceptance. In the
task proposal phase, a GD initiates an offloading attempt
by sending a small offloading proposal, including task infor-
mation such as the GDs’ task size, computing complexity,
estimated local computing time, transmit power, along with
pilots to its selected UAV. These pilots enable the selected
UAVs to estimate the GDs’ channels (however, we assume
no feedback of channel estimates to the GDs). Each UAV

may receive offloading proposals from multiple GDs. In the
task acceptance phase, each UAV selects a subset of these
proposals to accept and notifies the corresponding GDs of the
acceptance status. The criteria and procedure for selecting the
UAVs and the GDs in the two phases will be elaborated in the
remainder of this section and in Sec. III. If a UAV accepts a
GD’s offloading proposal, the GD transmits the task data to
the UAV; otherwise, the task will be computed locally by the
GD.

Within each time slot, each UAV shares its computing
resources between processing its own sensed data as well as
the offloaded tasks from GDs, where the processed results are
sent to the sensing control center and the corresponding GDs,
respectively. Due to the significantly smaller size of the results
compared to the original task data, the transmission time for
the results is assumed to be negligible. Similarly, the delays
in sending offloading proposals (alongside pilots) and UAVs’
decisions can also be neglected.

We use binary variable xk,m,t ∈ {0, 1} to indicate whether
GDk offloads its task to UAVm in time slot t. xk,m,t = 1
indicates that UAVm accepts the task offloading proposal of
GDk in time slot t. If GDk either does not send a task
offloading proposal to UAVm or send one that is rejected, then,
xk,m,t = 0. The task offloading matrix Xt ≜ {xk,m,t, k ∈
K,m ∈ {0,M}} contains the information where each task is
computed in time slot t.

B. GD’s Utility

The task of GDk in time slot t is characterized by its data
size Dk,t (bits) and computing complexity ck,t (CPU cycles
per bit) [9]. The primary incentive for GDs to offload tasks is
the potential reduction in task completion time. If the task is
processed locally by GDk, the required computing time is

τ localk,t =
Dk,t · ck,t

fGD
k

, (1)

where fGD
k denotes the CPU frequency of GDk. Alternatively,

if the task is offloaded from GDk to UAVm, the required
communication and computation times are given by

τ comm
k,m,t =

Dk,t

rk,m,t
, and τ cmp

k,m,t =
Dk,t · ck,t
fk,m,t

, (2)

respectively, where rk,m,t is the achievable data rate over the
wireless channel from GDk to UAVm in time slot t, and fk,m,t

denotes the CPU frequency allocated to GDk by UAVm in
time slot t. Thus, by offloading the task to UAVm, the time
savings for GDk can be expressed as

τ savedk,m,t = τ localk,t − τ comm
k,m,t − τ cmp

k,m,t. (3)

If τ savedk,m,t > 0, offloading is beneficial; otherwise, when
τ savedk,m,t ≤ 0, GDk opts for local computing.

The utility function of GDk is defined as the time saved by
offloading its task to a UAV, given by

UGD
k,m,t =

{
τ localk,t − τ comm

k,m,t − τ cmp
k,m,t, m ∈ M,

0, m = 0,
(4)

where m = 0 denotes local computing. With a slight abuse of
notation, we also represent local computing as offloading to a
virtual UAV denoted by UAV0.

The channel gain for transmitting task data from GDk to
UAVm in time slot t, denoted by Hk,m,t, is modeled as



Hk,m,t =
√
A0 · (dk,m)

−a/2 · hk,m,t, (5)

where dk,m, A0(dk,m)
−α, and hk,m,t ∈ C denote the distance,

path loss, and channel fading between GDk and UAVm,
respectively. We consider a block fading channel model, where
hk,m,t keeps constant within one time slot, but may change
between time slots.

