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Abstract—Massive multiple-input multiple-output (MIMO)
multicasting is a promising approach for simultaneously deliv-
ering common messages to multiple users in next-generation
wireless networks. However, existing studies have exclusively
focused on multicast beamforming designs based on the Shannon
capacity, assuming the infinite blocklength (IBL) for transmis-
sion. This assumption may lead to strictly suboptimal designs for
practical multicast transmissions with finite blocklength (FBL),
especially in ultra-reliable low-latency communications. In this
paper, we explore the beamforming design for massive MIMO
multi-group multicasting in the FBL regime. Our study considers
both the max-min fairness and the weighted sum rate criteria
for a comprehensive treatment. Due to the non-concave FBL
rate function, the resulting optimization problems are known
to be notoriously hard. We characterize the necessary and
sufficient condition for the non-negative FBL rate to be a concave
function of the received signal-to-interference-plus-noise ratio
(SINR). Considering a finite number of transmit antennas, we
propose low-complexity majorization-minimization (MM) type
algorithms, which update variables in either closed or semi-
closed form, to achieve locally optimal solutions of the formulated
optimization problems. We further show that, as the number of
transmit antennas becomes large, the optimal beamformer of
each group aligns asymptotically with a linear combination of
the channel vectors of that group of users, where the optimal
normalized combining coefficients are derived in closed form.
Subsequently, we obtain the globally optimal multicast beam-
formers by optimizing the power allocation using low-complexity
iterative algorithms. Simulation results show that the proposed
schemes outperform several existing methods, especially those
employing the Shannon capacity as the performance metric.
Moreover, the proposed algorithms exhibit complexities that only
slightly grow with the number of transmit antennas and they
can notably reduce the computation time by up to two orders of
magnitude over the benchmarks, making them highly beneficial
for massive MIMO applications.
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I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) multicast-
ing is an advanced physical-layer transmission technique for
delivery of common messages in the next-generation wireless
networks. By exploiting the broadcast nature of the wireless
medium, multicasting enables simultaneous signal transmis-
sion to multiple receivers over shared frequency spectrum [1].
As such, multicasting provides a more resource-efficient and
scalable solution than conventional unicasting for communi-
cating common messages to a large number of receivers such
as in massive machine-type communications (mMTC) [2]–[7].
Meanwhile, unlike broadcasting, multicasting receivers can
be flexibly grouped to enable multi-group multicasting com-
munications. Note that unicasting and broadcasting are only
special cases of multi-group multicasting. In this regard, multi-
group multicasting can always achieve the best performance
compared with unicasting and broadcasting. Furthermore,
through employing a large antenna array at the base station
(BS), massive MIMO can acquire abundant multiplexing and
diversity gains to significantly improve the reliability and
spectral efficiency of multicasting [8]. However, beamforming
design for (massive) MIMO multicasting proves to be more
intricate than for conventional unicasting applications and has
defined a key research challenge.

To maximize the performance of (massive) MIMO mul-
ticasting, multicast beamforming design has been recently
investigated in [7], [9]–[20]. For example, the authors in [7],
[9]–[14] studied either (i) transmit power minimization subject
to the users’ signal-to-interference-plus-noise ratio (SINR)
requirements, or (ii) maximization of the minimum users’
SINR subject to a total power budget. Considering unlimited
transmit antennas at the BS, the optimal solution of problem (i)
for massive MIMO multicasting was obtained in [14]. In [16],
pilot contamination was further considered for maximization
of the minimum multicast rate. Additionally, the authors of
[17], [18] investigated the multicast beamforming under the
weighted sum rate (WSR) criteria using a heuristic approach.
And a mixed WSR multicast beamforming with a common
message is studied in [19] using the weighted minimum mean
square error (WMMSE) method [21].

The aforementioned works [7], [9]–[20] have exclusively
focused on designing (massive) MIMO multicast beamformers
based on the Shannon capacity, by assuming the infinite
blocklength (IBL) for transmission. Nevertheless, only finite
blocklengths (FBLs) can be afforded in practical multicasting
systems. Thus, these existing multicast beamforming designs
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are bound to be suboptimal, except for some special cases
such as when the FBL is sufficiently long that the perfor-
mance gap between FBL and IBL transmission becomes neg-
ligible. Recently, multicasting has been increasingly applied
in latency-sensitive communications for real-time dissemina-
tion of control commands, alerts, and updating messages in
Internet-of-Things (IoT), mMTC, and digital twin [2]–[6].
These FBL applications1 typically operate with short trans-
mission blocklengths, in order to lower the communication
latency. Compared with unicasting, employing multicasting in
these FBL applications creates spectrum sharing opportunities
among multiple receivers to mitigate the resource limitation
inherent in the FBL regime. However, the associated multi-
casting designs deviate significantly from the infinite or close-
to-infinite blocklength regimes. Therefore, it is imperative to
rethink the optimal beamforming design for (massive) MIMO
multicasting in the FBL regime, which motivates our work in
this paper.

Unlike IBL transmission, FBL transmission is no longer
error-free and cannot achieve the Shannon capacity [25].
Instead, the achievable rate in the FBL regime is highly non-
concave. When extending the massive MIMO multicasting to
support FBL communications (FBLC), the resulting beam-
forming optimization problem is notoriously hard, hindering
the solution that is both optimal in the FBL regime and
scalable to a large number of transmit antennas at the BS.
To the best of our knowledge, results in this direction have
not been reported in the literature yet, except that some recent
works on FBL beamforming have investigated the unicasting
scenarios [26]–[31]. To bridge the knowledge gap, in this
paper, we investigate low-complexity beamforming designs for
massive MIMO multicasting in the FBL regime, considering
both the max-min fair (MMF) optimization and the WSR
maximization. Our contributions are summarized as follows:

• We comprehensively characterize the properties of the
FBL rate function and reveal the necessary and sufficient
condition for the non-negative FBL rate to be a concave
function of the received SINR.

• Considering a finite number of transmit antennas
at the BS, we propose low-complexity majorization-
minimization (MM)-type algorithms to find locally opti-
mal solutions of the MMF and the WSR problems, where
the variables are updated in closed or semi-closed form.

• Considering unlimited transmit antennas at the BS, we
show that the asymptotically optimal beamformer of each
group is a linear combination of users’ channel vectors in
the group and further derive the optimal normalized com-
bining coefficients in closed form. This result enables us
to obtain the globally optimal multicast beamformers by
optimizing the power allocations using low-complexity
iterative algorithms.

1Practical FBL applications may exhibit distinct requirements on latency,
reliability, and data rate [6], [22]–[24]. For example, according to [6, Table
I], a general automation process requires 99.99% reliability (or a block error
rate (BLER) of 10−4) within a latency of 50–100 ms, whereas self-driving
car applications require 99% reliability within a latency of only 1 ms. On
the other hand, immersive virtual reliability services require a data rate for
transmitting vision information from 10 Mbits/s to 1 Gbits/s with 99.9%-
99.999% reliability [22], [23].

• Simulation results demonstrate that the proposed design
outperforms several benchmark schemes, especially those
employing the Shannon capacity as the performance
metric, highlighting the importance of adopting the FBL
rate for multicast beamforming design. Additionally, the
proposed algorithms can reduce the computation time by
orders of magnitude compared to the benchmarks, which
is appealing for massive MIMO systems.

The remainder of this paper is organized as follows. In Section
II, we introduce the system model and formulate the MMF and
WSR multicast beamforming problems in the FBL regime.
In Section III, we analyze the concavity of the FBL rate.
In Sections IV and V, we propose efficient beamforming
designs for the MMF and WSR problems for a finite and an
unlimited number of transmit antennas at the BS, respectively.
Simulation results are presented in Section VI, and finally,
conclusions are drawn in Section VII.

Notations: Throughout this paper, vectors and matrices are
denoted in bold lower-case and capital letters, respectively.
R, C, CN×1, and CN×M denote the sets of real numbers,
complex numbers, complex vectors of length N , and complex
matrices of size N ×M , respectively. R{x} denotes the real
part of complex number x. [A]i,j denotes the (i, j)-th entry
of matrix A. IN denotes the N × N identity matrix. (· )T ,
(· )⋆, (· )H , and (· )−1 denote transpose, complex conjugate,
Hermitian transpose, and inverse of matrix, respectively. |· |
and ∥· ∥2 denote the absolute value of a complex scalar
and the Euclidean norm of a vector, respectively. E(· ) is
the expectation operator. Q(x) is the Q-function defined as
Q(x) = 1√

2π

∫∞
x

exp(−t2/2)dt. Q−1(· ) is the inverse Q-
function, i.e., Q(Q−1(x)) = x. x ∼ CN (a,R) means that
x is a circular symmetric complex Gaussian random vector
with mean a and covariance R. Finally, IS(X) is the indicator
function for variable X and set S, defined as

IS(X) =

{
0, if X ∈ S,
∞, otherwise.

