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Abstract—This paper explores energy-aware joint optimiza-
tion of beamforming and trajectory for integrated sensing and
communication (ISAC) using an energy-limited unmanned aerial
vehicle (UAV). Equipped with a uniform linear array of half-
wavelength dipole antennas, the UAV transmits information-
carrying signals to simultaneously serve downlink communication
users and sense ground targets during its mission. Our aim is to
maximize the accumulated sensing energy for the ground targets
without violating the energy budget, while ensuring quality-
of-service for the communication users by jointly optimizing
the UAV’s flight trajectory, ISAC beamforming, and mission
completion time. The problem we address is inherently nonconvex
and typically challenging to solve to optimality. Drawing inspira-
tion from approximate dynamic programming (DP) methods, we
propose a novel, computationally efficient solution by combining
the one-step lookahead rollout algorithm from approximate DP
with semidefinite programming techniques from convex opti-
mization. Simulation results demonstrate that, when compared
to two baseline schemes, our proposed approach significantly
expands the achievable performance region for both sensing and
communication.

I. INTRODUCTION

Integrated sensing and communication (ISAC) is an emerg-
ing technology to enable simultaneous sensing and com-
munication in the sixth-generation (6G) wireless networks.
By transmitting common signals over shared spectrum and
transmitter hardware for both sensing and communication
purposes [1], ISAC facilitates highly efficient utilization of
the available spectrum, hardware, and processing resources.
So far, a substantial body of existing literature has considered
the design and optimization of ISAC, such as transmit beam-
forming optimization [2], [3], primarily in two-dimensional
terrestrial wireless networks. It was until recently that extend-
ing the ISAC functionality to three-dimensional non-terrestrial
networks (NTNs) has gained paramount importance. The latter
is motivated by the increasing demand for e.g. providing
temporary or emergency communication and sensing service
for users outside the coverage of ground networks or in the
aftermath of ground disasters [4].

Motivated by this trend, in this paper, we consider ISAC
enabled by unmanned aerial vehicles (UAVs). UAVs have
inspired versatile onboard sensing and communication applica-
tions, to enhance or supplement terrestrial and/or space-based
services [5]. Meanwhile, compared with ground or satellite
networks, UAVs can be swiftly deployed on demand and
easily relocated at relatively lower costs for improved sensing
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accuracy and communication coverage [5]. Therefore, UAV-
aided ISAC is a promising solution for facilitating advanced
sensing and communication applications, including UAV-aided
simultaneous collection and transmission of fresh sensed data
[6], joint localization and communication [7], and tracking-
assisted secure communication [8], in 6G NTNs.

As UAVs typically have a limited battery, how to maxi-
mize the sensing and communication performances within the
UAV’s finite energy supply defines a key research problem
for UAV-aided ISAC. Yet, concrete problem formulations
following this aim are often nonconvex, which hinders an
efficient solution. In [9], the authors developed an iterative
method based on successive convex approximation (SCA) to
optimize UAV’s flight trajectory and transmit beamforming
for maximizing the communication data rate while achieving
required beam pattern gains on sensing targets. It was shown
in [9] that the proposed method can exploit UAV mobility
to simultaneously improve the sensing and communication
performances. The authors of [10] employed exhaustive search
to optimize the selection of beamforming vectors from a given
codebook for maximizing the communication data rate based
on sensed information about the propagation environment.
However, these works [9], [10] ignored the UAV’s energy
consumed for propulsion flight. In [11], the authors jointly op-
timized transmit beamforming, UAV trajectory planning, and
sensing schedule to minimize the overall energy consumption
of the UAV within a specified service duration, whereas sens-
ing activities were limited to predetermined fixed locations.
The authors solved the formulated nonconvex mixed-integer
nonlinear programming problem using successive convex ap-
proximation (SCA).