Each UAV is assigned a dedicated, non-overlapping fre-
quency band with bandwidth Bmax

m , which is divided into
orthogonal frequency sub-channels as in frequency-division
multiple access (FDMA). These sub-channels are allocated
to GDs that the UAV serves. Let bk,m,t be the bandwidth
allocated to GDk by UAVm in time slot t, and pk,t be the
transmit power of GDk in time slot t. The achievable data rate
rk,m,t is given as

rk,m,t = bk,m,t · log2

(
1 +

|Hk,m,t|2 · pk,t
N0 · bk,m,t

)
, (6)

where N0 is the power spectral density of the noise at UAVs.
C. UAV’s Utility

Allocating a portion of computing resources to GDs reduces
the resources available for the UAV’s own sensing tasks. Let
Ds

m,t (bits) and csm,t (CPU cycles per bit) represent the size
and computing complexity of the sensed data by UAVm,
respectively. Due to the task offloading of GDs, the extra time
required for computing its sensing task is

τ extram,t = Ds
m,tc

s
m,t

(
1

f s
m,t

− 1

Fmax
m

)
, (7)

where f s
m,t is the CPU frequency allocated to the sensing task

in time slot t. Given that f s
m,t ≤ Fmax

m , we have τ extram,t ≥ 0.
The UAVs aim to provide computing services to GDs

while simultaneously processing their own sensing tasks using
the onboard CPU. Let Am,t denote the set of GDs whose
tasks are accepted and processed by UAVm in time slot t.
Specifically, GDk is in the set Am,t if xk,m,t = 1. To balance
the computational resource allocation for GDs’ tasks and the
UAV’s sensing task, we design the UAV’s utility as a weighted
sum of the total time savings for the GDs in set Am,t minus
the extra time incurred in processing sensing data, which is
given by

UUAV
m,t (Am,t) = wm

∑
k∈K

xk,m,t · τ savedk,m,t−(1− wm)τ extram,t , (8)

where 0 ≤ wm ≤ 1 and 1 − wm are the weights assigned to
the two missions at UAVm.

III. MATCHING GAME BASED PROBLEM FORMULATION

A. Matching Game Problem and Stable Matching Solution
To optimize the task offloading matrix Xt in a decentralized

manner, we formulate a matching game played between GDs
and UAVs, which make rational decisions on task offloading
proposals and acceptance based on their own preferences,
respectively. The resulting task offloading game, denoted as
Gt, is formally described by a tuple Gt = (K,M,⪰GD

k ,⪰UAV
m )

containing the set K of GDs, the set M of UAVs, the GDs’
preference ⪰GD

k and the UAVs’ preference ⪰UAV
m . The pref-

erence of GDk is determined by its utility function, expressed
as

m ⪰GD
k n ⇐⇒ UGD

k,m,t ≥ UGD
k,n,t, m, n ∈ {0,M}. (9)

In (9), GDk prefers UAVm over UAVn if selecting UAVm to
compute its task yields a higher utility than selecting UAVn.

Additionally, the preference of UAVm is given by

A ⪰UAV
m A′ ⇐⇒ UUAV

m,t (A) ≥ UUAV
m,t (A′), m ∈ M, (10)

Based on (10), UAVm prefers the set of GDs in A over
those in A′ if UAVm achieves higher utility by accepting the
task proposals from GDs in A than in A′, with the resource
allocation bm,t ≜ {bk,m,t ≥ 0,∀k} and fm,t ≜ {fS

m,t ≥
0, fk,m,t ≥ 0,∀k} satisfying the following constraints:

(i)
∑

k∈K bk,m,t ≤ Bmax
m , ensuring that allocated band-

width does not exceed the total available bandwidth of
UAVm.

(ii) fS
m,t+

∑
k∈K fk,m,t ≤ Fmax

m , ensuring the total allocated
CPU frequency for UAVm’s sensing task and GDs’
tasks accepted by UAVm, remains within the UAVm’s
available CPU capacity.

The solution to the defined task offloading game Gt is
characterized by a stable matching, i.e., a task offloading
matrix Xt, in which no blocking pair exists. It is important
to note that the stable matching may not be unique; indeed,
multiple solutions may exist. A pair (UAVm,A) is a blocking
pair if UAVm and GDs in set A can further enhance their
individual utility by changing the current matching. Formally,
the pair (UAVm,A) is a blocking pair if the following three
conditions are fulfilled:

(i) A\Am ̸= ∅, i.e., not all GDs in A are currently matched
to UAVm.

