
Bernd Simon, Andrea Ortiz, Walid Saad, and Anja Klein
”Decentralized Online Learning in Task Assignment Games for Mobile Crowdsensing”, in
IEEE Transactions on Communications, Vol. 72, Issue 8, August 2024.

©2024 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this works must be obtained from the IEEE.

1

Decentralized Online Learning in Task Assignment
Games for Mobile Crowdsensing

Bernd Simon∗, Andrea Ortiz∗, Walid Saad† and Anja Klein∗
∗Communication Engineering Lab, Technische Universität Darmstadt, Darmstadt, Germany.

†Wireless@VT, Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA.
Emails: {b.simon, a.ortiz, a.klein}@nt.tu-darmstadt.de, walids@vt.edu.

Abstract—The problem of coordinated data collection is stud-
ied for a mobile crowdsensing (MCS) system. A mobile crowd-
sensing platform (MCSP) sequentially publishes sensing tasks to
the available mobile units (MUs) that signal their willingness to
participate in a task by sending sensing offers back to the MCSP.
From the received offers, the MCSP decides the task assignment.
A stable task assignment must address two challenges: the
MCSP’s and MUs’ conflicting goals, and the uncertainty about
the MUs’ required efforts and preferences. To overcome these
challenges a novel decentralized approach combining matching
theory and online learning, called collision-avoidance multi-
armed bandit with strategic free sensing (CA-MAB-SFS), is
proposed. The task assignment problem is modeled as a matching
game considering the MCSP’s and MUs’ individual goals while
the MUs learn their efforts online. Our innovative “free-sensing”
mechanism significantly improves the MU’s learning process
while reducing collisions during task allocation. The stable regret
of CA-MAB-SFS, i.e., the loss of learning, is analytically shown to
be bounded by a sublinear function, ensuring the convergence to
a stable optimal solution. Simulation results show that CA-MAB-
SFS increases the MUs’ and the MCSP’s satisfaction compared
to state-of-the-art methods while reducing the average task
completion time by at least 16%.

I. INTRODUCTION

Mobile devices such as smartphones and wearables are
ubiquitous. In fact, by 2025 the number of mobile devices
in the world is expected to reach 18.2 billion [1]. As these
mobile devices are usually equipped with different sensors,
they can be leveraged to collectively perform sensing tasks via
mobile crowdsensing (MCS) techniques, e.g., see [2] and [3].
In MCS, a group or “crowd” of mobile units (MUs) performs
sensing tasks. Compared with conventional wireless sensor
networks, e.g., distributed data collection in Internet of Things
applications [4], where sensor devices sequentially sample a
physical process, MCS has much lower infrastructure costs,
higher coverage, and a wider range of applications due to the
mobility of the MUs [5]–[7]. It is, therefore, no surprise that
the interest in MCS has steadily increased across academia
and industry.

A typical MCS system is composed of one or multiple data
requesters, an MCS platform (MCSP), and multiple MUs [7]
and [8]. The data requesters submit their sensing requests to
the MCSP who acts as the intermediary between the data
requesters and the MUs. Particularly, the MCSP converts the

This work has been funded by the German Research Foundation (DFG)
within the Collaborative Research Center (CRC) 1053 MAKI and has been
supported by the BMBF project Open6GHub (Nr. 16KISK014). This research
was also, in part, supported by the U.S. National Science Foundation under
Grant ECR-EDU-2201641.

sensing requests into sensing tasks, and publishes the tasks
to the MUs including information about their type. The MUs
independently decide whether to participate or not in each
published task. This decision is selfishly and individually made
by each MU depending on the effort needed to perform the
task and the expected payment from the MCSP [9]. The MUs
signal their willingness to participate in a task by sending a
sensing offer to the MCSP containing a payment proposal, i.e.,
the number of monetary units the MU is charging the MCSP
for performing the task. Based on the offers of the MUs, the
MCSP then decides which task is assigned to each MU by
sending them an acknowledgment to their sensing proposal.
The revenue of the MCSP depends on its own earnings, i.e,
the net payments received from the data requesters for their
service after paying the MUs for performing the sensing tasks.
The MUs’ satisfaction depends on the number of sensing offers
that were accepted by the MSCP.

A. Research Challenges

The assignment of the sensing tasks to the requesting MUs
is a fundamental problem that will be a key determinant of the
success of MCS. This assignment must be able to maximize
both the satisfaction of the MUs, and the MCSP revenues [10],
such that the MCSP and MUs do not have any incentive to
deviate from the chosen task assignment. To achieve this the
MCS must overcome two major challenges, as discussed next.