For problem tractability, the aforementioned studies [6]–
[11] have assumed ideal isotropic antennas or arrays with
isotropic antennas for UAV-aided ISAC scenarios. In this
paper, we aim to extend the investigation to UAV-aided ISAC
utilizing practical directional antennas. In particular, we equip
the UAV with a uniform linear array (ULA) of half-wavelength
dipole antennas for sending ISAC signals. By harnessing both
the gain pattern of directional antennas and the array beam-
forming, narrowly focused beams can be created to enhance
communication and sensing performance while minimizing
interference and clutters emitted and intercepted from side-
lobes.

Meanwhile, exploiting the UAV’s 3D mobility, we further
jointly optimize beamforming using the dipole array and
trajectory design for the UAV’s flight to maximize the sensing
performance while satisfying both the quality-of-service (QoS)



Fig. 1: System model of UAV-aided ISAC with limited on-
board battery.

requirements of communication users and a total energy bud-
get for the UAV. Due to the nonlinear gain pattern of dipoles,
the resulting optimization problem is more difficult to solve
than the ones in [6]–[11]. To tackle this challenge, we propose
a novel computationally efficient solution based on the one-
step lookahead rollout (OSLR) algorithm from approximate
dynamic programming (DP). Our contributions are:

• We investigate joint trajectory design and transmit beam-
forming optimization for UAV-aided ISAC employing
a dipole antenna array, by considering limited onboard
energy and limited yet unknown mission time for the
UAV. The aim is to maximize the accumulated sensing
performance over the whole mission while satisfying
communication, flight and energy requirements.

• The problem that has been defined is exceedingly non-
convex. Considering the achievements of approximate
dynamic programming (DP), we introduce an innova-
tive and efficient approach that combines the one-step
lookahead rollout (OSLR) technique from approximate
DP with semidefinite programming (SDP).

• Simulation results show that the proposed OSLR al-
gorithm can jointly exploit the UAV mobility and the
radiation pattern of dipole antennas for beamforming of
the ISAC signals. Consequently, the proposed scheme can
significantly improve both sensing and communication
performances, outperforming two baseline schemes.

In the remainder of this paper, we present the system
model in Section II. The joint optimization problem of tra-
jectory design and dipole array beamforming in UAV-aided
ISAC is formulated and solved via the proposed algorithm
in Sections III and IV, respectively. Section V provides the
simulation results and finally, Section VI concludes the paper.

Notations: Throughout this paper, matrices and vectors are
denoted by boldface capital and lower-case letters, respec-
tively. AT , AH , Rank(A), and Tr(A) denote the transpose,
Hermitian conjugate transpose, rank, and trace of matrix A,
respectively. Finally, | · | and ∥ · ∥ denote the absolute value of
a complex scalar and the Euclidean norm of a complex vector,

Fig. 2: Departure and azimuth angles of GU k relative to the
UAV.

respectively.
II. SYSTEM MODEL

In this section, we present the system model for UAV-aided
ISAC system using a dipole antenna array. We also introduce
the channel and signal models, and the energy consumption
model of the studied system.

A. UAV-aided ISAC

Fig. 1 illustrates the UAV-aided ISAC system considered
in this paper. In particular, a rotary-wing UAV is deployed to
simultaneously communicate with K ground users (GUs) and
sense M ground targets (GTs). The UAV performs mono-static
sensing with full duplex capability. The locations of the GUs
and the GTs are fixed and given by uc

k ∈ R2×1, k = 1, ...,K,
and us

m ∈ R2×1, m = 1, ...,M , respectively. Due to a limited
onboard battery, the UAV should complete the whole mission
within a finite energy budget Etot. Without loss of generality,
we assume that the UAV flies at a fixed altitude H during
its mission. To facilitate trajectory planning, we consider a
continuous-time system, and quantize the target area into a
uniform grid. The uniform grid consists of G grid nodes,
defined by set V = {v1, . . . ,vG} ∈ R2×1, which constitute
the candidate waypoints for UAV’s flight. Then, the UAV’s
flight path is composed of N line-segments defined by N +1
waypoints q[n] ∈ V , cf. Figure 1, where

||q[n+ 1]− q[n]|| ≤ ∆max, n = 0, . . . , N. (1)

