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Abstract— Device-to-Device (D2D) relaying is considered a
promising technology to increase the data rates in next gener-
ation networks. We consider the D2D relay selection problem
in which cell-edge mobile devices (CMDs), having bad channel
conditions to the access point (AP), may forward their data to
the AP via relaying mobile devices (RMDs) with better channel
conditions. For this purpose, the RMDs sacrifice a fraction of
their communication bandwidth and energy to relay the data of
the CMDs. A key challenge in D2D relaying is to increase the
willingness of RMDs to act as relays to CMDs. To overcome this
challenge, considering the technical perspective of bandwidth
allocation and transmit power optimization is not enough. In
addition, the social perspective is important with the users’
different individual motivations to participate, such as strong
social relationships between CMDs and RMDs and an altruistic
motivation to help CMDs. In this paper, we address the D2D
relay selection problem with a socio-technical approach, i.e.,
we consider the RMDs as individual decision makers whose
participation decision is influenced by its preferences regarding
technical and social motivations. Furthermore, we formulate
a relay selection problem to maximize the expected capacity
under the a priori unknown decisions of the RMDs regarding
their participation. To solve this problem, we propose a novel
decentralized, preference-aware D2D relay selection algorithm,
termed DPA-D2D, which is based on game theory. We show that
the CMDs’ capacity gain is more than 40% higher compared to
state-of-the-art D2D relay selection algorithms.

I. INTRODUCTION

The ever-increasing demand for high-speed mobile connec-
tivity poses a major challenge for existing mobile networks. To
overcome this challenge, device-to-device (D2D) relaying is a
promising way to increase the capacity of the mobile network
by leveraging the direct communication links between mo-
bile devices (MDs) [1]. Additionally, novel machine learning
paradigms, such as federated learning, can benefit from D2D
relaying [2]. D2D relaying enables cell-edge mobile devices
(CMDs) that suffer from a bad channel quality to relay
data to the access point (AP) via relaying mobile devices
(RMDs). Using D2D relaying, the coverage, capacity and
energy efficiency of mobile networks can be improved [1]. In
D2D relaying, a crucial challenge lies in the relay selection
problem, i.e., determining which MDs serve as RMDs for
specific CMDs. The main challenges that D2D relaying poses
from the socio-technical perspective are:
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1) Achieving a high participation rate: The success of D2D
communication depends on the MDs’ decisions to participate.
For this, the users’ different individual social, technical and
altruistic motivations play an important role. There are factors
that increase the motivation to participate such as close
social relationships and factors that reduce the motivation to
participate such as additional energy consumption or lower
data rates. To study the decision making, these motivations
have to be analyzed and combined into a realistic decision-
making model [3].
2) Efficient allocation of bandwidth and power: The con-
strained communication bandwidth provided by the AP re-
quires to find an efficient resource allocation such that the
available bandwidth is shared efficiently between the different
MDs [4]. Furthermore, the limited batteries of the MDs
require the optimization of the transmit power.

To overcome these challenges, existing works [4]–[9] have
proposed social-aware D2D communication to leverage social
relationships between the MDs to jointly consider the physical
and the social layer. The social layer contains all the relevant
information about the users’ relationships towards each other.
In [4], a centralized D2D relaying algorithm is proposed
that considers the social relationships between the users to
motivate the users to participate. The authors of [5] analyze
users’ check-in behaviors, interests, and social relationships
to choose an appropriate relay node. In [6], a two-hop social
relationship model is presented. In [7] and [8], socially stable
matching models are introduced to balance physical layer
security and throughput of the wireless network. However,
these works [4]–[8], primarily focus on social relationships
between users and neglect other factors of the RMDs’ decision
making process, such as energy consumption, data rates or the
human decision making process. In [9], a dynamic socially-
motivated D2D relay selection mechanism is presented, utiliz-
ing a generalized satisfaction index to design a unified quality
of experience (QoE) criterion, thereby facilitating the trade-
off between QoE and resource efficiency. In [10] and [11], the
authors conducted user studies to understand the preferences
and decision making behavior of potential RMDs. Although
the authors of [11] analyzed the decision making of RMDs by
conducting user studies, no relay selection algorithm has been
proposed. Clearly, the related literature [4]–[11] is lacking
a complete socio-technical approach, where the social layer
and the physical layer of the network, the users’ different
motivations and the decision-making are jointly considered.