1) Considering multiple utility functions: The first key
challenge is that the interests of the MCSP and the MUs are
not aligned. Each participant in MCS, including MUs and the
MCSP, have their own utility functions with technical and eco-
nomic components. The MUs want to maximize the payment
obtained from the MCSP while minimizing the expounded
effort, in terms of energy consumption and completion time.
The MCSP maximizes its revenue by assigning tasks to MUs
which require a lower payment. Consequently, the MCSP and
the MUs may act selfishly to maximize their own revenues.

2) Incomplete information: The second key challenge is
that the MUs and the MCSP do not have complete information
about the MCS system. This incomplete information spans
two components: 1) incomplete information about the tasks
and 2) incomplete information about the other participants.
Firstly, the effort that an MU must spend to execute a given
task is often not known beforehand. For instance, the MUs
know the task types from the list of published tasks, but they
have to explore how much effort is required to complete the
tasks. Moreover, the characteristics of the published tasks and

2

the MU’s conditions, such as the communication rate, change
over time depending on factors like the sensing preferences
of the data requesters and the mobility of the MUs. Both
the task characteristics and the MU’s conditions, are therefore
appropriately modeled as random processes whose probability
distributions are not known a priori. Furthermore, the MCSP
does not know the effort that the MUs need to complete the
sensing tasks, and the MUs can only measure this effort by
executing that particular task.

Secondly, the MUs do not know what task types the other
MUs prefer. This may result in colliding sensing offers and
unstable assignments. A collision occurs when more than the
allowable number of MUs send sensing offers for the same
task type. Such concurrent sensing offers occur because the
MUs cannot observe each other’s sensing offers. Therefore,
they are unaware of the effort required by other MUs to
perform a task. Collisions should be avoided because they lead
to performance degradation as the sensing capabilities of the
MUs involved in the collision cannot be used until the next
task arrives. In practical MCS systems, these two key research
challenges have to be jointly solved because they incorporate
the main characteristics of the MCSP and the MUs.

B. Related Works

Prior works [3], [7], [8] and [11]–[22] that attempted to
address the aforementioned challenges related to MCS task
assignment can be categorized into three directions: i) Opti-
mization approaches, such as in [11] and [12], ii) Game theory
approaches, such as in [3], [8] and [13]–[16], and iii) Online
learning approaches, such as in [7] and [17]–[23]. Although
the authors in [11] and [12] find optimal allocation policies
that maximize the MCSP’s utility, the MU’s utility functions
are not considered. We argue that this limitation to a single
utility function is not realistic. Moreover, it requires complete
non-causal information about the MCS system.

Following a game theory approach, the authors in [3]
investigate an optimal incentive mechanism for the MCS using
a two-stage Stackelberg game. Their goal is to efficiently
recruit MUs to perform the available sensing tasks while
assuming payments to be fixed in advance. In [8], the MU’s
effort is assumed to depend on its location. The authors
propose a privacy-preserving approach to obtain information
about the MU’s location and thus, estimate the MU’s ef-
forts. The authors in [13] use matching theory to balance
the preferences of the MCSP and the MUs while assuming
the payments by the MCSP are fixed in advance. Similarly,
assuming known preferences for the MCSP and the MUs, the
authors in [14] formulate a two-stage matching problem to
maximize the coverage in a MCS system. Following a social
welfare maximization approach, the authors in [15] propose
an auction-based method to balance the MCSP and MU’s
interests when assigning the sensing tasks. In [16], the authors
propose a stable matching approach for task assignment to
incorporate the MUs’ and MCSP’s preferences. The use of
these game-theory-based approaches allows the consideration
of the conflicting goals of the MCSP and MUs. However,
similar to the optimization approaches [11] and [12], the
game theory approaches [3], [8] and [13]–[16] are subjected

to the strict requirement that information about the MUs’
costs and/or payment requests is known in advance. This
requirement makes these approaches infeasible in practical
systems, as the tasks’ characteristics and the effort to complete
tasks are not known a priori and may change over time.
Additionally, these related works on game theory rely on a
deterministic task model. However, in real-world applications,
the effort related to a task is best described by a probability
distribution. The effort required for a task might vary because
of different influences such as, for example, the weather or
the time of the day.