We require ∆max ≪ H such that the distances between the
UAV and each GU/GT barely change when the UAV flies
between two waypoints. Hence, we assume that the UAV flies
at a constant speed V [n] on each line-segment n, .i.e. the
flight segment between waypoints q[n] and q[n−1]. The UAV
flight speed V [n] on line-segment n is defined as V [n] =
||q[n]− q[n− 1]||/τ [n] and τ [n] is the flight time over line-
segment n. Note that both G and N are specified a priori,
whereas τ [n] is an adjustable variable. The total length of
the line-segments, N∆max gives a upper bound on the total
flight distance. Hence this bound is tightened by selecting a



sufficiently large N value, but for computational savings an
extremely large N is avoided.

B. 3D Channel Model

The dual-functional UAV is equipped with a transmit ULA
consisting of S ≥ 1 half-wave dipole antennas, and each GU
employs a single receive antenna. We assume that a strong
line-of-sight (LoS) link exists between the elevated UAV and
each GU. The channel vector from the UAV to GU k on line-
segment n, denoted by hk[n] ∈ CS×1, is modeled as

hk[n] =

√
β√

∥dk[n]∥2 +H2
· ak[n], (2)

where β denotes the channel power gain at a unit distance and
dk[n] ≜ (uc

k − q[n]) ∈ R2×1 is the horizontal displacement
vector between the UAV and GU k on line-segment n.

In (2), ak[n] is the steering vector of the ULA at the UAV
on line-segment n. For convenience of modeling ak[n], we
assume that the ULA is vertically placed on the UAV as
in [9], [11]. A vertical ULA enables beamforming based on the
distances from the UAV to the GUs/GTs, and provides more
opportunities for transmission to exploit through the design of
the trajectory. Moreover, each dipole points toward a direction
specified by unit vector rd ∈ R2×1, cf. Fig. 2, where rd is
assumed to be fixed during the UAV’s flight. Consequently,
while the UAV flies over line-segment n, the angle of departure
θk[n], and azimuth angle φk[n] corresponding to GU k are
given as

θk[n] = arctan

(
∥dk[n]∥

H

)
, and (3)

φk[n] = arccos
(
dk[n]

T rd
)
, (4)

respectively. Finally, considering the radiation pattern of the
dipoles, the steering vector toward GU k is given as

ak[n] ≜ fe(φk[n]) · [1, ejξk[n], . . . , ejξk[n](S−1)]T , (5)

where we define ξk[n] ≜ 2π dULA

λ cos (θk[n]) with dULA

being the spacing between adjacent dipoles and λ the carrier
wavelength. Moreover, fe(φk[n]) denotes the directional de-
pendence, cf. (4), of the radiated electric fields in each dipole,
given as

fe(φk[n]) =
cos(π2 cos(φk[n]))

sinφk[n]
α. (6)

Here, the normalization coefficient α ensures that the total
power radiated from the dipole antenna array in all azimuth
angles is equal to power radiated from a ULA of isotropic
elements, i.e. 1

2π

∫ π

−π
f2
e (φk)dφk = 1. Note that, as ∆max≪

H , we assume that the distances, the steering vectors, and the
channels between the UAV and each GU/GT all change barely
when the UAV flies along each line segment.

C. Performance Metrics of Sensing and Communication

We assume that the information bearing symbol ci ∈ C
intended for GU i is a complex Gaussian random variable
with zero mean and unit variance. Moreover, let wi ∈ CS×1

be the beamforming vector of the UAV for sending ci. The
signal transmitted by the UAV on line-segment n is given as
x[n]=