D2D relay selection approaches that rely on incentives, such
as payments in tokens or currency, face a major challenge:
potential RMDs cannot determine if the future monetary gains
will justify the immediate costs of relaying [12].

In this paper, our contributions are as follows.

• Unlike related works [4]–[11], we provide a socio-
technical formulation of the D2D relay selection prob-
lem, integrating a realistic model of human decision-
making, social relationships, and the bandwidth and
power allocation.

• Our approach considers the users’ individual preferences
and we analyze their altruistic motivation to participate,
rather than relying on incentives.

• We propose a novel decentralized, preference-aware D2D
relay selection algorithm, termed DPA-D2D, to maximize
the expected capacity of the D2D network. The proposed
algorithm adapts the D2D relay selection, including the
allocation of bandwidth and power, to the users’ individ-
ual preferences, their social relationships and altruistic
motivation, thereby increasing the participation probabil-
ity.

II. SYSTEM MODEL

A. Overview

We consider a scenario with focus on the uplink transmis-
sion to a single AP of a mobile network, as seen in Fig. 1. We
consider M MDs to be located within the considered area. The
MDs can be categorized into two types. (i) CMDs, which are
experiencing a bad channel quality due to the far distance to
the AP or obstructions. (ii) Potential RMDs, which are MDs
with a good channel quality and therefore can act as relay
for the CMDs. We consider two hop D2D relaying, i.e., each
CMD can only use one RMD as relay.

To initiate the D2D relaying, each CMD can send a relaying
request to a potential RMD in its vicinity. This relaying
request contains information about how much data needs to be
forwarded. Based on this request, the RMD can calculate its
cost for relaying in terms of the additional transmit power and
the transmit time required for the relaying. Additionally, the
RMD observes the social relationship to the CMD sending
the request. The RMD then decides based on its individual
preferences whether to accept the relaying request and forward
the data to the AP or not. The RMD’s individual preferences
balance the social relationship with the CMD against the costs
of forwarding, including transmit power and time.

B. Physical layer

The AP has an available bandwidth BAP, which is shared
equally between the M MDs. We assume an orthogonal
multiple access scheme, such as orthogonal frequency division
multiple access (OFDMA) to mitigate interference among the
MDs. Therefore, the available channel bandwidth of MD m
is given by Bm = BAP/M . The transmit power of MD m
is denoted by pMD

m and the channel gain between MD m and
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Fig. 1. Overview of the physical and social layer in a D2D uplink scenario.

the AP is denoted by gMD
m,AP. The signal to interference plus

noise ratio (SINR) of MD m is therefore given by

SINRAP
m =

pMD
m gMD

m,AP

Bm(σ0 + I0)
, (1)

where σ0 denotes the noise power spectral density and I0 the
interference power spectral density. The channel capacity of
this respective MD is then given by

CMD,AP
m = Bm log2

(
1 + SINRAP

m

)
. (2)

The amount of data an MD can send to the AP during an
upload time slot ts is therefore given by sm = CMD,AP

m ts.
The energy required to transmit the data of size sm is given
by Em = pMD

m ts.
We assume that out of the total M MDs, N are CMDs and

K = M − N are potential RMDs. In order to improve its
data rate, the CMD n can request a potential RMD to relay
its data. This relaying request from CMD n to the potential
RMD k is denoted by the indicator variable xn,k = 1. If this
potential RMD accepts the relaying request, a D2D connection
is established between CMD n and RMD k. The participation
decision of RMD k to forward data from CMD n is denoted
by the indicator variable yn,k = 1. To successfully establish a
D2D connection, both, the CMD and the RMD have to make a
decision: The CMD has to send a relaying request (xn,k = 1),
and the RMD has to decide to participate (yn,k = 1).