(ii) A ⪰UAV
m Am, i.e., UAVm prefers to have GDs in set A

matched over its current matched GDs in set Am.
(iii) UAVm ⪰GD

k UAVn, i.e., all GDs in A prefer to be
matched to UAVm over their current matched UAV.

B. Lack of Prior Information at GDs
For practical applicability, this paper assumes that GDs

do not have prior information about the communication and
computation resources available at each UAV, nor the channel
conditions of their communication links with each UAV.
Furthermore, GDs cannot predict the resources ultimately
allocated to them, as these allocations depend on the offloading
strategies of other GDs and the UAVs’ preferences for different
GDs. Given that GDs do not have such prior information, ob-
taining the stable solution requires further integrating learning
into the game theoretical solution [8]. GDs have to estimate
the time savings by interacting with UAVs, as defined by

ŪGD
k,m,t = E{UGD

k,m,t}, m ∈ M. (11)

In Sec. III, we introduce a novel learning-based framework
that enables each GD to independently learn its task offloading
strategy by observing the rewards, specifically, the time saved
by offloading its task to UAVm, m ∈ {0,M}. To this end,
we consider the task offloading problem as a multi-user multi-
armed bandit problem, where each of the K GDs has M +
1 arms, i.e., it can either offload its task to one of the M
UAVs or choose local computing. However, due to variations
in the task size, computing complexity of GDs’ and UAVs’
tasks, and fluctuations in channel capacity, the estimation of
time savings is initially unreliable during the learning process.
To address this challenge, we propose a GMAB-based task
proposal algorithm.



Algorithm 1: GMAB (GD’s strategy)
1 Initialize Jk,m,t=1 = 1, ∀k ∈ K, ∀m ∈ {0,M};
2 for t = 1, · · · , T do
3 X = ∅;
4 for k = 1, · · · ,K do
5 Select m based on πk,m,t in (12);
6 if m ̸= 0 then
7 Send task offloading proposal to UAVm and

{Dk,t, ck,t, τ
local
k,t , pk,t};

8 else
9 Process the task locally, and set Rk,t = 0;

10 X = X ∪ k;
11 end
12 end
13 for k = K\X do
14 Wait for the decision xk,m,t of the selected UAVm in

Algorithm 2;
15 if xk,m,t = 1 then
16 Transmit task of Dk,t bits to UAVm, observe Rk,t;
17 else
18 Process the task locally, and set Rk,t = 0;
19 end
20 end
21 Update Jk,m,t and πk,m,t, ∀k ∈ K, ∀m ∈ {0,M};
22 end

IV. PROPOSED LEARNING-BASED FRAMEWORK

In this section, we introduce the learning-based framework,
which consists of the GMAB based task proposal algorithm
for GDs and task acceptance algorithm for UAVs, to obtain
a stable solution for the matching game with no a priori
information at GDs. This framework allows GDs to learn and
coordinate their task offloading strategies in a decentralized
manner. Specifically, we first present the GMAB algorithm
for finding the optimal task proposal strategy for each GD.
Then, we give a simple task acceptance strategy for the UAV.
Our approach is motivated by [10], which demonstrated the
plausibility of the learning-guided matching solution through
repeated and dynamic interactions among players, guided by
simple decision-making rules [8].

A. GMAB Algorithm for Task Proposal

We apply a soft-max distribution (i.e., Gibbs or Boltzmann
distribution) to determine the probability of choosing UAVm

at GDk in time slot t [11]

πk,m,t =
eJk,m,t∑M

m=0 e
Jk,m,t

, m ∈ {0,M}, (12)

where Jk,m,t denotes the numerical preference of GDk for
proposing to UAVm, and Jk,m,t is determined based on
observed rewards in previous time slots. Specifically, after
UAVm processes the task of GDk and the reward Rk,t =
τ savedk,m,t (i.e., saved time) is observed, the numerical preferences
of GDk for m ∈ {0,M} in time slot t are updated by [11]

Jk,m,t+1 = Jk,m,t + η(Rk,t − R̄k,t)(1− πk,m,t), (13)
Jk,n,t+1 = Jk,n,t − η(Rk,t − R̄k,t)πk,n,t,∀n ̸= m,

where η ≥ 0 is a step-size parameter, R̄k,t is the average
reward up to time t−1 of GDk, R̄k,t = (

∑t−1
τ=1 Rk,τ )/(t− 1).