∑K
i=1 wi[n] ci[n]. Subsequently, the received signal at

GU k on line-segment n, denoted by yk[n], is given as

yk[n] = hH
k [n]x[n] + ηk[n], (7)

where ηk[n] is the additive white Gaussian noise at GU k and
is modeled as a zero-mean Gaussian random variable with
variance σ2

k. Based on (7), the achievable data rate of GU k
on line-segment n is given as

Rk[n]=B log2

(
1+

|hH
k [n]wk[n]|2∑K

i=1,i̸=k|hH
k [n]wi[n]|2+σ2

k

)
, (8)

where B is the system bandwidth in Hz.
We investigate radar sensing towards GTs by utilizing the

communication signal x[n] transmitted via ULA as probing
signals to maximize the energy at the locations of GTs. The
UAV collects echoes of this signal, reflected or scattered by
the GTs, for tasks such as user detection, area monitoring,
and GT distinction based on e.g. angle of arrival and round-
trip times of the echoes, as detailed in [9] and [1]. Our goal
is to improve the accumulated sensing energy for the GTs.
Similar to communication, we assume a LoS dominant link
with path loss model as given in (2). Consequently, we model
the accumulated sensing energy for GT m on line-segment n
as

Γm[n] =
βP s

m[n]

∥dm[n]∥2 +H2
τ [n], (9)

where P s
m[n] is the power of the transmitted signal in the

direction of us
m on line-segment n, given by

P s
m[n] =

∑K

k=1
|wH

k [n]am[n]|2. (10)

D. Energy Consumption of the UAV

During the mission, the UAV consumes energy in both
signal transmission and propulsion flight. The UAV’s energy
consumption for signal transmission on line-segment n, de-
noted by Ec(wk[n]), is given as

Ec(wk[n]) =
∑K

k=1

(
wH

k [n]wk[n] + Pconst

)
τ [n], (11)

which includes the transmit power in the first term and a
constant power, Pconst, consumed in the circuitry and signal
processing etc. Meanwhile, the propulsion energy consumption
of the rotary-wing UAV on line-segment n is modeled as [12]

Ef(V [n]) =

[
P0

(
1+

3V [n]2

U2
tip

)
+Pi

(√
1+

V [n]4

4V 4
0

− V [n]2

2V 2
0

)1/2

+
1

2
d0ρsAV [n]3

]
τ [n] (12)



with rotor disc area A, tip speed of the rotor blade Utip, rotor
solidity s, air density ρ, fuselage drag ratio d0, mean rotor
velocity induced in forward flight V0, blade profile power
during hovering P0, and induced power during hovering Pi,
cf. [12].

III. PROBLEM FORMULATION

For the considered UAV-aided ISAC system, the spatial
degrees-of-freedom (DoFs) of the transmit dipole array and
the mobility of the UAV can be jointly exploited to maximize
the system performance within the given energy budget. In
order to properly illuminate all the GTs, we use the worst-
case accumulated sensing energy among all GTs, cf. (9), as the
sensing performance metric [10]. Assuming that GU and GT
locations are known, we formulate the energy-aware trajectory
and beamforming optimization problem for UAV-aided ISAC
as

P1 : max
q[n],wk[n],τ [n]

min
m

∑N

n=1
Γm[n] (13)

s.t. C1: Rk[n] ≥ Rmin,k ∀k, ∀n

C2:
∑N

n=1

(
Ec(wk[n]) + Ef(V [n])

)
≤ Etot

C3:
∑K

k=1
wH

k [n]wk[n] ≤ Pmax,∀n

C4: V [n] ≤ Vmax,∀n
C5: q[0] = qI , q[N ] = qF .

In problem P1, constraint C1 ensures that, during the ISAC
mission, the UAV can continuously communicate with GU k
at a data rate being equal to or above Rmin,k, to guarantee
communication QoS. C2 defines the total energy budget for
the UAV mission. C3 and C4 limit the maximum transmit
power and the maximum flight speed of the UAV by Pmax

and Vmax, respectively. Finally, C5 specifies the starting and
destination positions for the UAV flight to be qI ∈ R2×1 and
qF ∈ R2×1, respectively.

Problem P1 is difficult to solve due to several obstacles.
First, P1 is nonconvex due to the nonconvex objective function
and constraints C1 and C2. Second, joint optimization of the
beamforming vectors wk[n] and the UAV’s trajectory q[n] is
hindered by their tight couplings in (7) and (10), where the
steering vector dynamically changes with the UAV’s position
in a highly nonlinear (nonconvex) manner, cf. (5).