When establishing the D2D connection, the CMD dis-
connects from the AP, therefore the bandwidth which was
previously allocated, can be used by other MDs which are
still connected to the AP. Given the number L of successfully
established D2D pairs, each MD m gets a bandwidth

B∗
m =

BAP

M − L
(3)

which corresponds to an equal sharing of the AP’s bandwidth
among the remaining M −L MDs that are still connected to
the AP. The capacity

CRMD
k,AP = B∗

k log2
(
1 + SINRAP

k

)
(4)

describes the channel between the RMD k and the AP. The
capacity of the channel between the CMD n and the RMD k



after establishing the D2D connection is

CCMD
n,k = B∗

k log2 (1 + SINRn,k) , (5)

where SINRn,k is the SINR between CMD n and RMD k.
When relaying, the CMD and the RMD use the same

spectrum, employing time division multiple access (TDMA),
as proposed in [12] and [13]. The time slot ts is divided into
three time slots trec, trelay and ttrans for receiving, relaying
and transmitting data. In the first time slot trec, the RMD
receives the data of the size srecn = CCMD

n,k trec from the CMD.
In trelay, the RMD forwards this data of the CMD’s to the AP,
i.e., srelayk = srecn = CRMD

k,AP trelay. Finally, in ttrans the RMD
transmits its own data of the size stransk = CRMD

k,AP ttrans.
The CMD’s achievable capacity gain GCMD

n,k when relaying
via RMD k is the capacity difference

GCMD
n,k = CCMD

n,k trec − CCMD
n,AP ts = srecn − sn (6)

between the relaying case and the non-relaying case. Com-
pared to the case of no relaying, the RMD has only the time
ttrans < ts to send its own data, which decreases the amount
stransk ≤ sk of data transmitted in a time slot. We define the
loss in data rate of the RMD as

γdata
k =

stransk

sk
, (7)

the quotient between the data size before and after establishing
the D2D connection.

To compensate for the additional data of the CMD, the
RMD increases its transmit power by a factor γpower

k , i.e.,

pRMD
k = (1 + γpower

k )pMD
m (8)

which results in an additional battery consumption. Therefore,
the attributes of the physical layer of the D2D connection are
given by γpower

k and γdata
k .

C. Social layer and altruistic motivation

In the social layer, we consider the social relationships
between the users of the MDs. Users of MDs are often socially
motivated, i.e., they prefer to act as a relay for users to
whom they have strong social relationships to. To model the
relationships, we construct a social graph, as seen in Fig. 1,
for our social network. The vertices of the graph are the
users, which have social connections between each other, e.g.,
family, friend or stranger. The edges of the graph are the
relationships between the users, and the weights rn,k ∈ R
denote the strength of the relationship between CMD n and
its potential RMD k. We define the matrix R = (rn,k) to
represent all the relationships between the N CMDs and the
K potential RMDs.

In addition to the social motivation to help CMDs with a
high rn,k, each potential RMD has an RMD-specific altruistic
motivation ck ∈ R to help CMDs [11]. This altruistic
motivation reflects the general willingness to act as RMD even
for unknown CMDs. High values of ck indicate that a user is
in general more willing to act as RMD.

D. Preferences and human decision-making model

The users are considered to be individual decision makers,
with their own utility functions [11]. The D2D relaying
between a CMD and an RMD is defined by the properties
of the technical layer, namely the RMD’s increase in transmit
power given by γpower

k and the RMD’s lower data rate given
by γdata

k . Additionally, the social and altruistic motivations of
the potential RMDs impact the decision of whether the RMD
chooses to participate.

The individual preferences of RMD k determine the weight-
ing of these properties and they are represented by the func-
tions θpower

k (γpower
k ),θdata

k (γdata
k ),θsocial

k (rn,k) and the altru-
istic motivation ck. The preference function θpower

k (γpower
k )

reflects how sensitive the potential RMD is towards additional
energy consumption. The preference function θdata

k (γdata
k )

reflects how sensitive the potential RMD is towards a reduced
data rate. The preference function θsocial

k (rn,k) reflects how
motivated the potential RMD is to help CMDs with a close
relationship.

The utility of the RMD k relaying the data from CMD
n is denoted by URMD

n,k and depends on the aforementioned
preference functions. The utility function

URMD
n,k = θpower

k (γpower
k ) + θdata

k (γdata
k ) + θsocial

k (rn,k) + ck,
(9)

is the sum of the terms for the additional transmit power
θpower
k (γpower

k ), reduced data rate θdata
k (γdata

k ), social mo-
tivation θsocial

k (rn,k) and altruistic motivation ck. Whether or
not an RMD is willing to participate in the D2D-connection
depends on its utility. If URMD

n,k takes a positive value the
RMD will be more likely to act as a relay, however, when it
is negative the RMD will probably reject the relaying request.