(1)

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the downlink (DL) of a single-cell multi-group
multicasting system, where a BS equipped with Nt transmit
antennas serves K single-antenna users over a bandwidth of
B Hz. The users, indexed by set K = {1, . . . ,K}, are grouped
into M multicast groups, indexed by M={1, . . . ,M}. Group
m consists of Km users that are indexed by set Km and receive
a common data stream. Each user is assigned to only one
group and we use I(k) to denote the group index of user k.
Let hk ∈ CNt×1 be the channel vector between the BS and
user k and wm ∈ CNt×1 be the beamforming vector for group
m. The received signal of user k is given by

yk = hH
k wI(k)sI(k) +

∑
m̸=I(k)h

H
k wmsm + nk, (2)

where sm is the data symbol intended for the users in
group m with E(|sm|2) = 1 and nk ∼ CN (0, σ2

k) is the
additive white Gaussian noise (AWGN) at user k. Defining
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W = [w1, . . . ,wM ] as the beamforming matrix, the received
SINR of user k is expressed as

γk(W) =
|hH

k wI(k)|2∑
m̸=I(k)|hH

k wm|2 + σ2
k

. (3)

To satisfy the transmission latency requirement Tmax for
FBL applications, the signals are transmitted using the FBL
N = BTmax

2. Since for many FBL applications Tmax is usually
much smaller than the channel coherence time, the channel
can be regarded as quasi-static over the packet transmission
duration [6], [26]–[30]. By adopting the FBL transmission,
the users cannot decode the messages in an error-free manner.
Following [34], we define ϵm as the BLER of group m,
where each user in group m can decode the multicast message
with an error probability not exceeding ϵm. The resulting
achievable rate of user k with FBL to achieve the BLER ϵI(k)
in nats/sec/Hz is given by3 [25]

R(γk(W), ϑI(k))= ln (1+γk(W))−ϑI(k)
√
V (γk(W)), (4)

where ϑI(k) = Q−1(ϵI(k))/
√
N > 0 and V (γk(W)) =

1 − (1 + γk(W))
−2 is the channel dispersion. In (4), the

second term adds a penalty on the achievable rate in order to
guarantee transmission reliability, i.e., satisfying the required
BLER. The penalty term vanishes as N → ∞, where the FBL
rate (4) approaches the Shannon capacity ln (1 + γk(W)). To
ensure reliable transmission to all users within a group, the
multicasting rate of group m is determined as the minimum
rate of the users in that group and is given by

RG
m = min

k∈Km

R (γk(W), ϑm) . (5)

To satisfy the QoS requirements of FBL applications on
reliability, latency, and data rate, we consider that at least
Dm nats of data should be transmitted to the users in group
m within the required BLER ϵm and blocklength N (or
transmission latency Tmax = N/B). This requires RG

m ≥
R̄G

m ≜ Dm/N, ∀m ∈ M, where R̄G
m > 0 is the minimum

rate required by the users in group m. We assume that the
users are in relatively low mobility such that the BS has
perfect knowledge of the channel state information (CSI)

2Since we focus on beamforming design in the physical layer, we only
consider the DL transmission latency, rather than the overall end-to-end
(E2E) latency. The latter includes uplink and DL transmission latency, coding
and processing latency, queueing delay, and routing delay in backhaul and
core networks etc, which needs to be evaluated with the cross-layer design
and optimization approach, while considering the intermittent and random
characteristics of FBL communications [32], [33]. However, due to the limited
space, this is left for the future work. Instead, we only assume in this work
that the DL transmission latency is specified according to the E2E latency
requirement of the considered FBL applications.

3In this work, we focus on FBL applications with mild requirements on
latency or reliability, and the normal approximation [25] is adopted in (4)
to strike a good balance between approximation accuracy and complexity.
According to the recent literature, the random-coding union (RCU) bound
[25], [35], the saddlepoint approximation [36], and the Laplace method [37]
can be adopted to further improve the approximation accuracy in the FBL
regime. However, these bounds are overly complex, making the performance
analysis and optimization intractable. Beamforming optimization using these
approximations is an interesting open problem for future research.

[11], [13], [14], [26]–[31], [38].4 Meanwhile, we consider
both the MMF and the WSR criteria for fair and efficient
multicast beamforming design, respectively. Both criteria have
been considered in the literature for multicast beamforming
design with the IBL [7], [10]–[12], [16]–[18]. Here, we aim
to extend them to the FBL regime. The resulting beamforming
optimization problems are formulated as:

P1 : max
W

min
m∈M

RG
m (6a)

s.t.
∑M

m=1
∥wm∥22 ≤ P, (6b)

R
(
γk(W), ϑI(k)

)
≥ R̄G

I(k), ∀k ∈ K, (6c)

and
P2 : max

W

∑M

m=1
ωmR

G
m (7)

s.t. (6b), (6c),

respectively, where P is the maximum transmit power of the
BS, and ωm > 0 is the weight assigned for group m. In
problems P1 and P2, we maximize the minimum multicast rate
among the groups and the weighted sum of multicast rates,
respectively, for given BLER {ϵm}Mm=1 and blocklength N ,
while fulfilling the rate requirements in (6c).

Note that while we focus on multicasting in this paper, the
considered multi-group multicasting scheme is quite general
to also encompass conventional IBL unicasting [21], broad-
casting [10], and multicasting [7], [9]–[19], as well as FBL
unicasting [26]–[29], for which our system model, problem
formulation and solutions remain applicable. Particularly, it
reduces to unicasting and broadcasting when Km =1, ∀m
and M = 1, respectively.

As the FBL rate (4) is a non-concave function of W (or
γk(W)) for finite N , problems P1 and P2 involve non-smooth
non-concave objective functions and non-convex constraints
(6c), which render their solutions challenging. In the follow-
ing, we start with analyzing the concavity of the FBL rate
with respect to (w.r.t.) γk(W) in Section III. Considering finite
Nt in Section IV, we then propose low-complexity iterative
algorithms with variables updated in closed or semi-closed
form to obtain the locally optimal solutions of P1 and P2. We
further study the globally optimal solutions for Nt → ∞ in
Section V.
III. CONCAVITY OF THE ACHIEVABLE RATE WITH FINITE

BLOCKLENGTH

In this section, we delve into the FBL rate function
R(γ, ϑ) = ln(1 + γ)− ϑ

√
V (γ), γ ≥ 0, (8)

particularly its concavity w.r.t. the SINR γ for given BLER ϵ,
blocklength N , and channel dispersion V (γ) = 1−(1 + γ)

−2,
where ϑ = Q−1(ϵ)/

√
N > 0. Such analysis is nontrivial for

finite N and plays an important role in the FBLC research

4Under the perfect CSI assumption, we aim to obtain a performance upper
bound for massive MIMO multicasting in the FBL regime. In time-division
duplex (TDD) systems, the BS can obtain the DL CSI via uplink training
process by exploiting the channel reciprocity. Meanwhile, the users can obtain
the DL CSI using the DL pilots as in [39]. Our previous works [20], [40]–
[42] have studied several robust precoding designs with imperfect CSI for
massive MIMO, assuming the IBL. We would like to further study the FBL
beamforming design with imperfect CSI in the future work.
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Figure 1. Illustration of γ̄0, γ̄2, γ̄3 versus ϑ.

[26]. We first review in Lemmas 1 and 2 some properties
of R(γ, ϑ) as given in [26]. Based on these, we present an
important finding in Theorem 1 about the concavity of R(γ, ϑ)
w.r.t. γ.

Lemma 1 ( [26]). Given ϑ > 0, R(γ, ϑ) monotonically
decreases (increases) with γ for 0 ≤ γ < γ̄0 (γ ≥ γ̄0), where

γ̄0 =

√
1 +

√
1 + 4ϑ2

2
− 1. (9)

Moreover, R(γ̄0, ϑ) ≤ 0 for any ϑ > 0, and R(γ, ϑ) has two
different roots γ̄1 = 0 and γ̄2 > 0 such that R(γ̄i, ϑ) = 0, i =
1, 2, where γ̄1 ≤ γ̄0 ≤ γ̄2.

Based on Lemma 1, there exists a unique solution γ̂I(k) > 0
satisfying R(γ̂I(k), ϑI(k)) = R̄G

I(k). Thus (6c) can be rewritten
as

γk(W) ≥ γ̂I(k),∀k ∈ K. (10)

Then problems P1 and P2 can be equivalently reformulated as
P3 : max

W
min
m∈M

RG
m (11)

s.t. (6b), (10),

and

P4 : max
W

∑M

m=1
ωmR

G
m (12)

s.t. (6b), (10).

Lemma 2 ( [26]). Given ϑ > 0, there exists an inflection
point γ̄3 ≥ γ̄0 such that R(γ, ϑ) is convex for 0 ≤ γ ≤ γ̄3
and concave for γ > γ̄3.

Although there are no closed-form expressions for γ̄2 and
γ̄3 in the literature, they can be calculated using numerical
approaches, e.g., bisection method. Lemma 1 reveals that for
given ϑ > 0, γ̄2 defines a cut-off SINR, below which no
communication takes place, as R(γ, ϑ) ≤ 0 for γ ≤ γ̄2. This
suggests that one only needs to evaluate the concavity of the
non-negative R(γ, ϑ) in the effective SINR regime γ ≥ γ̄2.
Moreover, according to Lemma 2, for given ϑ > 0, R(γ, ϑ)
is concave w.r.t. γ in the effective SINR regime γ ≥ γ̄2 if
and only if γ̄2 ≥ γ̄3. However, due to the lack of analytical
expressions for γ̄2 and γ̄3, checking the concavity of R(γ, ϑ)
remains a challenging task. To resolve this issue, we provide
the following result.

Theorem 1. R(γ, ϑ) is a concave function of γ in the effective
SINR regime γ ≥ γ̄2 if and only if ϑ ≥ ϑ̂, where ϑ̂ ≈ 0.651 12.

Proof. Please refer to Appendix A.

Note that for FBL systems under a reliability requirement
of 1−ϵ = 99.999%, we have ϑ ≥ ϑ̂ when N ≤ 42, which can
be easily satisfied even in URLLC. Fig. 1 plots the numerical
values of γ̄0, γ̄2, and γ̄3 versus ϑ, where the dashed line
indicates ϑ = ϑ̂. We see that γ̄2 ≥ γ̄3 if and only if ϑ ≥ ϑ̂,
whereby R(γ, ϑ) is concave in the effective SINR regime. This
result is consistent with Theorem 1.

Remark 1. To show the importance of Theorem 1 for resource
allocation in the FBL regime, let us consider a DL unicasting
using L orthogonal AWGN channels with unit noise power,
blocklength Ni, and BLER ϵi > 0, i = 1, . . . , L. The spectral
efficiency maximization problem can be formulated as

max
{pi}L

i=1

∑L

i=1
R(hipi, Q

−1(ϵi)/
√
Ni) (13)

s.t.
∑L

i=1
pi = P ′, hipi ≥ γ̄2,i, i = 1, . . . , L,

where P ′ >
∑L

i=1 γ̄2,i/hi is the total transmit power,
γ̄2,i = γ̄2(Q

−1(ϵi)/
√
Ni) > 0 is given in Lemma 1 such

that R(γ̄2,i, Q−1(ϵi)/
√
Ni) = 0, i = 1, . . . , L, hl > 0 and

pl ≥ 0 are the channel gain and transmit signal power of
channel l, respectively. Problem (13) is generally non-convex
due to the non-concave objective function. However, Theorem
1 indicates that problem (13) becomes convex if and only
if Q−1(ϵi)/

√
Ni ≥ ϑ̂, i = 1, . . . , L, whereby its globally

optimally solution can be obtained by solving the Karush-
Kuhn-Tucker (KKT) conditions. In Section V, we will further
use Theorem 1 and Lemma 2 to obtain the globally optimal
solution of the WSR problem P4 as Nt → ∞, cf. Theorem 7.