To tackle these challenges, in Sec. IV we reformulate
P1 as a multi-stage DP. The reformulated problem can be
(asymptotically) optimally solved using the Bellmann optimal-
ity equation and SDP, though at the cost of an overwhelming
computational complexity. Inspired by the huge success of
approximate DP and reinforcement learning, we propose a
low-complexity high-quality approximate solution based on
the rollout algorithm [13].

IV. PROBLEM SOLUTION

A. Trajectory Design and Rollout Algorithm

In this section, we reformulate P1 as an equivalent N -stage
DP problem in a discrete-event dynamic system. We show

that P1 can be optimally solved via DP algorithms, by jointly
optimizing waypoints q[n], the beamforming vectors wk[n],
and the flight durations τ [n] of problem P1.

1) DP based Reformulation: With a slight abuse of nota-
tion, we let n also be the index of stages. The system state
on ≜ [Qn, En] is characterized by the sequence of waypoints
Qn = {q[0], . . . ,q[n − 1]} taken by the UAV till stage n
and the UAV’s remaining energy En at stage n. Meanwhile,
the action zn = [q[n + 1], τ [n+ 1],wk[n + 1]] consists of
the selected next waypoint q[n + 1] ∈ V , flight duration
τ [n + 1] ∈ R+ allocated to reach next waypoint, and the
beamforming vectors wk[n + 1] ∈ CS×1 to be used in the
next waypoint. The action zn is constrained to take values in
a given subset zn = µn(on) ∈ Z(on) that depends on the
current state on. Here, set Z(·) represents the constraints on
action zn as given in P1. When action zn is applied at stage n,
the system state evolves to the next state on+1 according
to the system equation on+1 = fn(on, zn). Meanwhile, a
reward gn(on, zn) is generated for the transition from state
on to on+1 under action zn. For problem P1, we define
gn(on, zn) ≜ minm(Γm[n+1]−Γm[n]), i.e., gn(on, zn) is the
increase in the worst-case accumulated sensing energy among
all GTs.

For the whole ISAC mission, the actions zn, n =
0, . . . , N − 1, are determined by a policy of the form π =
{µ0, . . . , µN−1}. Now, given an initial state o0 = [Q0 =
{qI}, E0 = Etot] and policy π, the sum of rewards achievable
in the ISAC mission is given as Jπ(o0) = gN (oN ) +∑N−1

n=0 gn(on, zn). Then problem P1 can be equivalently
reformulated as seeking the optimal policy π∗ that maximizes
Jπ(o0) [14], i.e.,

π∗ ∈ argmax
π∈Π

Jπ(o0). (14)

where set Π includes all policies leading to feasible actions.
2) Bellman Optimality Equation: To solve the multi-stage

optimization in (14), let J∗
n(on) be the optimal sum of rewards

starting from state on till oN . J∗
n(on) is also known as the

optimal value function of state on. Then, the optimal policy
can be obtained by solving at each stage n=0, . . . , N−1 the
Bellman optimality equation,

J∗
n(on) = max

zn∈Zn(on)
[gn(on, zn) + J∗

n+1(f(on, zn))]. (15)

In particular, the solution is based on the DP algorithm, which
starts from solving the terminal problem J∗

N (oN ), and then
moves one stage backwards to solve J∗

N (oN−1). This process
continues until the optimal policy is constructed.

However, executing the DP algorithm (15) is practically
infeasible, due to the infinite-space of the continuous action
variables. In a simpler case, the actions can be discretized to
be specified by a finite set. Yet, the resulting DP algorithm is
prohibitively time-consuming except for simple special cases
[14]. This motivates us to seek low-complexity approximation
methods, such as the rollout algorithm [13], to tackle (15).



Algorithm 1: Joint Trajectory and Beamforming Optimization
with OSLR

1: Input:N, rd, π̃, E
tot, Vmax,qI ,qF , {uc

k, Rmin,k}Kk=1, {us
m}Mm=1

2: for n = 0 : N − 1 do ▷ For each stage n
3: Find Z(on) based on C1-5; ▷ Problem P1
4: Calculate J̃n+1,(on) by simulating the base policy and col-

lecting the rewards;
5: z∗n = argmax

zn∈Z(on)

[gn(on, zn) + J̃n+1,(on)];

6: Update system: on+1 = fn(on, z
∗
n);

7: end for
8: Output: [z0, . . . , zN−1], J

∗
0 (o0).