To reflect a realistic decision making process, we model
the decision making process using a bounded rationality
model [3]. In this model, it is assumed that some users will
reject a relaying request (yn,k = 0) although their utility is
positive. This is due to the fact that some users make mistakes
or do not have full information about the technology [3].
The probability, that RMD k accepts the relaying request
(yn,k = 1) from CMD n is given by [3]

P (URMD
n,k ) =

eλU
RMD
n,k

1 + eλU
RMD
n,k

(10)

where λ is the precision parameter and reflects the rationality
of the user [3]. If λ gets close to zero, the RMD acts irrational,
i.e., the probability of accepting a relaying request approaches
P (URMD

n,k ) = 1/2, independent of the utility. If λ increases,
the rationality of the MD increases, i.e., the utility has a
stronger influence on the probability of participation.

E. Problem Formulation: Preference-Aware Relay Selection

In contrast to [8], we model the relay selection problem
incorporating the physical layer, the social layer and a realistic
model for the decision making process. As the participation
decisions of the RMDs are stochastic and their decisions
are not known in advance, we argue that the aim is to



Algorithm 1 Decentralized preference-aware D2D relay se-
lection algorithm (DPA-D2D)
1: CMDs send broadcast message to potential RMDs in proximity
2: Potential RMDs broadcast their channel quality and their preferences
3: CMDs solve (13) and rank RMDs in the list PLCMD

n
4: while CMDs unmatched with non-empty PLCMD

n do
5: for CMD n ∈ N do
6: Propose to RMD k∗ on top of their preference list PLCMD

n .
7: Remove k∗ from it’s preference list PLCMD

n .
8: end for
9: for RMD k ∈ K do

10: Receive requests from proposing CMDs and construct own pref-
erence list PLRMD

k
11: Select best CMD n∗ from proposing CMDs
12: Transmit acceptance to n∗, reject all others.
13: end for
14: end while
15: Accepted CMDs send relaying requests xk,n.
16: RMDs decide whether to participate (yk,n = 1) or not (yk,n = 0).

maximize the expected capacity gain of the whole network.
This is challenging as the relay selection has to consider the
achievable capacity gain as well as the RMDs’ preferences
and decision making.

For CMD n and the potential RMD k, the expected capacity
gain E(GCMD

n,k ) = P (URMD
n,k )GCMD

n,k . (11)

is the product of the participation probability P (URMD
n,k )

of (10) and the achievable capacity gain of GCMD
n,k of (6). In

order to maximize the network’s capacity, we want to select
pairs of CMDs and RMDs such that the sum of the expected
capacity gain is maximized. This problem can be expressed
as an optimization problem

argmax
xn,k,γ

power
k

,γdata
k

N∑
n=0

K∑
k=0

xn,kE(GCMD
n,k ) (12)

s.t.
N∑

n=0

xn,k ≤ 1, ∀k (12a)

K∑
k=0

xn,k ≤ 1, ∀n (12b)

where xn,k is the indicator variable whether CMD n sends a
relaying request to RMD k. Constraint (12a) ensures that each
RMD only acts as relay for one CMD and constraint (12b)
ensures that each CMD only forwards its data via one RMD.

III. PREFERENCE-AWARE RELAY SELECTION
ALGORITHMS

In this section, we discuss two different preference-aware
relay selection algorithms. Firstly, we propose a novel de-
centralized, preference-aware relay selection algorithm based
on game theory. Secondly, we briefly describe a centralized
solution to the optimization problem (12) using a central
optimizer to use as a benchmark for our proposed algorithm.

A. Decentralized preference-aware relay selection algorithm

We propose to use a game-theoretic approach based on
the concept of stable matching [14] to locally maximize the
expected capacity gain and to achieve stability, i.e., neither
a CMD nor a RMD has an incentive to change the relay
selection. For existing works on stable matching and D2D

relay selection, e.g., as in [8], the Gale Shapley (also called
deferred-acceptance) algorithm [15] is used. However, this
algorithm is not directly applicable as the CMDs’ expected
capacity gains E(GCMD

n,k ) depends on the RMDs’ preferences
as seen in (11). Additionally, in contrast to [8], the resource
allocation has to be optimized, namely the transmit power
increase γpower

k of the RMD and the data rate factor γdata
k of

the RMD.