The problem of task assignment under unknown MU efforts
is investigated in [17]–[22]. In [17], the authors propose a
location-prediction-based online task assignment strategy in
which the MU’s effort depends on its location in a mobile so-
cial network. In [18], Lyapunov optimization is used to derive
a task assignment policy that maximizes the gain of the MCSP.
The authors in [19] propose prediction methods to estimate the
MU’s effort at the MCSP. The task pricing problem in a point-
to-point MCS system is considered in [20], where a two-stage
mean field approximation Stackelberg differential game is used
to model the MCSP-MU interaction. Combinatorial multi-
armed bandits are considered in [21] to maximize the expected
quality of the data received at the MSCP. The authors of [22]
propose a federated reinforcement learning approach for the
task assignment for sequentially arriving tasks in MCS. This
approach aims to maximize a completion ratio of tasks given
limited energy of mobile devices. In [23], the authors propose
a decentralized multi-agent reinforcement learning approach
to learn the task assignment with minimal communication
overhead. Even though the solutions in [17]–[23] overcome
the requirement of complete non-causal information about the
MCS, they are limited to a single utility function, i.e., they only
consider either the MCSP’s or the MUs’ perspective when the
MU’s efforts are unknown.

Clearly, as discussed, the prior art is limited in several
ways. The conflicting interests of the MCSP and MUs under
realistic conditions, i.e., when the MU’s efforts are not known
in advance, have not been considered yet. Furthermore, the
prior art does not consider the problem of collision in the
online learning scenario. Collisions may significantly reduce
the overall performance and therefore need to be avoided. This
open problem of online learning for the task assignment can
be cast as a multi-player multi-armed bandit problem [24]. In
the learning literature, multi-player multi-armed bandits have
been investigated under some simplifying assumptions. For
example, assuming that there are no individual preferences, the
authors in [25] propose to divide the reward among colliding
agents to improve the learning speed. In [26], a multi-armed
bandit with a collision-avoidance mechanism is proposed. The
authors assume that there are no individual costs or payments
associated to the decisions in order to allow each player
to learn its own preferences while avoiding collisions with
competitors. Centralized and decentralized learning strategies
are compared in [27], where the effect of sharing the learned
preferences is analyzed. This work assumes a cooperative
setting, in which all agents communicate their decisions with
all other agents. Despite considering multi-agent multi-armed

3

MCSP broadcasts a
list of available tasks

MCSP

1

(a) The MCSP broadcasts the list of
available tasks to all MUs.

MCSP

2
MUs send

sensing proposals

(b) The MUs send a sensing proposal
to the MCSP. The red circle repre-
sents a collision.

MCSP

3
MCSP accepts or rejects

 sensing proposals

(c) The MCSP accepts or rejects the
sensing proposals of the MUs.

MCSP

4
MUs perform the tasks,

learn and receive payments

(d) The MUs perform the task, trans-
mit the result, and receive their pay-
ment.

Fig. 1. Overview of the system model.

bandits, the solutions in [24]–[27] cannot be applied to the task
allocation problem in MCS. Their simplifying assumptions
clash with the requirements of MCS. Specifically, the MCSP
and the MUs have individual preferences according to their
capabilities and conditions. Moreover, the allocation of task
implies an effort for the MUs and a payment for the MCSP,
and the strict privacy constraints and communication overhead
requirements limit the communication between the agents.

C. Contributions

The main contribution of this paper is a novel decentralized
task assignment scheme for MCS that can improve the sat-
isfaction of the MUs and the MCSP, which are considered
to be individual rational decision makers with incomplete
information. In the studied MCS system, the effort required for
each task in terms of completion time and energy consumption
is not known initially, which leads to a difficult learning prob-
lem. Using existing online learning solutions leads to many
collisions between the MUs, which results in a high overhead
and degraded overall system performance. In particular, we
propose a novel decentralized algorithm termed collision-
avoidance multi-armed bandit with strategic free sensing (CA-
MAB-SFS), whose goal is to find a stable task assignment, i.e.,
a task assignment where neither the MUs nor the MCSP have
an incentive to change the task assignment. Our contributions
can therefore be summarized as follows:

• To balance the conflicting interests of the MCSP and
the MUs, we propose the use of a novel decentralized
online learning strategy which leverages elements from
multi-armed bandits and game theory. Our approach has
the advantage that it does not require a priori knowledge
of the MU’s effort for each task and it incorporates the
individual utility functions of the MUs and the MCSP.
In contrast to existing works in this space [17]–[21],
our approach considers the MUs and the MCSP to be
individual rational decision makers.