By adjusting πk,m,t, the GMAB also balances between ex-
ploring new arms and exploiting optimal arms. With more
rewards observed, GDs gain greater certainty about their
optimal choice (i.e., a higher probability of selecting the best
UAVm), gradually shifting the focus towards exploitation.

Algorithm 2: Task acceptance (UAVm’s strategy)
1 Initialize Am,t = {}, Wm,t = {} (Wm,t is a dictionary consisting

of index of proposing GDk (key) and its marginal contribution
UUAV
m,t ({k}) (value));

2 for each k ∈ Km,t do
3 Wm,t ←−Wm,t + {(k, UUAV

m,t (k))};
4 end
5 for each w in Wm,t do
6 Wmax ←− maximum value of Wm,t

7 kmax ←− key of Wmax;
8 Calculate UUAV

m,t (Am,t ∪ {k}) and UUAV
m,t (Am,t);

9 if UUAV
m,t (Am,t ∪ {k}) ≥ UUAV

m,t (Am,t) then
10 Am,t ←− Am,t ∪ {k};
11 end
12 W ←−W − {(k,max)};
13 end
14 Publish the decisions {xk,m,t} to the proposing GDs in set Km,t;

Algorithm 1 describes the task proposal algorithm, GMAB.
First, the numerical preferences are initialized. In time slot t,
each GD selects m based on the probability determined
in (12) (cf. line 5). If GDk selects m ̸= 0, it sends a
task offloading proposal to the selected UAVm including the
relevant information {Dk,t, ck,t, τ

local
k,t , pk,t} (cf. lines 6-7). If

m = 0, GDk processes its task locally and set Rk,t = 0
(cf. line 9). For GDs that choose m ̸= 0, they wait for the
decision from the selected UAV, as determined by Algorithm
2 (cf. line 14). If GDk’s task offloading proposal is accepted,
it transmits its task to the selected UAV and observes reward
Rk,t (cf. line 16). Otherwise, it processes the task locally and
set Rk,t = 0 (cf. line 18). Based on the observed rewards,
the numerical preferences Jk,m,t and the softmax distribution
πk,m,t of all GDs for {0,M} are updated according to (13)
and (12), respectively (cf. line 21).
B. Task Acceptance and Resource Allocation

Upon receiving proposals from proposing GDs, denoted as
Km,t, each UAV selects a subset Am,t ⊆ Km,t of proposing
GDs, and optimizes communication and computation resource
allocation to each accepted GD subject to the limited resources
for maximizing its utility function. The utility maximization
problem for UAVm in time slot t can be formulated as

P1 : max
Am,t,bm,t,fm,t

UUAV
m,t (Am,t) (14)

subject to: C1 : Am,t ⊆ Km,t,

C2 : xk,m,t ∈ {0, 1},∀k,
C3 :

∑
k∈K

bk,m,t ≤ Bmax
m ,

C4 : fS
m,t +

∑
k∈K

fk,m,t ≤ Fmax
m ,

where constraint C1 guarantees that UAVm can only accept
the task offloading proposals from the proposing GDs in set
Km,t. C3 and C4 guarantee that the allocated bandwidth
and computational resources to GDs do not exceed the total
available bandwidth and computational capacity of the UAVs,
respectively. Problem P1 is a mixed-integer nonlinear pro-
gramming (MINLP) problem, which is difficult to be optimally
solved within polynomial time.