IV. MULTICAST BEAMFORMING DESIGN FOR FINITE
NUMBER OF TRANSMIT ANTENNAS

In this section, we propose low-complexity algorithms to
solve the FBL multicast beamforming optimization problems
P3 and P4 for finite number of transmit antennas at the BS.
We use the MM method to transform the problems P3 and
P4 into convex forms, which are further solved with efficient
decompositions.

A. MMF Multicast Beamforming Design

To facilitate a tractable solution for the non-convex problem
P3, we first approximate R

(
γk(W), ϑI(k)

)
by a concave

function of W.

Theorem 2. For any feasible beamforming matrix W(t)

satisfying constraints (6b) and (10), a lower bound of
R
(
γk(W), ϑI(k)

)
is given by:

R
(
γk(W), ϑI(k)

)
≥ Rk(W,W(t))

≜ a
(t)
k +

∑M

m=1
R
{
(b

(t)
k,m)Hwm

}
− c

(t)
k |wH

mhk|2, (14)

where Rk(W,W(t)) is a concave function satisfying

∂Rk(W,W(t))

∂wm

∣∣∣∣
wm=w

(t)
m

=
∂R(γk(W), ϑI(k))

∂wm

∣∣∣∣
wm=w

(t)
m

,

(15)
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a
(t)
k = ln

(
1 + γk(W

(t))
)
− γk(W

(t))− σ2
k

(
1

αk(W(t))
− 1

βk(W(t))

)
−
ϑI(k)

√
Vk
(
γk(W(t))

)

2

(
1 +

1

Vk
(
γk(W(t))

)
)

− ϑI(k)

2
√
Vk
(
γk(W(t))

)
(
αk(W

(t))

βk(W(t))

)2

+
ϑI(k)σ

2
kαk(W

(t))

βk(W(t))
√
Vk
(
γk(W(t))

)
(

2

βk(W(t))
− αk(W

(t))

β2
k(W

(t))

)
. (16)

and R
(
γk(W

(t)), ϑI(k)
)
= Rk(W

(t),W(t)). In (14), a(t)k is
a constant whose value depends on W(t) according to (16)
at the top of this page,

b
(t)
k,m =





2hkh
H
k w(t)

m

αk(W(t))
, if m = I(k),

2ϑI(k)αk(W
(t))hkh

H
k w(t)

m

β2
k(W

(t))
√

Vk(γk(W(t)))
, otherwise,

(17)

c
(t)
k =

1

αk(W(t))
− 1

βk(W(t))

+
ϑI(k)√

Vk
(
γk(W(t))

)
α2
k(W

(t))

β3
k(W

(t))
> 0, (18)

αk(W) =
∑

m∈M,m̸=I(k)|wH
mhk|2 + σ2

k, (19)

βk(W) = αk(W) + |wH
I(k)hk|2. (20)

Proof. Please refer to Appendix B.

Moreover, due to the convexity of x2, we have x2 ≥ 2x0x−
x20 for any x0 > 0. Then, given any feasible solution W(t),
we approximate the non-convex constraints (10) as

γ̂I(k)

(∑
m∈M,m̸=I(k)

|wH
mhk|2 + σ2

k

)
+
∣∣∣hH

k w
(t)
I(k)

∣∣∣
2

−2R
{
(w

(t)
I(k))

Hhkh
H
k wI(k)

}
≤ 0,∀k ∈ K. (21)

Employing (14) and (21), problem P3 can be rewritten as

P5 : max
W,r

r (22a)

s.t. (6b), (21) (22b)

r ≤ Rk(W,W(t)),∀k ∈ K, (22c)

where r is an auxiliary variable. Problem P5 is convex and can
be solved using standard approaches such as the interior-point
method. However, the complexity of the interior-point method
is still high for massive MIMO systems.

To facilitate efficient multicast beamforming designs, in
the following, we develop a low-complexity block coordinate
descent (BCD) algorithm to solve problem P5, where each
block of variables can be updated in closed or semi-closed
form. To this end, we first introduce the following auxiliary
variables

vm = wm, ∀m ∈ M, (23)

qk,m = hH
k wm, ∀k ∈ K,∀m ∈ M, (24)

Γk,m = hH
k wm, ∀k ∈ K,∀m ∈ M, (25)

dk = r, ∀k ∈ K, (26)

where we define V = [v1, . . . ,vM ], [Q]k,m =qk,m, [Γ]k,m =
Γk,m, and d = [d1, . . . , dK ]T . Letting

δ
(t)
k,m ≜

(b
(t)
k,m)Hhk

∥hk∥2
, ∀k ∈ K,∀m ∈ M. (27)

Θk(Γk) ≜γ̂I(k)


 ∑

m ̸=I(k)

|Γk,m|2 + σ2
k


+ |hH

k w
(t)
I(k)|2

− 2R
{
(w

(t)
I(k))

HhkΓk,I(k)

}
,∀k ∈ K, (28)

Υk(dk,qk) ≜
∑M

m=1
c
(t)
k |qk,m|2 − a

(t)
k + dk

−
∑M

m=1
R{δ(t)k,mqk,m},∀k ∈ K, (29)

where Γk = [Γk,1, . . . ,Γk,M ]T , and qk = [qk,1, . . . , qk,M ]T ,
problem P5 can be equivalently reformulated as

P6 : max
W,r,V,Γ,Q,d

r (30a)

s.t.
∑M

m=1
∥vm∥22 ≤ P, (30b)

Θk(Γk) ≤ 0,∀k ∈ K, (30c)
Υk(dk,qk) ≤ 0,∀k ∈ K, (30d)
(23), (24), (25), (26),

Using the indicator function I(·)(· ), an equivalent reformula-
tion of P6 is further obtained as

P7 : max
W,r,V,Γ,Q,d

r + IC(V) + ID(Γ) + IE(Q,d) (31)

s.t. (23), (24), (25), (26),

where sets C, D, and E are defined by (30b), (30c), and (30d),
respectively. Note that P7 is a convex problem, whose opti-
mization variables can be split into two blocks, {V,Γ,Q,d}
and {W, r}, and optimized alternatively using the BCD ap-
proach. The augmented Lagrangian of P7 is given by

LM(W, r,V,Γ,Q,d)

= r + IC(V) + ID(Γ) + IE(Q,d)

− ρ

2

∑K

k=1

∑M

m=1

∣∣Γk,m − hH
k wm + Λk,m

∣∣2

− ρ

2

(∑K

k=1
|dk − r + uk|2 +

∑M

m=1
∥vm −wm + zm∥22

)

− ρ

2

∑K

k=1

∑M

m=1

∣∣qk,m − hH
k wm +Ψk,m

∣∣2 , (32)

where ρ > 0 is the penalty parameter, Z = [z1, . . . , zM ],
[Ψ]k,m = Ψk,m, [Λ]k,m = Λk,m, and u = [u1, . . . , uK ]T are
the scaled dual variables for constraints (23), (24), (25), and
(26), respectively. Our proposed algorithm for solving P5 is
described in Algorithm 1, which alternates between updating
the two blocks of the primal variables, {V,Γ,Q,d} and
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{W, r}, and the dual variables, {Λ,Ψ,u,Z}, till convergence.
In Algorithm 1, ϵpri,M and ϵdual,M are the primal and dual
residuals defined similar to [43]. Interestingly, the primal
variables can be updated in closed or semi-closed form in steps
3 and 4, as elaborated in the following. On the other hand, the
dual variables are updated using the subgradient method in
step 5.

1) Update of {V,Γ,Q,d}: Let n be the iteration index.
The update at each iteration can be further decomposed
into three independent subproblems of V, Γ, and {Q,d},
respectively, which can be solved in parallel.

Updating V: The update of V at iteration n can be
expressed as

min
V

∑M

m=1

∥∥∥vm −w(n)
m + z(n)m

∥∥∥
2

2
(33)

s.t. (30b),

whose optimal solution is given by [44]

v∗
m = min




1,

√√√√
P

∑M
m=1

∥∥∥w(n)
m − z

(n)
m

∥∥∥
2

2





∗ (w(n)
m − z(n)m ).

(34)
Updating Γ: The update of Γ at iteration n further divides

into K independent subproblems and the subproblem with
index k is expressed as

min
Γk

∑M

m=1

∣∣∣Γk,m − hH
k w(n)

m + Λ
(n)
k,m

∣∣∣
2

(35a)

s.t. Θk(Γk) ≤ 0. (35b)

Problem (35) is convex and its optimal solution is character-
ized as follows.

Theorem 3. The optimal solution of problem (35) is given by

Γ∗
k,m =




hH
k w

(n)
m −Λ(n)

k,m+µ∗hH
k w

(t)
m , if m=I(k),

hH
k w(n)

m −Λ
(n)
k,m

1+µ∗γ̂I(k)
, otherwise,

(36)

where µ∗ = 0 if ψ(0) < 0, ψ(µ∗) = Θk(Γ
∗
k); otherwise,

µ∗ > 0 is the unique root of equation ψ(µ∗) = 0.

Proof. Please refer to Appendix C.

Updating {Q,d}: The update of {Q,d} at iteration n also
divides into K independent subproblems and the subproblem
with index k is expressed as

min
qk,dk

∣∣∣dk − r(n) + u
(n)
k

∣∣∣
2

+
∑M

m=1

∣∣∣qk,m − hH
k w(n)

m +Ψ
(n)
k,m

∣∣∣
2

(37a)

s.t. Υk(dk,qk) ≤ 0. (37b)

Problem (37) is also convex and its optimal solution is given
as follows.