Algorithm 1 shows our proposed decentralized preference-
aware relay selection (DPA-D2D) algorithm. Initially, all
CMDs broadcast messages to identify potential RMDs in their
vicinity (line 1). Potential RMDs receiving these messages
then respond by sending their channel quality gRMD

k,AP as well
as their preferences to trusted CMDs in the broadcasting
range dBC

k (line 2). An RMD trusts a CMD if the social
relationship exceeds a threshold, i.e., rn,k > rthreshold. Since
all RMDs always have the chance to reject the relaying request
from a CMD, they have no benefit from misrepresenting their
preferences, thus, we assume fully truthfulness. The CMDs
receive the information and determine the maximum expected
capacity gain E(GCMD

n,k )∗ for each potential RMD by solving

E(GCMD
n,k )∗ = argmax

γpower
k ,γdata

k

P (URMD
n,k )GCMD

n,k , (13)

where P (URMD
n,k ) is given by (10) and GCMD

n,k is given by (6).
Based on E(GCMD

n,k )∗, the CMD can derive a ranking PLCMD
n

of potential RMDs (line 3). The CMD proposes to the RMD
k∗ which is on top of PLCMD

n with a request containing the
optimal values of γpower

k and γdata
k from (13). Afterwards, it

removes k∗ from its list PLCMD
n (lines 6 and 7). The RMDs

receive the proposals from the CMDs and construct also a
ranking PLRMD

k of CMDs based on (9). The RMD selects the
CMD with the highest utility from PLRMD

k and transmit an
acceptance message to it, all other proposing CMDs receive
a rejection message (lines 10,11 and 12). The rejected CMDs
propose to the next best RMD from PLCMD

n and the procedure
repeats until all CMDs either selected a potential RMD or have
an empty ranking PLCMD

n . After this procedure is finished, the
accepted CMDs send their relaying requests to their RMDs
(line 15). The RMDs decide then, based on γdata

k , γpower
k and

rn,k, if they want to participate or not (line 16).

In the proposed DPA-D2D algorithms, we leverage the
local computing capabilities of the CMDs to optimize the
resource allocation (13). Additionally, the RMDs report their
preferences only to trusted CMDs to increase privacy. Further-
more, the algorithm converges to a stable matching, i.e., it is
not possible that a CMD can improve its expected capacity
E(GCMD

n,k ) by changing the RMD and simultaneously the
RMD can not improve its utility URMD

n,k by changing the
CMD. The proof is only outlined here, a more detailed and
formalized version can be found in [15]. The proof works
by contradiction, i.e., suppose there is one CMD n′ and one
RMD k′ that are currently not forming a D2D pair, but could
improve by leaving their current D2D pairs (n′, k) and (n, k′)
and form a D2D pair (n′, k′) together. In the following, the



CMD n′ and the RMD k′ are said to form a blocking pair.
Algorithm 1 continually removes the blocking pairs, as n′ has
to send a proposal to k′ before k if the expected capacity is
higher. Additionally, k′ will accept n′ before n, as the utility
is higher. This leads to the fact that the blocking pair will be
resolved and the D2D pair (n′, k′) will be formed. Therefore,
after Algorithm 1 is completed, no blocking pair can exist and
the resulting relay selection is a stable matching.

B. Centralized optimal relay selection

We briefly describe an approach to directly solve the
optimization problem (12) using a central optimizer (CO). In
the first step, all MDs transmit their channel quality, location
and preferences to the CO. The CO leverages this information
to evaluate the relationships between MDs, potentially based
on their contact history or social networks. Knowing the
social relationships and the user preferences, the CO can
solve the relay selection and resource allocation such that
the expected capacity gain is maximized. Then, the maximum
expected capacity E(GCMD

n,k )∗ is derived according to (13) for
all possible combinations of CMDs and RMDs. The algorithm
employs the so-called Hungarian Algorithm [13] for solving
the optimization problem (12). After finding the optimal D2D
pairs, the CO sends relaying request xn,k to the RMDs, asking
if they are willing to participate in a D2D relaying with γdata

k

and γpower
k , that the CO has selected. The RMD then makes

its decision yn,k ∈ {0, 1} whether to participate or not.
Note that the centralized optimal relay selection is only

a benchmark for our proposed DPA-D2D approach as it is
not applicable in realistic scenarios. This centralized optimal
relay selection is not suitable for large networks due to the
large communication overhead to the CO and due to the fact
that all CMDs and RMDs have to report their locations and
social relationships. Additionally, the computational overhead
is large, as the expected capacity gains have to be evaluated
for all possible combinations of CMDs and RMDs.