• We propose an new “free-sensing” mechanism to ensure
that all MUs learn their expected effort for all task
types thereby reducing future collisions. The idea behind
the free-sensing strategy is that, occasionally, the MUs
offer to perform tasks for free to ensure the tasks are

assigned to them. Performing a task for free is seen as
an investment from the MU‘s perspective, as the MU
can improve its estimate of the required effort when
performing said task.

• We show that the proposed decentralized CA-MAB-SFS
converges to a stable task assignment, where neither the
MUs nor the MCSP have an incentive to change the task
assignment. Moreover, we prove that the stable regret,
which is the expected loss incurred by not adopting the
optimal assignment, is bounded by a sublinear function.
Additionally, we show that the computational complexity
of the proposed decentralized online learning is only
linearly dependent on the number of task types.

• We evaluate the performance of the proposed algorithm
by comparing it with state-of-the-art baseline algorithms.
The results verify that, under various settings, the pro-
posed mechanism is effective in terms of worker satis-
faction and MCSP’s utility. Simulation results show that
we achieve the optimum of the social welfare, which is
the sum of the utility functions of MUs and the MCSP.
Moreover, the proposed algorithm achieves an improve-
ment of 16% in terms of average task completion time
compared to a state-of-the-art online learning algorithm.
The performance is scalable and remains near-optimal
even for large network sizes.

The rest of this paper is organized as follows. In Section II,
we introduce the MCS system model. The proposed CA-MAB-
SFS is explained in Section III. In Section IV, we analyze the
offline optimal solution and prove that the proposed algorithm
converges to a stable solution. The numerical evaluation of
CA-MAB-SFS is presented in Section V and finally, Section
VI concludes the paper.

II. SYSTEM MODEL

We first describe our MCS system model. A summary of the
used notation is provided in Table I. We consider a set K of
K MUs who seek to perform tasks for the MCSP. As shown
in Figure 1, a single MCSP publishing N tasks is considered.
We consider a set Z of Z different task types that represent
several examples such as sensing temperature, taking a picture,
or classifying an event. Each one of the N tasks is classified

4

TABLE I
TABLE OF NOTATIONS

SYMBOL DESCRIPTION SYMBOL DESCRIPTION
z, Z, Z Task type, Number of task types, Set of task types pcomm

k Transmission power of MU k
pcomp
k Power required for computation at MU k sz , cz Size of task type z, Complexity of task type z
an,t Task published at time t Pk,n,t MU k earnings from task an,t

At Set of published tasks at time t sz Average result size for task type an
gt : At → Z Function mapping tasks to the type Ek,n,t Energy used by MU k to complete an,t

Az,t Set of all tasks with type z τk,n,t MU k completion time for task an,t

I Complete information τmax
z Average deadline of task type an

wz,t MCSP earnings from completion of task an,t τsense
k,n,t MU k sensing time for task an,t

ITask
n , IMU

k MSCP-side, MU-side information τcomm
k,n,t MU k transmission time for task an,t

K Number of MUs UMU
k,n,t Utility of MU k for performing task an,t

K Set of MUs UMCSP
k,n,t Utility of MSCP after task an,t is performed

E{X} Expected value of random variable X P(E) Probability of event E

according to their type z ∈ Z . Time is divided into discrete
time slots with index t = 1, . . . , T . In each time slot t, the
MCSP publishes a set of available tasks At = {an,t}, which
can be seen in Fig. 1a. The mapping between task an,t and its
type z is given by a function gt : At → Z , i.e., gt(an,t) = z
means that an,t is of type z. Furthermore, we collect all tasks
of the same type z in the set Az,t ⊆ At. We assume that
the MCSP may publish multiple tasks of the same type and
each published task requires only one MU to complete. If the
MCSP requires multiple MUs to perform a task, the task can
be included multiple times in the set At of tasks [23].

The tasks are assumed to be time-sensitive by nature, i.e.,
the task’s result must arrive in time at the MCSP [28], [29].
Therefore, each task type z is characterized by the average
size sz of its result, measured in bits, and an average deadline
τmax
z . The duration of the time slots is chosen according to the

maximum completion time of a task. We assume that the dead-
line τmax

z is shorter than the duration of a time slot, i.e., tasks
always have to be completed within one time slot. Individual
tasks an,t of the same type z have different characteristics
drawn from a type-specific, stationary probability distribution.
This probability distribution is unknown to the MCSP and the
MUs.