Theorem 4. The optimal solution of problem (37) is given by

d∗k = r(n) − u
(n)
k − ϱ∗/2, (38a)

q∗k,m =
2hH

k w
(n)
m − 2Ψ

(n)
k,m + ϱ∗

(
δ
(t)
k,m

)⋆

2 + 2ϱ∗c(t)k

, (38b)

Algorithm 1 Proposed algorithm for solving P5

1: Initialize n = 0, W(n), r(n), Λ(n),Ψ(n),u(n),Z(n), set
ρ, ε1 and Nmax

1 ;
2: repeat
3: Update {V(n+1),Γ(n+1),Q(n+1),d(n+1)}:

{V(n+1),Γ(n+1),Q(n+1),d(n+1)}
= argmax

V,Q,Γ,d
LM(W(n), r(n),V,Γ,Q,d)

4: Update {W(n+1), r(n+1)}:

{W(n+1), r(n+1)}
= argmax

W,r
LM(W, r,V(n+1),Γ(n+1),Q(n+1),d(n+1)),

5: Update {Λ(n+1),Ψ(n+1),u(n+1),Z(n+1)}:

Λ
(n+1)
k,m = Λ

(n)
k,m + Γ

(n+1)
k,m − hH

k w(n+1)
m ,

Ψ
(n+1)
k,m = Ψ

(n)
k,m + q

(n+1)
k,m − hH

k w(n+1)
m ,

u
(n+1)
k = u

(n)
k + d

(n+1)
k − r(n+1),

z(n+1)
m = z(n)m + v(n+1)

m −w(n+1)
m ,

6: n = n+ 1;
7: until max{εpri,M, εdual,M} ≤ ε1 or n ≥ Nmax

1 .

where ϱ∗ = 0 if ϕ(0) < 0, ϕ(ϱ∗) = Υk(d
∗
k,q

∗
k); otherwise,

ϱ∗ > 0 is the unique root of ϕ(ϱ∗) = 0.

Proof. Please refer to Appendix D.

2) Update of {W, r}: The update of {W, r} at iteration
n involves solving an unconstrained optimization problem

min
W,r

ρ

2

∑K

k=1

∑M

m=1

∣∣∣Γ(n+1)
k,m − hH

k wm + Λ
(n)
k,m

∣∣∣
2

+
ρ

2

∑M

m=1

∥∥∥v(n+1)
m −wm + z(n)m

∥∥∥
2

2

+
ρ

2

∑K

k=1

∑M

m=1

∣∣∣q(n+1)
k,m − hH

k wm +Ψ
(n)
k,m

∣∣∣
2

− r +
ρ

2

∑K

k=1

∣∣∣d(n+1)
k − r + u

(n)
k

∣∣∣
2

. (39)

By setting the first-order derivative of the objective function
to zero, the optimal solution of (39) is given by

w∗
m =

(
INt + 2

∑K

k=1
hkh

H
k

)−1 {
v(n+1)
m + z(n)m (40a)

+
∑K

k=1
hk

(
Γ
(n+1)
k,m + Λ

(n)
k,m + q

(n+1)
k,m +Ψ

(n)
k,m

)}
,

r∗ =
1 + ρ

∑K
k=1

(
d
(n+1)
k + u

(n)
k

)

Kρ
. (40b)

3) Overall Solution of Problem P3: The proposed algorithm
for solving P3 is described in Algorithm 2. According to [43],
Algorithm 1 is guaranteed to converge to the optimal solution
of the convex problem P5. Moreover, Algorithm 2 is an MM-
type solution [45], which is guaranteed to converge to a locally
optimal solution of P3.
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Algorithm 2 Proposed algorithm for solving P3

1: Initialize W(0), r(0) = mink∈K
{
R(γk(W

(0)), ϑI(k))
}

,
t = 0, set ε2, and Tmax

1 ;
2: repeat
3: Update (W(t+1), r(t+1)) by solving P5 with Algorithm

1;
4: t = t+ 1;
5: until

∣∣r(t) − r(t−1)
∣∣ ≤ ε2 or t ≥ Tmax

1 .

B. WSR Multicasting Beamforming Design

Employing the approximations in (14) and (21), and intro-
ducing auxiliary variables r = [r1, . . . , rM ]T , we can rewrite
problem P4 in the following convex form

P8 : max
W,r

F (r) ≜
∑M

m=1
ωmrm (41a)

s.t. (6b), (21), (41b)

rI(k) ≤ Rk(W,W(t)),∀k ∈ K. (41c)

where W(t) is a given feasible beamforming solution. Problem
P8 can be solved using the same method as P5, for which we
only provide a sketch of the derivations below.

Particularly, by introducing auxiliary variables as in (23),
(24), (25) and additionally

dk = rI(k), ∀k ∈ K, (42)

problem P8 can be equivalently reformulated as

P9 : max
W,r,V,Γ,Q,d

F (r) + IC(V) + ID(Γ) + IE(Q,d) (43)

s.t. (23), (24), (25), (42).

Similar to P7, the variables of P9 can be split into two blocks,
{V,Γ,Q,d} and {W, r}, which are then optimized using
the BCD approach. The proposed solutions for P8 and P4 are
summarized in Algorithms 3 and 4, respectively. In Algorithm
3, the augmented Lagrangian of P9 is given by

LW(W, r,V,Γ,Q,d)

= F (r) + IC(V) + ID(Γ) + IE(Q,d)

− ρ

2

∑K

k=1

∑M

m=1

∣∣Γk,m − hH
k wm + Λk,m

∣∣2

− ρ

2

(
K∑

k=1

∣∣dk − rI(k) + uk
∣∣2 +

M∑

m=1

∥vm −wm + zm∥22

)

− ρ

2

∑K

k=1

∑M

m=1

∣∣qk,m − hH
k wm +Ψk,m

∣∣2 . (44)

Based on (44), W, Γ, V can be updated at iteration n in the
same manner as in the MMF problem. Meanwhile, Q and d

can be updated similarly by replacing r(n) in (37) with r(n)I(k).
The details are omitted here for saving space. On the other
hand, r can be updated in iteration n as

max
r

F (r)− ρ

2

∑K

k=1

∣∣∣d(n+1)
k − rI(k) + u

(n)
k

∣∣∣
2

, (45)

whose optimal solution is given by

r∗m =
ωm + ρ

∑
k∈Km

(
d
(n+1)
k + u

(n)
k

)

Kmρ
, m ∈ M. (46)

Algorithm 3 Proposed algorithm for solving P8

1: Initialize n = 0, W(n), r(n), Λ(n),Ψ(n),u(n),Z(n), set
ρ, ε3, and Nmax

2 ;
2: repeat
3: Update {V(n+1),Γ(n+1),Q(n+1),d(n+1)}:

{V(n+1),Γ(n+1),Q(n+1),d(n+1)}
= argmax

V,Γ,Q,d
LW(W(n), r(n),V,Γ,Q,d),

4: Update {W(n+1), r(n+1)}:

{W(n+1), r(n+1)}
= argmax

W,r
LW(W, r,V(n+1),Γ(n+1),Q(n+1),d(n+1)),

5: Update {Λ(n+1),Ψ(n+1),u(n+1),Z(n+1)}

Λ
(n+1)
k,m = Λ

(n)
k,m + Γ

(n+1)
k,m − hH

k w(n+1)
m ,

Ψ
(n+1)
k,m = Ψ

(n)
k,m + q

(n+1)
k,m − hH

k w(n+1)
m ,

u
(n+1)
k = u

(n)
k + d

(n+1)
k − r

(n+1)
I(k) ,

z(n+1)
m = z(n)m + v(n+1)

m −w(n+1)
m ,

6: n = n+ 1;
7: until max{εpri,W, εdual,W} ≤ ε3 or n ≥ Nmax

2 .

Algorithm 4 Proposed algorithm for solving P4

1: Initialize W(0), r(0)m = mink∈Km

{
R(γk(W

(0)), ϑm)
}

,
∀m ∈ M, t = 0, set ε4 and Tmax

2 ;
2: repeat
3: Update (W(t+1), r(t+1)) by solving P8 with Algorithm

3;
4: t = t+ 1;
5: until

∣∣F (r(t))− F (r(t−1))
∣∣ ≤ ε4 or t ≥ Tmax

2 .

Algorithm 3 is guaranteed to converge to the optimal solution
of P8 [43]. Following [45], the MM-type Algorithm 4 is
guaranteed to converge to a locally optimal solution of P4.

Remark 2. Although problems P3 and P4 are non-convex, they
can be efficiently solved using our proposed low-complexity
Algorithms 2 and 4, respectively, with the variables parallelly
updated in closed or semi-closed form. Note that although
the matrix inversion step in updating the beamforming matrix
(40a) is computationally intensive, it is only incurred when
the channels change. Therefore, the overall computation time
of our proposed multicast beamforming design remains low,
as evidenced by the results in Tables I and II of Section VI.
Due to the significant reduction in the processing delay, our
proposed low-complexity multicast beamforming designs for
massive MIMO further help lower the E2E latency, which is
desired for practical systems.

V. ASYMPTOTIC MULTICAST BEAMFORMING DESIGN

In this section, we study the multicast beamforming design
in the FBL regime when the BS has a large number of
transmit antennas, i.e., Nt → ∞. Throughout this section,
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we consider the independent Rayleigh fading channel5 hk =√
Γkh̃k, k ∈ K, where Γk ∈ R and h̃k ∼ CN (0Nt

, INt
)

denote the large-scale channel attenuation and the small-scale
fading coefficients, respectively. Moreover, similar to [14], we
consider that the BS transmit power P is inversely proportional
to Nt, i.e., satisfying P = E/Nt for a constant power E.
Our derivation is based on the following lemma about random
vectors.

Lemma 3 ( [49]). Let x,y ∈ CL×1 be mutually independent
random vectors whose elements are independent and identi-
cally distributed zero-mean random variables with variances
σ2
x and σ2

y , respectively. The law of large numbers yields

lim
L→∞

xHy

L
= 0, and lim

L→∞
xHx

L
= σ2

x. (47)

Lemma 3 implies that the channel vectors of different users
become pairwisely orthogonal as Nt → ∞. Subsequently, one
may conjecture that, as Nt → ∞, the optimal beamformer of
group m lies in the subspace spanned by the channel vectors
hk,∀k ∈ Km, for maximizing the users’ received SINR. This
intuition is manifested by the following result.

Lemma 4. When Nt → ∞, the optimal beamforming solu-
tions for P3 and P4 have the following structure6,

w∗
m =

∑
k∈Km

ξkhk, ∀m ∈ M, (48)

where {ξk}Kk=1 are the complex combining coefficients.