To address this challenge, we apply a low-complexity algo-
rithm based on greedy approximation [12] to solve problem
P1. Algorithm 2 describes the task acceptance strategy of
each UAV based on the greedy approximation algorithm. First,
the marginal contribution of each proposing GD in Km,t,



TABLE I
PARAMETER SETTINGS

Parameter Value
Available bandwidth at each UAV Bmax

m = 1 MHz
Available CPU frequency at each UAV Fmax

m = 5 GHz
GD’s local CPU frequency fGD

k,t = 0.5 GHz
GD’s transmit power pk,t = 0.2 W
Path loss exponent α = 2

Noise power N0 = 1× 10−13 W
Path loss at the reference distance A0 = −20 dB

Step size η = 2× 10−2

denoted as UUAV
m,t ({k}), is calculated, considering that only

GDk is accepted by UAVm (cf. lines 2-4). Next, UAVm

ranks the proposing GDs based on their respective marginal
contributions in a descending order. Following this ranking
list (cf. lines 6-7), UAVm accepts a GD if its utility increases
upon accepting this GD, otherwise, the GD’s task offloading
proposal will be rejected (cf. lines 8-12). To further reduce the
computing complexity, we assume that the GDs accepted by
UAVm and its sensing task share UAVm’s resources equally
[7]

bk,m,t =
Bmax

m

|Am,t|
, fS

k,m,t = fk,m,t =
Fmax
m

|Am,t|+ 1
. (15)

Then, the UAVm sends its decisions {xk,m,t} and the allo-
cated bandwidth to the corresponding GDk (cf. line 14).

V. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed task proposing scheme GMAB through simulations.
We consider a scenario with K = 100 GDs and M = 10
UAVs randomly distributed over a 300m2 area, with the UAVs
positioned at a fixed height of 120 m. The size and computing
complexity of the tasks of GDs and UAVs both are modeled as
truncated Gaussian random variables. For GDs, the task size
has a mean of 1 Mbit and a variance of 0.1 Mbit2, bounded
within [0.2, 2] Mbit, while computing complexity has a mean
of 4000 cycles per bit and a variance of 400 cycles per bit2,
bounded within [800, 8000] cycles per bit. For UAVs, the task
size has a mean of 10 Mbit and a variance of 1 Mbit2, bounded
within [2, 20] Mbit. The computing complexity has a mean of
4000 cycles per bit and a variance of 400 cycles per bit2, and
is bounded by [800, 8000] cycles per bit. The channel fading
hk,m,t follows a Rician fading model with κ = 1 [13]. Unless
stated otherwise, we set the simulation parameters according
to Table I.

For comparison, we also evaluate four benchmark algo-
rithms for GDs’ task proposing strategies, while the UAVs
accept GDs’ task offloading proposals using Algorithm 2:

• Matching with complete information (MCI): In each time
slot t, each GD has complete information required to
calculate the potential time savings achieved by offload-
ing its task to each UAV based on (3). Each GD then
generates a list of UAVs, ranked in a descending order of
its preferences. The GD sends offloading proposals to the
most preferred UAVs and stops if its proposal is accepted
by one UAV or the list is exhausted. If the proposal is
rejected, the GD proceeds with the next UAV in the list.

• Random Task Proposal (RTP): Each GD proposes to a
random UAV in each time slot.

• Greedy Task Proposal (GTP): Each GD always proposes
to the closest UAV. It is worth to note that the location

information should not be available. This benchmark is
intended to serve as a stronger reference for comparison.

• Task offloading with decaying epsilon greedy (DEP)
algorithm: The GDs employ the decaying epsilon-greedy
algorithm for task proposal, similar to [7]. In DEP, epsilon
is initially set to a high value to prioritize exploration.
Over time, epsilon gradually decreases, allowing the
algorithm to shift its focus toward exploitation, leveraging
the information gathered during the exploration phase.

Figure 2(a) shows the average saved time per GD of the
considered schemes versus iterations over time. We observe
that the average saved time of MCI, RTP and GTP is al-
ways constant over time, as they do not incorporate learning
mechanisms. MCI outperforms all the other schemes due to
the availability of complete information. GTP outperforms
RTP because GDs propose to the closest UAV, which can
reduce communication time when accepted. Through learn-
ing, GMAB and DEG gradually improve their performance,
till ultimately outperforming RTP and GTP. This is because
they allow GDs to strategically select UAVs based on the
rewards observed from previous offloading decisions, enabling
them to adapt and optimize their future offloading proposals.
Specifically, GMAB achieves 6.3%, 10.7%, 34.1% higher
average time savings per GD compared to DEG, GTP and
RTP, respectively.