The MCSP earns wz,t monetary units for the timely comple-
tion of a task an,t ∈ Az,t. The earning wz,t is paid by the data
requester. To incentivize the MUs to participate, the MCSP
pays the executing MU k when the task is finished before the
deadline. MUs are paid for the successful completion of the
task according to the effort (time and energy) that MU k spent
for the task completion [9].

A. Mobile Units

In every time slot t, each MU k ∈ K can perform at most
one task an,t. Without loss of generality, we assume that every
MU k is equipped with sensors that are capable of performing
tasks from all Z task types. To complete the assigned task,
MU k has to spend effort in terms of time and energy. The
completion time τk,n,t of task an,t contains three parts [29]:
the sensing time τ sensek,n,t , the computation time τ comp

k,n,t , and the
communication time τ comm

k,n,t for the transmission of the task’s
result. The sensing time τ sensek,n,t is the time required by the
MU to obtain valid sensing data. For example, in a traffic
monitoring scenario, the platform requires MU k to record a
specific-duration traffic video in a certain position of a road.
The sensing time τ sensek,n,t of MU k for task an,t ∈ Az,t is drawn
from a stationary random distribution with the probability

density function (PDF) fz
τsense
k,n,t

(τ sensek,n,t). The expected value
τ̄ sensek,z = E(τ sensek,n,t) of the sensing time depends on the task’s
type z and the MU k performing the task [29].

The computation time τ comp
k,n,t is the time required by MU k

to preprocess the sensing data of a task of type z. Each MU is
equipped with a central processing unit (CPU) with frequency
f local
k . The computation time is given by

τ comp
k,n,t =

czsz
f local
k

, (1)

whereas cz is the preprocessing complexity of the task type z.
The communication time τ comm

k,n,t is the time required to
transmit the preprocessed result of the task from MU k to the
MCSP. This time depends on the communication rate between
MU k and the MCSP and it is drawn from a stationary random
distribution with the PDF fz

τcomm
k,n,t

(τ comm
k,n,t). The expected value

τ̄ comm
k,z = E(τ comm

k,n,t) of the communication time depends
on the size sz of the task result and the MU k’s channel
quality. The communication bandwidth is shared between the
MUs using Orthogal Frequency Division Multiple Access
(OFDMA) [30]. Using OFDMA, each MU is assigned an in-
terference free part of the communication bandwidth. Further-
more, it is assumed that the system provides sensing resources
orthogonal to the communication resources. Therefore sensing
and communication do not interfere. The total time MU k
spends for task completion is τk,n,t = τ sensek,n,t +τ comm

k,n,t +τ comp
k,n,t .

The time τk,n,t for task completion needs to be smaller than
the deadline τmax

z .
Additionally, MU k must spend energy from its limited

battery. We assume that the energy Ek,n,t used by MU k for
the task completion is given by

Ek,n,t = pcomm
k · τ comm

k,n,t + pcomp
k · τ comp

k,n,t , (2)

where pcomm
k is the transmit power of MU k required to

transmit the results of task an,t and pcomp
k is the power

required for the computation. We neglect the energy required
for the sensors, as this energy consumption is small compared
to the communication and computation energy [31].

In our model, all MUs have an MU-specific cost function
Ceffort

k (τk,n,t, Ek,n,t) when performing a task. This cost func-
tion depends on the effort required to complete the task. For
example, some MUs may have a low battery level that results
in a high cost to use energy Ek,n,t. Other MUs might be
concerned about the availability of their own communication,
computation, or sensing resources, thus placing a high cost for

5

the time τk,n,t during which the MU’s resources are used. We
define the cost function as follows:

Ceffort
k (τk,n,t, Ek,n,t) = αkτk,n,t + βkEk,n,t. (3)

The cost function in (3) captures the tradeoff between the
completion time τk,n,t and the consumed energy Ek,n,t, with
αk being an MU-specific time cost parameter and βk an MU-
specific energy cost parameter.