Proof. Please refer to Appendix E.

According to Lemma 4, to facilitate the optimal multicast
beamforming design for large Nt, it remains to find the
optimal combining coefficients ξk. However, directly solving
the problems P3 and P4 for large Nt by substituting (48) is still
challenging due to their non-smooth and non-concave objec-
tive functions. To tackle this obstacle, we let pm = ∥w∗

m∥22 /P
and κk = ξk

√
ΓkNt/pm be the normalized power of group m

and the normalized combining coefficients, respectively. Then,
(6b) reduces to

∑
m∈M pm ≤ 1. Substituting ξk in (48) by pm

and κk, we have

w∗
m =

∑
k∈Km

√
Ppm/Ntκkh̃k, ∀m ∈ M, (49)

and as Nt → ∞,

∥w∗
m∥22

pmP
=

∑

i,j∈Km

|κ⋆i κj | h̃H
i h̃j

Nt

(a)
=

∑

k∈Km

|κk|2 = 1. (50)

5The independent Rayleigh fading channel is an accurate and tractable
channel model for communication scenarios with rich scattering [8], [46],
[47]. For this reason, it has been widely considered in the massive MIMO
literature [8], [11], [14], [16], [29], [47], [48] to analyze or derive the optimal
beamforming solutions for unicasting with IBL/FBL or multicasting with IBL.
This channel model is also considered in our paper for insights into the optimal
beamforming structure for massive MIMO multicasting in the FBL regime.
Extending the FBL multicast beamforming design to general correlated fading
channels is an interesting topic left for the future work.

6With a slight abuse of notation in (48), we don’t distinguish the combining
coefficients nor the beamforming vectors for P3 and P4. Because we will show
in Sec. V-A that P3 and P4 have the same optimal normalized combining
coefficients.

Here, (a) follows from Lemma 3. Moreover, the asymptotic
SINR of user k is given by

lim
Nt→∞

γk = lim
Nt→∞

pI(k)E

∣∣∣∣∣
∑

i∈KI(k)

√
Γkκ

⋆
i h̃

H
i h̃k/Nt

∣∣∣∣∣

2

∑
m̸=I(k)

pmE

∣∣∣∣∣
∑

j∈Km

√
Γkκ⋆j h̃

H
j h̃k/Nt

∣∣∣∣∣

2

+ σ2
k

(b)
= gk |κk|2 , (51)

where gk = ΓkpI(k)E/σ
2
k and (b) follows from Lemma 3.

Remark 3. In (51), the interference from inter-group users
vanishes as their fading channel vectors are orthogonal to h̃k.
Meanwhile, thanks to the law of large numbers, the effect
of small-scale fading disappears such that the users’ SINR
depends only on the large-scale attenuation. Hence, massive
MIMO can enhance the reliability for communications over
multiuser fading channels.

Based on (51), the optimal multicast beamformers for large
Nt are determined by both the power allocation {pm}Mm=1

and the normalized combining coefficients {κk}Kk=1. We de-
compose the optimal solution into two steps. First, given any
feasible power allocation, we optimize the combing coeffi-
cients. In Section V-A, we show that the resulting optimal
combining coefficients {κ∗k}Kk=1 of problems P3 and P4 can
be derived in closed form for large Nt. Next, we optimize
the power allocations to obtain the globally optimal multicast
beamformers for large Nt. This is considered in Section V-B
and V-C using iterative algorithms.

A. Optimal Combining Coefficients

Following (51), let {pm}Mm=1 be any feasible power allo-
cation such that there exists combining coefficients {κk}Kk=1

satisfying (6b) and (10) as Nt → ∞. Since the users’ SINRs
do not change with the phases of {κk}Kk=1 in (51), we set
{κk}Kk=1 to be real positive numbers without loss of the
optimality. Consequently, problems P3 and P4 with given
feasible power allocation {pm}Mm=1 reduce to

P10 : max
{κk}k∈K

min
k∈K

R(gkκ
2
k, ϑI(k)) (52a)

s.t.
∑

k∈Km

κ2k = 1,∀m ∈ M, (52b)

gkκ
2
k ≥ γ̂I(k),∀k ∈ K, (52c)

and

P11 : max
{κk}k∈K

∑M

m=1
min
k∈Km

R(gkκ
2
k, ϑm) (53)

s.t. (52b), (52c),

where (52b) follows from (50). Note that there exists no
coupling between different groups of multicasting users
{κk}k∈Km

and {κk}k∈Km′ for any m,m′ ∈ M and m ̸= m′

in problems P10 and P11. Hence, despite of their different
objective functions, P10 and P11 can be divided into exactly
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Algorithm 5 Proposed algorithm for solving P13

1: Initialize rl = min
m∈M

R̄G
m, ru = max

m∈M
R(Γ̂m, ϑm), set ε5;

2: repeat
3: r̄ = (rl + ru)/2;
4: Calculate {p̄m} using (58);
5: if

∑
m∈M p̄m ≥ 1; then

6: ru = r̄;
7: else
8: rl = r̄;
9: end if

10: until |rl − ru| ≤ ε5.

Algorithm 6 Proposed algorithm for solving P15

1: Initialize {p(0)m }, t = 0, set ε6 and Tmax
3 ;

2: repeat
3: Update {p(t+1)

m } based on Theorem 6;
4: t = t+ 1;
5: until

∣∣∣Ξ
(
{p(t)m }

)
− Ξ

(
{p(t−1)

m }
)∣∣∣ ≤ ε6 or t ≥ Tmax

3 .

the same set of M independent subproblems, where the
subproblem m is given as

P12 : max
{κk}k∈Km

min
k∈Km

R(gkκ
2
k, ϑm) (54a)

s.t.
∑

k∈Km

κ2k = 1, (54b)

gkκ
2
k ≥ γ̂m,∀k ∈ Km. (54c)

Meanwhile, although problem P12 is non-convex due to the
non-convex objective function and constraints (54b) and (54c),
we are able to analytically characterize its optimal solution in
the following theorem.

Theorem 5. Problem P12 is feasible if and only if Γ̂mpm ≥
γ̂m, ∀m ∈ M, where Γ̂m = E/

(∑
i∈Km

σ2
i /Γi

)
. When P12

is feasible, its optimal solution is given by

κ∗k =
1√∑

i∈Km
(Γkσ2

i )/(Γiσ2
k)
, ∀k ∈ Km, (55)

the resulting optimal objective value is R(Γ̂mpm, ϑm) =
R(gk(κ

∗
k)

2, ϑm),∀k ∈ Km.

Proof. Please refer to Appendix F.

Theorem 5 reveals that when Nt → ∞, the optimal
normalized combining coefficients {κ∗k}Kk=1 for P3 and P4

are independent of the given power allocation {pm}Mm=1.
Therefore, the asymptotic multicast beamforming optimization
problems P3 and P4 are feasible if and only if there exists
power allocation {pm}Mm=1 such that Γ̂mpm ≥ γ̂m, ∀m ∈ M.
Moreover, for solving P3 and P4, we only need to optimize the
power allocation with the number of variables being reduced
from MNt to M . This significantly lowers the computation
time for beamforming design in the FBL regime and improves
the system performance.
B. Asymptotic MMF Multicast Beamforming Design

Following Theorem 5 and introducing an auxiliary variable
r, when Nt → ∞, problem P3 simplifies into

P13 : max
{pm},r

r (56a)

s.t.
∑M

m=1
pm ≤ 1, (56b)

Γ̂mpm ≥ γ̂m,∀m ∈ M, (56c)

r ≤ R(Γ̂mpm, ϑm),∀m ∈ M. (56d)

Note that when P13 is feasible, the constraint (56b) must be
satisfied with equality at the optimality, i.e.,

∑M
m=1 pm = 1.

To solve problem P13, we first consider the following feasi-
bility problem for given r̄ ∈ R:

P14 : find {pm} (57)
s.t. (56b), (56c),

r̄ ≤ R(Γ̂mpm, ϑm),∀m ∈ M.

Let r∗ denote the optimal objective value of P13. Problem
P14 is feasible if and only if r∗ ≥ r̄; otherwise, r∗ < r̄.
This implies that the globally optimal solution of P13 can be
obtained using a bisection procedure as given in Algorithm 5,
which solves a sequence of problems P14 to tighten the gap
between r̄ and r∗. Recall that R(γ̂m, ϑm) = R̄G

m, ∀m ∈ M.
Based on Lemma 1, if r̄ ≥ R̄G

m, there must be a unique solu-
tion p̃m > γ̂m/Γ̂m such that R(Γ̂mp̃m, ϑm) = r̄; otherwise,
pm = γ̂m/Γ̂m holds in (56c). Thus P14 is feasible if and only
if

p̄m = max {γ̂m/Γ̂m, p̃m}, ∀m ∈ M, (58)

satisfies
∑M

m=1 p̄m ≤ 1.

C. Asymptotic WSR Multicasting Beamforming Design

Similarly, following Theorem 5, when Nt → ∞, problem
P4 can be simplified as

P15 : max
{pm}

Ξ({pm}) =
∑M

m=1
ωmR(Γ̂mpm, ϑm) (59a)

s.t.
∑M

m=1
pm = 1, (59b)

(56c).

From Theorem 1, the objective function of P15 is non-concave
in general, making problem P15 non-convex. We first rewrite
P15 in a convex form and then solve it using an iterative
algorithm. To this end, we note that Ω(x) =

√
1− (1 + x)−2

is a concave function with second-order derivative

d2Ω(x)

dx2
=

−3x2 − 6x− 1

(1− (1 + x)−2)
3/2

(1 + x)6
< 0, ∀x > 0. (60)

This implies that Ω(x) is upper bounded by its first-order
Taylor expansion, i.e., Ω(x) ≤ Ω1(x0)x + Ω2(x0), ∀x0 > 0,
where Ω1(x0) = (1 + x0)

−3/
√
1− (1 + x0)−2 > 0 and

Ω2(x0) = Ω(x0)−Ω1(x0)x0. Then P15 can be approximated
as:

P16 : max
{pm}

∑M

m=1
ωm

(
ln(1 + Γ̂mpm)− χmpm − νm

)

(61)
s.t. (56c), (59b).

where χm = ϑmΓ̂mΩ1(Γ̂mp
(t)
m ), νm = ϑmΩ2(Γ̂mp

(t)
m ), and

{p(t)m }Mm=1 is a feasible solution satisfying (56c) and (59b).
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Problem P16 is convex and admits an optimal solution as given
in the following theorem.