IV. NUMERICAL EVALUATION

A. Simulation Setup

For the simulations, up to 100 MDs are placed uniformly
distributed within an area of 500m × 500m around the AP.
The channel gain of a MD m with the distance dm to the
AP is given by gMD

m,AP = (dm/d0)
−α , where α = 4 is the

fading coefficient and d0 = 1m is the reference distance.
Similar to [13], we set the noise power spectral density σ0 =
−173 dBm/Hz and the mean interference from adjacent cells
I0 = −140 dBm/Hz. The precision parameter λ reflecting the
user’s rationality is set to 0.5. The bandwidth BAP = 20MHz
of the AP is shared equally between the MDs and 20% of the
MDs are CMDs, located at the cell edge, i.e., dn ≥ 200m
and have a None-line-of-sight (NLOS) connection to the AP
which introduces an additional attenuation of 20 dB.

To derive our social graph, we used the tracing data set
from [16]. In this data set, the social strength between nine
MDs based on Bluetooth contact duration is measured over
12 days. We extrapolated this social graph to M = 100

TABLE I
USER PREFERENCES FROM STUDIES CONDUCTED IN [11]

Type Value Preference function value

Altruism ck ∼ N (1.75, 4.90)

Social rn,k = 4 (Family) θsocial
k (4) ∼ N (3.48, 2.34)

rn,k = 3 (Friend) θsocial
k (3) ∼ N (1.07, 0.81)

rn,k = 2 (Acquaintance) θsocial
k (2) ∼ N (−1.60, 1.16)

rn,k = 1 (Stranger) θsocial
k (1) ∼ N (−2.95, 1.67)

Power γpower
k = 5% θpower

k (0.05) ∼ N (0.08, 0.55)
γpower
k = 10% θpower

k (0.1) ∼ N (0.18, 0.36)
γpower
k = 15% θpower

k (0.15) ∼ N (−0.26, 0.64)

Data γdata
k = 50% θdata

k (0.5) ∼ N (0.40, 0.58)

γdata
k = 25% θdata

k (0.25) ∼ N (−0.40, 0.58)

MDs, using the assumption that the distribution of relationship
strength rk,n remains the same. The user preferences are
presented in Table I, where N (x, y) refers to a normal
distribution with mean value x and variance y. We simulated
2000 Monte-Carlo iterations and averaged over the outcomes.

For the evaluation of our proposed DPA-D2D approach,
we compare our results with three benchmarks. Firstly, the
“RSMA” algorithm [8], which is a state-of-the-art decen-
tralized algorithm that considers the social layer as well as
the physical layer in the relay selection. It is based on a
stable matching of D2D pairs where the RMDs’ utilities
are weighted sums of the achievable capacity gain and the
strength of the social relationship between the users. Secondly,
the “Hungarian” relay selection, which uses the Hungarian
Algorithm as described in [4] and [17] to maximize the
sum of the achievable capacity (6). Thirdly, the “Centralized”
approach, which is described in Section III-B. Additionally,
we compare our algorithm to the case of “No Relaying”, when
there is no D2D communication and every MD is connected
to the AP.

B. Simulation Results

We analyze the sum of the CMDs’ capacities of the
proposed DPA-D2D algorithm and the baseline algorithms
in Fig. 2. The “Centralized” approach yields the highest
sum of the CMDs’ capacities of 14.8Mbit/s for M =
100, as it can achieve the optimum due to complete in-
formation at the CO. Our proposed decentralized privacy-
preserving approach is within 98% of the “Centralized”
approach. The “RSMA” (“Hungarian”) approach achieves
around 9.53Mbit/s (8.37Mbit/s), which is 65.4% (57.5%)
of the proposed DPA-D2D algorithm. This is due to the
fact that many RMDs reject the relaying requests, as their
preferences are not considered. Using “No relaying”, all
CMDs have a low capacity and therefore can only send with
a low data rate to the AP.