The MCSP pays Pk,n,t monetary units to compensate MU k
for the effort it spends to complete the task. This payment is
defined as

Pk,n,t = P effort(τk,n,t, Ek,n,t), (4)

where the payment function P effort depends on the time and
energy spent for the completion of the task. The utility of
MU k in time slot t when performing task an,t is

UMU
k,n,t = Pk,n,t1τk,n,t≤τmax

z
− Ceffort

k (τk,n,t, Ek,n,t), (5)

where 1τk,n,t≤τmax
z

is the indicator function for the case in
which MU k completed the task before its deadline τmax

z .
The expected utility ŪMU

k,z for performing a task of type z is:

ŪMU
k,z = E{UMU

k,n,t|an,t ∈ Az,t} (6)

= E{Pk,n,t} · P{τk,n,t ≤ τmax
z } − E{Ceffort

k (τk,n,t, Ek,n,t)}.

Note that MU k is able to observe the completion time τk,n,t
and consumed energy Ek,n,t independently, but only after task
an,t has been performed.

B. Mobile Crowdsensing Platform

In each time slot t, the MCSP publishes a list of available
tasks At as shown in Fig. 1a. Each task from this list belongs
to one of the Z task types. The MCSP is paid by a data
requester to provide results for each task an,t ∈ At. The
earning wz,t depends on the task type z. Moreover, we assume
wz,t to be deterministic and known beforehand to the MCSP,
i.e., the MCSP and the data requester have made a contractual
agreement. The utility UMCSP

k,n,t of the MCSP when assigning
MU k to task an,t ∈ Az,t is defined as

UMCSP
k,n,t = (wz,t − Pk,n,t)1τk,n,t≤τmax

z
. (7)

The expected utility ŪMCSP
k,z when assigning MU k to a task

from task type z is given by

ŪMCSP
k,z = E{UMCSP

k,n,t |an,t ∈ Az,t} (8)

= (wz,t − E{Pk,n,t}) · P{τk,n,t ≤ τmax
z }.

C. Available information

As the probability distributions fz
τcomm
k,n,t

(τ comm
k,n,t) and

fz
τsense
k,n,t

(τ sensek,n,t) of the task characteristics are not known in
advance, the MUs must estimate the average effort required
for each task type. We define IMU

k = {ŪMU
k,z , ∀z} as the

MU-side information about the stochastic characteristics of the
task types, i.e., the average achievable utility ŪMU

k,z for each
task type z. IMU

k contains information about the expected
energy consumption and the expected execution time for
all task types z ∈ Z . Note that IMU

k is not available at
the MUs and has to be learned over time from experience.

Similarly, we define ITask
z = {ŪMCSP

k,z , ∀k} as the MCSP-side
information about the MUs. ITask

z contains information about
the earnings and the required payment for all MUs. As in the
MU’s case, ITask

z is not available at the MCSP in advance.
The combination of MU-side and MCSP-side information,
I = {IMU

k ∪ITask
z , ∀k, z}, is called the complete information

and is unknown to the MUs and the MCSP.
Our goal is to optimize the assignment of tasks in a com-

pletely decentralized fashion without requiring prior knowl-
edge of I. For this purpose, the MUs learn the characteristics
of each task type and find their most preferred task in each
time slot t. In turn, the MCSP has to identify the best MU k to
select for each task type. We assume strict privacy constraints,
meaning that the MUs do not share information about IMU

k ,
neither with the MCSP nor with other MUs. Additionally,
the MCSP does not share ITask

z with the MUs. As shown
in Fig. 1, there is no information sharing between the MUs.
Moreover, the information exchange between the MCSP and
each of the MUs is limited to only broadcasting the available
tasks, sending sensing proposals, accepting or rejecting said
sensing proposals, and sending the sensing results.

We argue that a decentralized online learning strategy is
an efficient solution to the task assignment problem. Through
online learning we can effectively address the key challenge
of incomplete information. In contrast to centralized schemes,
adopting a decentralized learning strategy ensures privacy for
the MUs since they do not need to share their local information
IMU
k . Furthermore, both the MUs and the MCSP are modeled

as autonomous decision-makers aiming to maximize their
own utility. Moreover, a decentralized approach reduces the
complexity of the problem, compared to centralized case. This
is because we can leverage the individual learning capabilities
of each MU, thus eliminating the need to deal with a com-
binatorial problem at a centralized controller. To analyze the
task assignment problem from the perspective of the MUs and
the MCSP, we first present the task assignment game between
MUs and MCSP.