Theorem 6. The optimal solution of P16 is given by

p∗m = max

{
ωm

ωmχm + π∗ − 1

Γ̂m

, γ̂m/Γ̂m

}
, ∀m ∈ M,

(62)
where π∗ is chosen such that

∑M
m=1 p

∗
m = 1.

Proof. Problem P16 has a similar formulation as conventional
power allocation problem for sum-rate maximization. Hence
it also adopts a waterfilling-like solution in (62) [44].

The algorithm for solving P15 provides a solution of the
MM-type and is summarized in Algorithm 6, which converges
to a locally optimal solution of P15 [50]. Moreover, we have
the following result on the globally optimal solution of P15.

Theorem 7. When P15 is feasible and additionally, γ̂m ≥
γ̄3,m,∀m ∈ M, problem P15 is convex and its optimal
solution is given by

p∗m =

{
p̆m, if ωmΓ̂m∆(γ̂m, ϑm) ≥ τ∗,

γ̂m/Γ̂m, otherwise,
(63)

where γ̄3,m = γ̄3(ϑm) is given in Lemma 2, τ∗ is chosen such
that

∑M
m=1 p

∗
m = 1, p̆m ≥ 0 is the unique solution to equation

ωmΓ̂m∆(Γ̂mp̆m, ϑm) = τ∗ if ωmΓ̂m∆(γ̂m, ϑm) ≥ τ∗, and

∆(x, y) =
1

1 + x

(
1− y

1

(1 + x)
√

(1 + x)2 − 1

)
. (64)

Proof. Please refer to Appendix G.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
algorithms by simulation. We consider a multicasting from a
BS with Nt antennas to K single-antenna users over a system
bandwidth of B = 1 MHz and a transmission blocklength
of N . The users are uniformly and randomly located in a
disk with an inner radius of 50 meters and an outer radius
of 200 meters. The users are divided into M groups of equal
size. We consider the independent Rayleigh fading channel
h̃k ∼ CN (0Nt , INt) and calculate the large-scale path loss
as Γk = −35.3 − 37.6log10Lk dB, where Lk is the distance
between the BS and user k in meters [8], [12], [14], [16],
[26]. The noise power spectral density is σ2

k = −174 dBm/Hz.
Unless otherwise specified, we set M = 3,K = 12, Nt = 64,
Tmax = 0.1 ms, ωm = 1/M , and N = BTmax = 100; mean-
while, each multicast group requires a BLER of ϵm = 10−e(m)

according to e(m) = min {5 + (m− 1)× ⌈5/(M − 1)⌉ , 10},
a minimum data volume Dm = D = 50 nats, and a minimum
rate R̄G

m = R̄ = 0.5 nats/s/Hz, ∀m ∈ M. The results of
finite Nt are averaged over 100 random realizations of channel
hk,∀k ∈ K. Similar to [27], the value of the objective function
is set to zero if the obtained solution violates any constraint.
We set ρ = 0.1 for both Algorithms 1 and 3. For the multicast

beamforming with finite Nt, semi-definite relaxation (SDR) in
[7] is used for initialization. 7

A. MMF Beamforming

First, we evaluate the MMF performance of the following
schemes: (i) ‘Proposed’, namely the proposed Algorithm 2;
(ii) ‘BFwMOSEK’, which solves the subproblem P5 in the
proposed Algorithm 2 using Mosek [51]; (iii) ‘SDR-IBL’,
which assumes the infinite blocklength in problem P1 and
solves it with SDR [7]; (iv) ‘SDR-FBL’, which evaluates
the solution obtained from ‘SDR-IBL’ directly with the FBL
rate; and (v) ‘SDR-GauRan-FBL’, which differs from ‘SDR-
FBL’ in approximating the solution from ‘SDR-IBL’ using
the Gaussian randomization before employing it for FBL
transmission. We set P = 10 mW.

Fig. 2 and Table I show the average minimum rate and the
computation time of different considered schemes versus the
number of transmit antennas Nt, respectively. We observe that,
as expected, ‘SDR-IBL’ provides a performance upper bound
for the minimum rate since it employs the infinite blocklength.
On the other hand, the ‘SDR-FBL’ and ‘SDR-GauRan-FBL’
approaches lead to not only poor MMF performance but
also high computation time. This result implies that it is
imperative to consider the FBL rate and design low-complexity
algorithms tailored for optimizing massive MIMO multicast
beamforming in the FBL regime. Meanwhile, the proposed
and the ‘BFwMOSEK’ schemes achieve similar performance,
which validates the effectiveness of the proposed Algorithm
1. Interesting, the proposed scheme always achieves both the
best performance and the lowest computation time among
the considered FBL transmission schemes, irrespective of the
number of transmit antennas Nt. The latter is due to the
parallel updating of beamforming optimization in closed or
semi-closed form, whereby the computation requirement of
our proposed scheme increases much slower with Nt than
the other schemes. Thus, our proposed scheme is particularly
attractive for massive MIMO systems in the FBL regime. For
example, the proposed design is about 10~350 times faster
than the SDR methods and about 3~160 times faster than
‘BFwMOSEK’.

Fig. 3 illustrates the minimum rate versus the transmission
blocklength N . We observe that the minimum rates of the
considered FBL transmission schemes increase monotonically
with the blocklength and only coincide with that of the ‘SDR-
IBL’ scheme for very large blocklength N , before the FBL rate
(4) approaches the Shannon rate ln(1 + γk(W)). However,
large performance gaps exist for small N , e.g., N = 100,
where the impact of blocklength needs to be considered
for multicast beamforming optimization to guarantee reliable
communications.

We further evaluate the minimum multicast rate of different
groups over the considered feasible channel realizations for the
MMF beamforming design in Fig. 4, where we set N = 100,
and P = 0.8 mW. As can be seen from Fig. 4, the QoS

7Since the considered schemes use the same initial solutions, the time
for initialization is not included in calculating the computation time. For
fast initialization, the alternating direction method of multipliers (ADMM)
algorithm in [11] can be used.
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Figure 2. Minimum multicast rate vs. number of transmit antennas Nt (P =
10 mW, M = 3, K = 12, and N = 100).

Table I
AVERAGE COMPUTATION TIME OF DIFFERENT MMF BEAMFORMING
DESIGNS OVER Nt IN SECONDS (P = 10 MW, M = 3, K = 12, AND

N = 100).

Nt 32 48 64 80 100
Proposed 2.93 3.59 4.43 4.83 5.49

BFwMOSEK 9.3 58.3 101.2 321.41 912.1
SDR8 32.59 53.11 343.74 631.77 1922.5

requirement (6c) can be strictly fulfilled with our proposed
design. On the contrary, the ‘SDR-GauRan-FBL’ scheme using
the Shannon rate cannot meet the QoS requirement. This
result indicates that it is necessary to consider the impact of
blocklength to ensure the QoS requirements of FBL commu-
nications.
B. WSR Beamforming

We now evaluate the WSR performance of the following
schemes: (i) ‘Proposed’, namely the proposed Algorithm 4;
(ii) ‘BFwMOSEK’, which solves problem P8 in the proposed
Algorithm 4 using Mosek [51]; (iii) ‘Proposed-IBL’, which
assumes the infinite blocklength in problem P2 and solves
it via the proposed Algorithm 4; (iv) ‘Conventional alg.’,
which employs the solution from ‘Proposed-IBL’ directly for
FBL transmission; and (v) ‘WMMSE’, which differs from (iv)
in solving problem P2 with the infinite blocklength via the
WMMSE method [21] before employing the obtained solution
for FBL transmission. The FBL rate is evaluated for both
‘Conventional alg.’ and ‘WMMSE’ schemes.

Fig. 5 and Table II present the WSR and the computation
time of the considered schemes versus the number of transmit
antennas Nt, respectively, where P = 1.5 mW. As expected,
since ‘Proposed-IBL’ employs the infinite blocklength, it pro-
vides a performance upper bound. On the other hand, the
WMMSE method not only has a poor performance similar
to ‘Conventional alg.’, but also leads to a higher computation
time, highlighting the importance of low-complexity beam-
forming solutions for FBL multicast. Moreover, we observe
that the proposed and ‘BFwMOSEK’ schemes achieve similar
performance, which proves the effectiveness of Algorithm 3.
Due to the parallel updating for beamforming optimization
in closed or semi-closed forms, our proposed scheme always
achieves both the best performance and lowest computation

8The computation time of ‘SDR-IBL’ or ‘SDR-FBL’ is almost the same as
that of ‘SDR-GauRan-FBL’ because the time for Gaussian randomization is
negligible. Therefore, we only consider the computation time for SDR.
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Figure 3. Minimum multicast rate vs. blocklength N (P = 10 mW, M = 3,
K = 12, Nt = 64).
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Figure 4. Minimum multicast rate of different groups for the MMF multicast
beamforming (P = 0.8 mW, M = 3, K = 12, Nt = 64).

time among the considered FBL transmission schemes. For
example, the proposed scheme is about 14~220 times faster
than ‘BFwMOSEK’ and about 29~2200 times faster than the
WMMSE method. Due to the significant reductions in the
processing delay (cf. Table I as well), our proposed low-
complexity solutions can also contribute to lower the E2E
latency for latency-sensitive applications. Interestingly, the
‘Proposed’, ‘BFwMOSEK’, and ‘Conventional alg.’ schemes
have similar performance for large Nt, e.g., Nt = 100. This
is because the users’ SINR are large enough such that the
channel dispersion V (γk(W)) ≈ 1 in (4) and its penalty on
the achievable rate in the objective function of problem P2 can
be ignored.

Fig. 6 shows the WSR versus the transmit power P . We
observe that a large performance gap between the proposed
and ‘Conventional alg.’ schemes also exists when the transmit
power is low, e.g., P = 1 mW. This is because the ‘Con-
ventional alg.’ scheme based on the Shannon rate has a high
probability of violating the QoS constraints (6c). Thus, using
the FBL rate is crucial for multicast beamforming design with
low transmit power.