3) One-Step Lookahead Rollout (OSLR) Algorithm: For the
DP algorithm, calculating the optimal value function J∗

n+1

is computationally intensive. To overcome this difficulty, the
OSLR algorithm approximates J∗

n+1 by the reward function
J̃n+1 of a base policy π̃= {µ̃0, . . . , µ̃N−1}. The base policy
π̃ can be an arbitrary heuristic algorithm for which we can
easily calculate its reward function

J̃n+1(on+1)≜gN (oN ) +
∑N−1

i=n+1
gi(oi, zi) (16)

for zi= µ̃i(oi), i = n+ 1, . . . , N−1. Using J̃n+1, the action
z̃n is selected by applying OSLR as

z̃n ∈ argmax
zn∈Z(on)

[
gn(on, zn) + J̃n+1(f(on, µ̃n(on))

]
. (17)

That is, instead of applying the heuristic algorithm itself, the
OSLR algorithm optimizes the action by considering both
the immediate reward gn(on, zn) in each iteration and the
potential long-term reward. Thus, the OSLR algorithm can
guarantee a performance improvement over the original base
policy with low computational costs [13].

Algorithm 1 summarizes the proposed OSLR algorithm.
In each stage, J̃n+1,(on) is calculated via computationally
efficient base policy π̃. This requires solving the nonconvex
problem P1 for given waypoints as specified by the base policy
and system state variable Qn, cf. line 4. Although the resulting
optimization problem is still nonconvex, we will show in Sec.
IV-B that it can be efficiently solved to optimality using the
SDP relaxation technique. The obtained optimal solutions are
further used to calculate the sum of rewards and to select the
best action zn. The state is then updated with the action z̃n that
maximizes the accumulated sum reward. States are updated for
a total of N stages, as defined in path discretization.

B. Beamforming and Flight Duration Optimization

For Algorithm 1 to work, we still need to optimize the
beamforming wk[n] and flight duration τ [n] in the nonconvex
problem P1 for given waypoints, i.e. q[n]s, as specified
by the base policy and system state variable Qn. To this
end, let Wk[n] ≜ τ [n]wk[n]w

H
k [n], with Wk[n] ⪰ 0

and Rank(Wk[n]) ≤ 1. Using Wk[n] as well as defining

γmin,k ≜ 2
Rmin,k

B − 1 and Hk[n] ≜ hk[n]h
H
k [n], we can

reformulate C1 as

C1 ⇐⇒ τ [n] · |hH
k [n]wk[n]|2

τ [n] ·
(∑K

i=1,i̸=k |hH
k [n]wi[n]|2 + σ2

k

) ≥ γmin,k

⇐⇒ Tr(Wk[n]Hk[n])∑K
i=1,i̸=k Tr(Wi[n]Hk[n]) + σ2

kτ [n]
≥ γmin,k

⇐⇒ C1: (1 + γ−1
min,k)Tr(Wk[n]Hk[n])

−
∑K

i=1
Tr(Wi[n]Hk[n]) ≥ σ2

kτ [n]. (18)

Similarly, let Am[n] ≜ am[n]aHm[n]. We can rewrite the
accumulated sensing energy for GT m as

P s
m[n] · τ [n] =

∑K

k=1
Tr(Wk[n]Am[n]),

Γm[n] =
∑K

k=1

βTr(Wk[n]Am[n])

∥dm[n]∥2 +H2
. (19)

Meanwhile, the propulsion energy in (12) is a nonconvex
function of speed V [n], which is difficult to optimize. To tackle
this challenge, we approximate (12) by a convex function