For insights into the performance gains of GMAB, Figure
2(b) illustrates the UAVs’ acceptance ratio of task offloading
proposals. We observe that the acceptance ratio of GMAB
is higher than that of DEG. This is because, in GMAB,
the numerical preference in (13) is updated even when a
proposal is rejected by a UAV, since the average reward R̄k,t

changes. This allows GDs to prioritize UAVs based not only
on average reward of each UAV but also on the likelihood of
task proposal acceptance. In contrast, with DEP, GDs primarily
propose to the UAV with the highest average reward, without
considering the likelihood of proposal rejection by that UAV.
If GDs consistently propose to UAVs with high rewards but
low acceptance probabilities, this may lead to low long-term
rewards, for which DEP is thus outperformed by GMAB.

Figure 2(c) shows the sum of utility of all UAVs. With
GMAB, the sum of utility of all UAVs increases with learning
and closely approach that of MCI. This is because the UAVs
accept task proposals based on their utility, which in turn
optimize the task proposals from GDs in response to the
UAVs’ task acceptance decisions. As a result, the sum of
utility of all UAVs increases over time. With GMAB, the sum
of utility of all UAVs increases by 4.8%, 11.5%, and 37.2%
compared to DEG, GTP, and RTP, respectively. This result
highlights that the proposed learning-guided matching game
framework facilitates mutual benefits for both parties.

Figure 3(a) further evaluates the average saved time per
GD for different weights wm assigned to GDs’ tasks, where
each UAV has the same wm. As wm increases, UAVs in-
creasingly prioritize providing computing services to GDs
in (8). Consequently, the average saved time per GD also
increases. Regardless of the value of wm, GMAB consistently
outperforms all schemes except MCI which assumes perfect
system knowledge. Notably, DEG performs poorly for small
values of wm, as its performance is close to GTP. However,
when wm is larger than 0.9, DEG surpasses GTP. For small
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Fig. 2. (a) The average saved time per GD (b) The acceptance ratio (c) The sum of utilities of all UAVs.
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Fig. 3. (a) Average saved time per GD. (b) Average extra time for computing
sensing task per UAV.

values of wm, DEG performs poorly because it does not allow
GDs to adjust their task offloading strategies when a task is
rejected. With small wm, UAVs prioritize their own sensing
tasks, leading to a reduced number of accepted offloading
tasks, which ultimately reduces the performance of DEG.

Finally, Figure 3(b) shows the average extra time for
computing the sensing task per UAV with respect to wm.
With a larger wm, UAVs prioritize the GDs’ offloaded tasks.
Therefore, less computation resources are allocated to the
UAVs’ sensing tasks. Consequently, the extra time needed
for computing the UAVs’ sensing tasks increases with wm.
Notably, the performance of GMAB is very close to the
performance of DEG and GTP for different values of wm. This
shows that the proposed GMAB algorithm can significantly
reduce the task completion time of GDs, while having a
comparable cost in the extra computation time of their own
sensing tasks compared to other schemes.

VI. CONCLUSION

In this paper, we investigated decentralized task offloading
from GDs to multi-functional UAVs, eliminating the need for
GDs to have prior information of system characteristics, such

as channel conditions, UAV’s communication and computing
resources, and the task offloading strategies of other GDs. To
this end, we first formulated the task offloading problem as a
matching game. In this framework, each GD’s utility is defined
by the time saved through offloading, while each UAV’s utility
is defined by a weighted sum of the total time saved for GDs
minus the extra time spent on processing its own sensing
data to balance resource allocation between GD tasks and
UAV sensing tasks. To further address the challenge of no
prior information at the GDs, we proposed a learning-based
framework, consisting of a task proposal algorithm, GMAB,
and a task acceptance algorithm, to obtain a stable matching
for the formulated matching game. Simulation results showed
that the proposed task offloading algorithm, GMAB, signifi-
cantly outperforms several baseline schemes in simultaneously
improving GDs’ and UAVs’ utilities by up to 34.1% and
37.2%, respectively.
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