Fig. 7 illustrates the minimum multicast rate of different
groups over the considered feasible channel realizations for
the WSR beamforming design, where we set N = 100, and
P = 0.8 mW. We observe that our proposed design can
successfully meet the QoS requirement (6c). On the contrary,
the minimum multicast rate of ‘WMMSE’ and ‘Proposed-
IBL’ are only 7% of the required data rate, for which the
QoS constraint (6c) cannot be guaranteed. This result again
demonstrates the necessity of considering the impact of FBL
in latency-sensitive and reliable communications.
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Table II
AVERAGE COMPUTATION TIME OF DIFFERENT WSR BEAMFORMING

DESIGNS OVER Nt IN SECONDS (P = 1.5 MW, M = 3, K = 12, AND
N = 100).

Nt 32 48 64 80 100
Proposed 0.891 0.988 1.138 1.146 1.58

BFwMOSEK 13.214 28.157 80.106 243.18 353.529
WMMSE 26.153 128.65 576.71 2211.9 N/A(>3600)
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Figure 5. WSR vs. number of transmit antennas Nt (P = 1.5 mW, M = 3,
K = 12, and N = 100).

C. Asymptotic Beamforming

We further evaluate the performance of the asymptotic
beamforming designs. The asymptotic results are averaged
over 500 random realizations of user positions. For each
realization of user positions, 500 independent scenarios of
small-scale fading, h̃k,∀k ∈ K, are generated.

First, we compare the MMF performance of the following
schemes: (i) ‘Proposed’, namely the proposed Algorithm 5; (ii)
‘Proposed-IBL’, namely the proposed Algorithm 5 with the
infinite blocklength; and (iii) ‘Conventional alg.’, where the
solution from ‘Proposed-IBL’ is employed for FBL transmis-
sion. We set R̄G

m = R̄ = 1 nats/s/Hz, ∀m ∈ M. Fig. 8 shows
the average minimum rate versus E. We use color and marker
to distinguish different schemes and use solid, dashed, and
dotted lines to denote the asymptotic result, simulation results
with Nt = 1000 and Nt = 10000, respectively. We observe
that in both asymptotic analysis and simulation, our proposed
solution achieves higher performance than ‘Conventional alg.’
scheme.

Next, we compare the WSR performance of the following
schemes: (i) ‘Proposed’, namely the proposed Algorithm 6; (ii)
‘Proposed-IBL’, namely the proposed Algorithm 6 with the in-
finite blocklength; (iii) ‘Conventional alg.’, where the solution
from ‘Proposed-IBL’ is employed for FBL transmission; and
(iv) ‘Optimal solution’, which is obtained from Theorem 7.
Fig. 9 shows the average WSR versus E. For simplicity, we
set ϵm = 10−8,∀m ∈ M and consider two cases, i.e., R̄ = 1
nats/s/Hz and R̄ = 0.01 nats/s/Hz. For R̄ = 1 nats/s/Hz, the
globally optimal solution of problem P15 is given by Theorem
7, which is also plotted. From Fig. 9, we observe that the
optimal solution and the proposed Algorithm 6 achieve similar
performance. This is expected because, according to Theorem
7, problem P15 is convex such that its locally and the globally
optimal solutions coincide with each other. Meanwhile, both
the optimal and the proposed schemes significantly outperform
‘Conventional alg.’, particularly when E is small. On the
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Figure 6. WSR vs. transmit power P in mW (Nt = 64, M = 3, K =
12, and N = 100).
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Figure 7. Minimum multicast rate of different groups for WSR multicast
beamforming (P = 0.8 mW, M = 3, K = 12, Nt = 64).

other hand, when R̄ = 0.01 nats/s/Hz, Theorem 7 cannot be
used to obtain the globally optimal solution of problem P15.
Nevertheless, the proposed Algorithm 6 can still be used to
obtain the locally optimal solution of problem P15 , which is
shown to outperform ‘Conventional alg.’ scheme. Moreover,
as can be seen from Fig. 9, the performance gap between
our proposed scheme and the conventional design narrows
as the transmit power increases. This is because the users’
SINR will be large enough such that the channel dispersion
V
(
Γ̂mpm

)
≈ 1 and its impact on the objective function of

problem P15 becomes negligible.

VII. CONCLUSIONS

In this paper, we studied the beamforming designs for
massive MIMO multicast in the FBL regime under the MMF
and WSR criteria. We revealed that the non-negative FBL rate
is a concave function of the received SINR if and only if the
function parameter exceeds a constant threshold. Considering
finite number of transmit antennas at the BS, we proposed low-
complexity algorithms to obtain the locally optimal solutions
of the formulated problems, where variables are updated in
closed or semi-closed form. For an unlimited number of trans-
mit antennas at the BS, we showed that the asymptotic optimal
beamformer of each group is a linear combination of the
channel vectors of users in the group and derived the optimal
normalized combining coefficients in closed form. Based on
this fact, we obtain the globally optimal multicast beamformers
by reducing the problems to power allocation optimizations
and further solve them via iterative algorithms. Simulation
results showed that our proposed designs outperform several
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baseline schemes and have a substantial computational reduc-
tions of up to two orders of magnitude over the benchmarks,
which are appealing for massive MIMO systems.

APPENDIX A
PROOF OF THEOREM 1

The first- and second-order derivatives of R(γ, ϑ) w.r.t. γ
are given by

∂R(γ, ϑ)

∂γ
=

1

1 + γ

(
1− ϑ

1

(1 + γ)
√

(1 + γ)2 − 1

)
, (65)

∂2R(γ, ϑ)

∂γ2
= −1− ϑφ(γ)

(1 + γ)2
, (66)

where

φ(γ) =
3(1 + γ)2 − 2

(1 + γ) ((1 + γ)2 − 1)
3
2

. (67)

Since γ̄2 > 0 and R(γ̄2, ϑ) = 0, we have

ϑ

1 + γ̄2
=

ln(1 + γ̄2)√
(γ̄2 + 2)γ̄2

. (68)

From Lemma 2 and (66), we have ϑφ(γ) < 1 for γ > γ̄3
and ϑφ(γ) ≥ 1 for γ ≤ γ̄3. Based on this, now we prove
that γ̄2 ≤ γ̄3 if and only if γ̄2 ∈ (0, xh], where xh > 0 is a
constant. Plugging (68) into (67) and assuming γ̄2 ≤ γ̄3, we
have h(γ̄2) ≥ 0, where

h(x) = ln(1 + x)[3(1 + x)2 − 2]− ((1 + x)2 − 1)2. (69)

Moreover, we have

h(0) = 0, lim
x→∞

h(x) = −∞. (70)

h′(x) =
3x2 + 6x+ 1

1 + x
− 4x(x+ 2)(1 + x)

+ 6(1 + x)ln(1 + x), (71)

h′′(x) =
1

(1 + x)2
(
−12x4 − 48x3 − 59x2 − 22x ,

+6(1 + x)2ln(1 + x) + 3
)

(72)

h′′′(x) =− 2[12x4 + 48x3 + 69x2 + 42x+ 11]

(1 + x)3
. (73)

One can verify that (i) h′(0) > 0, and limx→∞ h′(x) = −∞;
(ii) h′′(0) > 0, limx→∞ h′′(x) = −∞; and (iii) h′′′(x) < 0
for x ≥ 0. Here (ii) and (iii) further imply that (iv) h′′(x)
is monotonic decreasing for x > 0 and h′′(x) = 0 has a
unique solution. Moreover, (i) and (iv) imply that (v) h′(x)
is monotonic increasing for x ∈ (0, xδ] and decreasing for
x ∈ (xδ,+∞) for some xδ > 0. Combining (70), (i), and (v),
we have x ∈ (0, xh] for h(x) ≥ 0, where xh > 0 is a constant
threshold. Then γ̄2 ≤ γ̄3 if and only if γ̄2 ∈ (0, xh]. Note
that γ̄2 is a function of ϑ whose analytical expression γ̄2(ϑ)
is difficult to obtain. However, we have

dγ̄2
dϑ

= −
dR(γ̄2,ϑ)

dϑ
dR(γ̄2,ϑ)

dγ̄2

> 0, (74)

since

dR(γ̄2, ϑ)

dϑ
= −

√
(γ̄2 + 2)γ̄2
(1 + γ̄2)2

< 0, (75)

dR(γ̄2, ϑ)

dγ̄2
> 0. (76)

One can verify that γ̄2 is monotonic increasing for ϑ > 0
and γ̄2 ≤ xh is equivalent to ϑ ≤ ϑ̂ for a threshold ϑ̂ > 0
satisfying γ̄2(ϑ̂) = xh. Note that ϑ̂ is a constant and we can
estimate that ϑ̂ ≈ 0.651 12 using numerical methods, e.g.,
bisection method. This completes the proof.

APPENDIX B
PROOF OF THEOREM 2

Defining ιk(W) = hH
k wI(k) and using αk(W) and βk(W)

are defined in (19) and (20), we have

ln

(
1 +

|ιk(W)|2
αk(W)

)
= −ln

(
1− |ιk(W)|2

βk(W)

)
, (77)

which is jointly convex w.r.t. ιk(W) and βk(W) [52]. Then
(77) can be lower bounded by its first-order Taylor expansion
as

ln (1 + γk(W)) ≥f (t)k (W,W(t)) ≜ ln
(
1 + γk(W

(t))
)

− γk(W
(t)) + 2R

{
ι⋆k(W

(t))ιk(W)

αk(W(t))

}

− βk(W)

αk(W(t))
+

βk(W)

βk(W(t))
. (78)

Note that f (t)k (W,W(t)) is concave with W.
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Meanwhile, since
√
V (γk(W)) is a concave function of

V (γk(W)), an upper bound of
√
V (γk(W)) can be obtained

as

√
V (γk(W)) ≤

√
V
(
γk(W(t))

)

2

(
1 +

1

V
(
γk(W(t))

)
)

− 1

2
√
V
(
γk(W(t))

)
(
αk(W)

βk(W)

)2

· (79)

Moreover, since x2 is a convex function, by setting x =
αk(W)/βk(W), we obtain
(
αk(W)

βk(W)

)2

≥ 2αk(W
(t))αk(W)

βk(W(t))βk(W)
−
(
αk(W

(t))

βk(W(t))

)2

. (80)

Similarly, since the function |x|2/y is jointly convex with
respect to x ∈ C and y > 0, we have

αk(W)

βk(W)
≥
2

(
∑

m̸=I(k)

R
{
(w

(t)
m )Hhkh

H
k wm

}
+ σ2

k

)

βk(W(t))

− αk(W
(t))βk(W)

β2
k(W

(t))
. (81)

Theorem 1 can be proved by combining (78), (79), (80), and
(81).