E
f
(V ) ≜

(
P0

(
1 + 3V 2

U2
tip

)
+

Pi

1 + 3V
4V0

+
1

2
d0ρsAV 3

)
τ [n],

(20)

since
(√

1 + V 4

4V 4
0
− V 2

2V 2
0

) 1
2 ≈

(
1 + 3V

4V0

)−1

for small V ≥ 0.
Then, given the waypoints q[n], P1 can be reduced to and

equivalently reformulated as

P2 : max
Wk[n],τ [n]

min
m

∑N

n=1
Γm[n] (21)

s.t. C1,C4, C5,

C2 :
∑N

n=1

(
Ec(wk[n]) + E

f
(V [n])

)
≤ Etot

C3 :
∑K

k=1
Tr(Wk[n]) ≤ Pmaxτ [n], ∀n

C6: Wk[n] ⪰ 0,∀n, ∀k (22)
C7: Rank(Wk[n]) ≤ 1, ∀n, ∀k.

Now, previously nonconvex constraints in P1, i.e. C1 and C2,
are converted to convex constraints C1 and C2 in Problem P2.
However, P2 is still nonconvex due to the rank constraint C7.
We solve P2 by employing the SDP relaxation technique, i.e.,
by dropping constraint C7. The resulting convex optimization
problem can be efficiently solved using off-the-shelf solvers
such as CVX [15]. Generally, the SDP relaxation approach
finds a performance upper bound for the original problem,
as the relaxation may enlarge the feasible set. However,
for problem P2 at hand, we can show below that the SDP
relaxation approach is tight, i.e., the relaxed solution always
fulfills the rank constraint C7. We have also validated this
result offline by simulations.

Lemma 1: Assume that problem P2 admits at least one
feasible solution. Then we can always obtain an optimal rank-
one solution of Wk[n] for P2 by solving the relaxed SDP
problem.



TABLE I: Parameter Settings for Simulation
Parameter Notation/Value
Path discretization N = 40,∆max = 40 m
UAV’s flight altitude H = 100 m
UAV’s max flight speed Vmax = 20 m/s
UAV’s energy budget Etot = 15000 J
Number of UAV antennas S = 6

ULA dipole axis vector rd = [0.7 0.7]T

Reference channel gain β = −30 dB
System bandwidth B = 1 MHz
Noise power σ2

k = −110 dBm
Maximum transmit power Pmax = 40 dBm
Circuitry power consumption Pconst = 5 W

Flight power parameters [12]

A=0.503 m2,
Utip=120m/s, ρ=1.225kg/m,
s=0.05m3, d0=0.6, V0=4.03,

P0=80W,Pi=88.6W
Communication requirement Rmin,k = 2 Mbits/s

Proof: Please refer to [16, Theorem 2] for a similar proof.

V. SIMULATION RESULTS

We evaluate the performance the proposed energy-aware
joint beamforming and trajectory optimization algorithm for
UAV-aided ISAC with dipole antenna array via simulations.
We consider a 500m×500m area that is quantized into a uni-
form grid of 21×21 nodes. In the area, there are K=2 GUs at
locations [126, 101]T , [374, 99]T and M =2 GTs at locations
[126, 376]T , [401, 301]T . Given GU/GT locations are identical
for all simulations presented. Unless otherwise stated, the
simulation parameters are set according to Table I. The UAV’s
initial and destination locations are set as qI = [50, 50]T and
qF = [450, 50]T , respectively.

In Algorithm 1, the OSLR requires a base policy to approx-
imate the value function (16). For our simulations, we employ
a base policy for minimizing the distance to the destination
location from the UAV position. For performance comparison,
we consider two baseline schemes. For baseline scheme 1,
we employ the trajectory of the base policy, without the
improvement brought by the OSLR. For baseline scheme 2,
we adopt a UAV equipped with a ULA of isotropic antenna
elements, and jointly optimize the ISAC beamforming and
trajectory optimization problem with the proposed method.