Fig. 3 shows the number of D2D pairs for the different
relay selection algorithms. It can be seen that the preference-
aware algorithms DPA-D2D and “Centralized” achieve a high
participation rate, as N = 19 CMDs are part of a D2D pair.
This means that K = 19 RMDs were willing to participate in
the D2D communication. The “RSMA” algorithm achieves in
average N = 11.6 as it does not include the preferences of the



Centralized Decentralized Hungarian RSMA No Relaying

10 20 30 40 50 60 70 80 90 100
Number of MDs

0
2
4
6
8

10
12
14

S
u

m
ca

p
ac

it
y

of
C

M
D

s
(M

B
/s

)

Fig. 2. Sum of CMDs’ capacities as
a function of the number M of MDs.

10 20 30 40 50 60 70 80 90 100
Number of MDs

0

5

10

15

20

N
u

m
b

er
of

D
2D

p
ai

rs

Fig. 3. Average number of D2D pairs
as a function of M .

10 20 30 40 50 60 70 80 90 100
Number of MDs

0

2

4

6

8

A
ve

ra
ge

U
ti

li
ty

of
R

M
D

Fig. 4. Average utility URMD
n,k of the

RMDs as a function of M .

20 30 40 50 60 70 80 90 100
Number of MDs

80

90

100

110

120

130

T
ot

al
C

ap
ac

it
y

(M
B

/s
)
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RMDs, although it considers the social relationships between
the users. For the “Hungarian” algorithm, only N = 10.1
CMDs find a RMD willing to act as relay. Therefore, both
algorithms have a lower participation rate of RMDs compared
to the DPA-D2D and “Centralized” algorithm. The “RSMA”
algorithm achieves a higher participation rate than the “Hun-
garian” approach, as it considers the social relationships.

The average RMD’s utility URMD
n,k from (9) can be seen

in Fig. 4. The preference-aware algorithms DPA-D2D and
“Centralized” achieve a higher utility of the RMDs as they
include the different preferences of the RMDs. Specifically,
the transmit power γpower

k and the data rate γdata
k is adapted to

the RMDs’ preferences θpower
k ,θdata

k , θsocial
k and the weights

rn,k. The “RSMA” and “Hungarian” approach are designed
to maximize the achievable capacity, i.e., the transmit power
increase γpower

k and the data rate reduction γdata
k of the RMD

might be higher than preferred by the RMD, thus leading to
a lower utility. As the “RSMA” approach considers the social
relationships of the users, it provides a higher utility for the
RMDs than the “Hungarian” approach.

Fig. 5 shows the system capacity, i.e., the sum of all MDs’
capacity, including the capacity of the CMDs and RMDs.
It can be seen that the “Centralized” and the DPA-D2D
algorithm achieve a 2.5Mbit/s higher system capacity than
the “RSMA” and “Hungarian” algorithm. The proposed DPA-
D2D algorithm can achieve a total improvement of 7% over
the “No relaying” case. Therefore, an overall system capacity
improvement is achieved, not only for the CMDs, although
the RMDs sacrifice some of their own capacity for the D2D
relaying. We also analyzed the impact of the broadcast range
dBC
k on the CMDs’ sum capacity, which showed that for

a broadcast range of dBC
k = 150m (100m) still 93.3%

(73%) of the sum capacity of the “Centralized” approach are
achieved.

V. CONCLUSION

In this paper, we have studied the D2D relay selection
problem from the socio-technical perspective. We have an-
alyzed the social layer, physical layer, user preferences and
the decision-making process of the RMDs. From this, we
have derived a stochastic participation model of the RMDs
based on their preferences regarding transmit power, data
rate, social motivation and altruistic motivation. Based on this
model, we formulated an optimization problem to maximize
the expected capacity gain by using D2D communication

considering the unknown participation decisions of the RMDs.
We proposed a novel game-theoretic algorithm based on stable
matching, termed DPA-D2D, to find a stable solution, which
ensures that neither an RMD nor a CMD can improve by
changing the relay selection. In a comparison with state-of-
the-art benchmark algorithms, we have shown that the sum
capacity of the CMDs can be increased by 52.9% due to an
increase of the participation rate of RMDs by 72.7%.
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