APPENDIX C
PROOF OF THEOREM 3

The Lagrangian of (35) is given by

Lµ =
∑M

m=1

∣∣∣Γk,m − hH
k w(n)

m + Λ
(n)
k,m

∣∣∣
2

+ µΘk(Γk), (82)

where Θk(Γk) is defined in (28), and µ ≥ 0 is the dual variable
for (35b). The optimal solution of (35) is characterized by the
KKT conditions:
1

2

∂Lµ

∂Γk,m
= (83)

{
Γk,m − hH

k w
(n)
m + Λ

(n)
k,m − µhH

k w
(t)
m = 0, if m = I(k),

Γk,m − hH
k w

(n)
m + Λ

(n)
k,m + µγ̂I(k)Γk,m = 0, otherwise,
Θk(Γk) ≤0, (84)

µ ≥0, (85)
µΘk(Γk) =0, (86)

The optimal solution (36) can be immediately obtained from
(83). Substituting (36) into Θk(Γk), we have

ψ(µ) =Θk(Γ
∗
k) =

γ̂I(k)
∑

m ̸=I(k)

|hH
k w

(n)
m − Λ

(n)
k,m|2

(1 + µγ̂I(k))2

− 2R
{
(w

(t)
I(k))

Hhk(h
H
k w

(n)
I(k) − Λ

(n)
k,I(k))

}

+ (1− 2µ)|hH
k w

(t)
I(k)|2 + γ̂I(k)σ

2
k, (87)

where ψ(µ) is monotonically decreasing for µ ≥ 0. According
to (86), µ∗ = 0 if ψ(0) < 0; otherwise, there exists a unique
root µ∗ > 0 such that ψ(µ∗) = 0. Note that solving the
equation ψ(µ∗) = 0 involves finding the roots of a cubic
function, where closed-form expressions for the roots can be
obtained similar to [11].

APPENDIX D
PROOF OF THEOREM 4

The Lagrangian of (37) is given by

Lϱ =ϱΥk(dk,qk) +
∑M

m=1

∣∣∣qk,m − hH
k w(n)

m +Ψ
(n)
k,m

∣∣∣
2

+
∣∣∣dk − r(n) + u

(n)
k

∣∣∣
2

, (88)

where Υk(dk,qk) is defined in (29), and ϱ ≥ 0 is the dual
variable for (37b). The optimal solution of (37) is characterized
by the KKT conditions:

∂Lϱ

∂qk,m
= 2(qk,m − hH

k w(n)
m +Ψ

(n)
k,m)

+ 2ϱc
(t)
k qk,m − ϱ(δ

(t)
k,m)⋆ = 0, (89)

∂Lϱ

∂dk
= 2(dk − r(n) + u

(n)
k ) + ϱ = 0, (90)

ϱ ≥ 0, (91)
Υk(dk,qk) ≤ 0, (92)
ϱΥk(dk,qk) = 0. (93)

The optimal solution (38) can be obtained from (89) and (90).
Substituting (38) into Υk(dk,qk), we have

ϕ(ϱ) = Υk(d
∗
k,q

∗
k) =

2r(n) − 2u
(n)
k − ϱ

2
− a

(t)
k

−
M∑

m=1

R

{
δ
(t)
k,m

2hH
k w

(n)
m − 2Ψ

(n)
k,m + ϱ(δ

(t)
k,m)⋆

2 + 2ϱc
(t)
k

}

+ c
(t)
k

M∑

m=1

∣∣∣∣∣
2hH

k w
(n)
m − 2Ψ

(n)
k,m + ϱ(δ

(t)
k,m)⋆

2 + 2ϱc
(t)
k

∣∣∣∣∣

2

. (94)

We can show that ϕ(ϱ) is a monotonically decreasing function
for ϱ ≥ 0, since the first-order derivative of ϕ(ϱ) satisfies

ϕ′(ϱ) = −
M∑

m=1

∣∣∣2(δ(t)k,m)⋆ − 4c
(t)
k (hH

k w
(n)
m −Ψ

(n)
k,m)

∣∣∣
2

(
2 + 2ϱc

(t)
k

)3 − 1

2
< 0.

(95)

According to (93), ϱ∗ = 0 if ϕ(0) < 0; otherwise, there exists
a unique root ϱ∗ > 0 such that ϕ(ϱ∗) = 0. Here ϱ∗ can be
obtained using bisection or Newton methods.

APPENDIX E
PROOF OF LEMMA 4

Here we prove Lemma 4 by contradiction, similar to [14].
Suppose that Lemma 4 is not true. Then the optimal multicast
beamforming vectors can be written as

wm =
∑

k∈Km

ξkhk +
∑Nt−Km

t=1
ζt,met,m, ∀m ∈ M,

(96)
where {et,m}Nt−Km

t=1 is an orthogonal basis of the orthogonal
complement of the subspace spanned by {hk}k∈Km

, and at
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least one of ζt,m, t = 1, . . . , Nt − Km is non-zero . The
received signal of user k is expressed as

yk =hH
k wI(k)sI(k) +

∑
i ̸=I(k),i∈M

hH
k wisi + nk

(a)
= ξkh

H
k hksI(k) +

∑
i ̸=I(k),i∈M

hH
k

(
Nt−Ki∑

t=1

ζt,iet,i

)
si

+ nk, (97)

where (a) is due to hH
k et,I(k) = 0, t = 1, . . . Nt − KI(k),

and limNt→∞ hH
k hi/Nt = 0, i ̸= k. According to (97), the

second term of (96) does not contribute to the desired signal,
and only causes extra interference to the users in other groups.

Now let us construct another beamformer by setting ζt,m ≡
0 in (97) but keeping the transmit power unchanged, i.e.,

w′
m =

∑
k∈Km

ηmξkhk, ∀m ∈ M, (98)

where

ηm =
∥wm∥2√∑

k∈Km
∥ξkhk∥22

≥ 1. (99)

Then the received signal of user k with (98) is given by

yk = hH
k w′

I(k)sI(k) +
∑

i ̸=I(k),i∈M
hH
k w′

isi + nk

= ηI(k)ξkh
H
k hksI(k) + nk. (100)

Therefore, we must have γk(W) ≤ γk(W
′),∀k ∈ K, where

W′ = [w′
1, . . . ,w

′
M ]. Finally, since R(γ, ϑ) is a monoton-

ically increasing function in the effective SINR regime, the
system can always achieve higher performance with (98) than
that with (96) for problems P1 and P2, contradicting the
optimality of (96). This completes the proof.

APPENDIX F
PROOF OF THEOREM 5

For given ϑ > 0, R(γ, ϑ) is monotonic increasing with γ
for γ ≥ γ̄2. Then P12 can be equivalently rewritten as

max
{κk|k∈Km}

min
k

gkκ
2
k (101)

s.t. (54b), (54c).

If problem P12 is feasible, one can verify that

gkκ
2
k = gk′κ2k′ ,∀k ̸= k′, k, k′ ∈ Km, (102)

holds at the optimality. Then combining (54b), the optimal
solution of problem P12 is given by

(κ∗k)
2 =

1∑
i∈Km

(Γkσ2
i )/(Γiσ2

k)
, ∀k ∈ Km. (103)

which leads to (55), as combining coefficients {κk}Kk=1 are
real positive. Substituting (103) into (54c), we have that
problem P12 is feasible if and only if Γ̂mpm ≥ γ̂m, where
Γ̂m = E/

(∑
i∈Km

σ2
i /Γi

)
. The optimal objective value of

P12 is thus R(Γ̂mpm, ϑm), if the problem is feasible.

APPENDIX G
PROOF OF THEOREM 7

The Lagrangian of problem P15 is given by

Lτ =
∑M

m=1
ωmR(Γ̂mpm, ϑm) + τ

(
1−

∑M

m=1
pm

)

+
∑M

m=1
ςm(pm − γ̂m/Γ̂m), (104)

where τ and ςm ≥ 0,m ∈ M, are the dual variables for
constraints (59b) and (56c), respectively. According to Lemma
2, problem P15 is convex when γ̂m ≥ γ̄3,m,∀m ∈ M. Thus,
its optimal solution can be obtained by solving the KKT
conditions:

∂Lτ

∂pm
=Γ̂mωm∆(Γ̂mpm, ϑm)− τ + ςm = 0, ∀m, (105)

∑M

m=1
pm =1, (106)

ςm(pm − γ̂m/Γ̂m) =0, m ∈ M, (107)
ςm ≥0, m ∈ M, (108)

pm ≥γ̂m/Γ̂m, m ∈ M, (109)

where ∆(x, y) is defined in (64). Substituting (105) into (107)
and (108), the above KKT conditions simplify into

Γ̂mωm∆(Γ̂mpm, ϑm)− τ ≤ 0, m ∈ M, (110)

1−
∑M

m=1
pm = 0, (111)

pm ≥ γ̂m/Γ̂m, m ∈ M, (112)
(
Γ̂mωm∆(Γ̂mpm, ϑm)− τ

)
(pm−γ̂m/Γ̂m) = 0,∀m. (113)

Note that ∆(γ, ϑ) ≥ 0 monotonically decreases with γ ≥
γ̄3for given ϑ according to Lemma 2. Then, according to
(113), if the optimal dual variable τ∗ ≤ ωmΓ̂m∆(γ̂m, ϑm), the
optimal solution p∗m = p̆m, where p̆m ≥ γ̂m/Γ̂m is the unique
solution satisfying Γ̂mωm∆(Γ̂mp̆m, ϑm) = τ∗; otherwise,
p∗m = γ̂m/Γ̂m. Moreover, since

∑M
m=1 p

∗
m is a monotonically

decreasing function of τ∗, the optimal dual variable τ∗ is
unique and can be obtained with bisection method. The proof
is completed.
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