Figure 3 shows the accumulated sensing energy for the
GTs, cf. the objective of P2, versus the communication re-
quirement per GU, Rmin. We observe that the accumulated
sensing energy for all the considered schemes monotonically
decreases with increasing Rmin. This reveals an inherent trade-
off between sensing and communication in UAV-aided ISAC.
In particular, as Rmin increases, the UAV has to fly closer to
the GU locations and/or steer the ISAC beam more towards the
GUs, to satisfy the more stringent communication constraint,
as depicted in Figures 4 and 5. Meanwhile, the proposed
scheme significantly outperforms both baseline schemes when
Rmin ≤ 3 Mbits/s. For example, compared with the base-
line scheme 1 and 2, the proposed scheme increases the
accumulated sensing energy by up to a factor of 12 and
2.4, respectively, thanks to the extra DoFs brought by joint

x2.4
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Fig. 3: Accumulated sensing energy for the GTs versus the
minimum required data rate per GU.

Fig. 4: Optimized flight trajectories and flight durations of the
UAV for the considered schemes, Rmin,k=2 Mbits/s.

trajectory and ISAC beamforming design of directional dipole
array.

Figures 4 and 5 depict the optimized trajectories and flight
durations of the UAV for the proposed and baseline schemes.
The two figures correspond to two different communication
requirement Rmin values. To illustrate flight durations, we
mark the trajectories with points evenly spaced in time. That
is, each marker point indicates a fixed amount of flight time
along the trajectory. We observe that, as expected, the baseline
scheme 1 designs the UAV’s trajectory using the shortest path
between the UAV’s initial and destination positions. Unlike the
baseline scheme 1, both the proposed scheme and the baseline
scheme 2 design the UAV’s trajectory to fly toward the GT
locations, thanks to the OSLR based Algorithm 1. This can
significantly reduce the loss of signal energy for sensing the
GTs, while maintaining communication QoS for information
transmission to the GUs.

Figure 6 evaluates the accumulated sensing energy for the
GTs, versus the number of antenna elements S deployed at



Fig. 5: Optimized flight trajectories and flight durations of the
UAV for the considered schemes, Rmin,k=3 Mbits/s.
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Fig. 6: Accumulated sensing energy for the GTs versus the
number of transmit antennas.

the transmit ULA of the UAV. We observe that increasing
the number of antennas improves the performances of all
schemes, as signal energy can be focused towards the GTs
and GUs using narrower beams generated by the antennas.
Moreover, our proposed scheme significantly outperforms the
baseline schemes 1 and 2, achieving performance gains of
up to a factor of 12.4 and 2.9, respectively. This is because
the baseline scheme 1 optimizes only the flight times and
ISAC beamforming, but limits the flight trajectory to be along
the shortest path between the UAV’s initial and destination
positions. Meanwhile, our proposed scheme jointly optimizes
the trajectory design, flight times and ISAC beamforming.
Additionally, with the directional antenna array, the proposed
scheme can better exploit the UAV trajectory to increase the
sensing power toward the GTs while mitigating the inter-user
interference than the isotropic antenna array.

VI. CONCLUSIONS AND FUTURE WORK

This paper explored the application of a dipole antenna
array for transmitting ISAC signals on an energy-constrained

UAV. By considering the 3D radiation pattern of the dipole
array, we jointly optimized transmit beamforming using the
dipole array and trajectory planning for the UAV during the
ISAC mission. Our objective was to maximize the worst-case
accumulated sensing energy among all GTs while meeting
communication QoS requirements, flight constraints, and en-
ergy limitations. To tackle the formulated nonconvex problem,
we reformulated it as a multi-stage DP with continuous
actions, and subsequently proposed a computationally efficient
OSRL algorithm to provide a high-quality suboptimal solution.
Simulation results demonstrated that our proposed approach
can effectively leverage UAV mobility and spatial DoFs of the
transmit dipole array to significantly improve both the sensing
and communication performance, achieving up to 12.4 times
higher sensing energy compared to two baseline schemes. We
recognize that the magnitudes of performance gains can vary
with the orientation of the dipole array deployed at the UAV.
While we have assumed fixed array orientation in this paper,
joint optimization of array orientation, beamforming, and flight
trajectory is left as an interesting topic for our future work.
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