D. Problem Formulation: Task Assignment Game

In contrast to either MU-centric MCS [28], or MCSP-centric
MCS [32], we consider the perspective of both, the selfish
MUs and the selfish MCSP. Contrary to [28] and [32], we do
not formulate a global objective function for the performance
of the task assignment. Instead, we consider all MUs and the
MCSP to be rational decision makers with their individual
preferences and decision making capabilities. Therefore, we
use game theory, specifically matching theory [33], to analyze
the task assignment problem. The main goal of matching
theory is to obtain a stable matching, i.e., reaching a situation
in which MUs and MCSP cannot simultaneously improve by
changing the task assignment. This corresponds to selfishly-
deciding MUs and an MCSP that individually try to obtain
their best task assignment. A stable matching outcome is
apropos for the presented MCS problem because it allows the
maximization of satisfaction for both the MUs and the MCSPs,
with regard to their individual preferences.

The matching game is a model for a two-sided market
in which the MUs provide their sensing resources and the

6

MCSP requires sensing resources. These demands come in
the form of indivisible sensing tasks, which the MUs execute
in exchange of a payment [34]. The payment function P effort

and the MUs’ cost function Ceffort
k are given functions which

depend on the task assignment [35]. The proposed, matching-
based task assignment game Gt in time slot t is formally
described by a tuple Gt = (K,At,⪰MU

k ,⪰MCSP
z) containing

the set K of MUs, the set At of available tasks, the MUs’
preference ordering ⪰MU

k , and the MCSP’s preference order-
ing ⪰MCSP

z .
The MUs’ preference ordering ⪰MU

k ranks task types ac-
cording to the expected utility of the task type z, i.e.,

z ⪰MU
k z′ ⇐⇒ ŪMU

k,z ≥ ŪMU
k,z′ . (9)

In other words, MU k prefers task type z over z′ if the MU’s
expected utility (6) of performing tasks of type z is higher
than of tasks of type z′. The preference orderings ⪰MU

k can
only be correctly determined with the MU-side information
IMU
k .
The MCSP prefers MUs which yield the highest expected

utility for each task type z, i.e.,

MU k ⪰MCSP
z MU l ⇐⇒ ŪMCSP

k,z ≥ ŪMCSP
l,z . (10)

The expression in (10) implies that when performing task
type z, the MSCP prefers MU k because it provides a higher
utility compared to MU l. This preference ranking can only be
correctly determined with the MCSP-side information IMCSP.

MU k signals its willingness to participate in any task
of the type z by sending a sensing offer Ok,t as shown in
Fig. 1b. Based on the received offers, the MSCP performs
the assignment according to its preference ordering ⪰MCSP

z

as depicted in Fig.1c. We denote the task assignment by the
binary variable x

k,n,t
. When x

k,n,t
= 1, MU k is assigned

to task an,t. Otherwise, x
k,n,t

= 0. The variables x
k,n,t

associated to all MUs and tasks in time slot t are collected in
the matrix Xt.

Definition 1. A task assignment Xt is unstable if there are
two MUs, MU k and MU l, and two tasks, an,t and am,t, such
that: (i) xk,n,t = 1, i.e. MU k is assigned to task an,t ∈ Az,t.
(ii) xl,m,t = 1, i.e. MU l is assigned to task am,t ∈ Az′,t.
(iii) z′ ≻MU

k z and MU k ⪰MCSP
z′ MU l, i.e., MU k strictly

prefers the task with type z′ over its current matched task of
type z, and the MCSP would profit more if the task of type z′

is performed by MU k instead of its current matched MU l.

The pair (MU k, z′) is called a blocking pair [36], because
both the MU k and the MCSP are unsatisfied with the current
assignment. The existence of the blocking pair (MU k, z′)
causes the matching Xt to be unstable because MU k could
switch to am,t ∈ Az′,t and both, the MU k and the task am,t

would obtain a more efficient matching and therefore a higher
expected utility.

The assignment Xt is said to be stable if no blocking pairs
exist [36]. In such cases, no MU or task could change the
assignment and improve their expected utilities. In MCS, this
means that each MU is assigned to its most preferred task
while the MCSP selects its most preferred MU for each task.
Note that the stable matching may not be unique. There are, in

fact, potentially multiple solutions. We denote the set of stable
solutions as X stable and define astablek as a stable task for MU
k. The expected utility of this task is ŪMU,stable

k = ŪMU
k,astable

k

.

III. COLLISION-AVOIDANCE MULTI-ARMED BANDIT
WITH STRATEGIC FREE SENSING

For most existing works on matching and assignment
games, it is customary to use the so-called deferred acceptance
algorithm (see Section IV-A) that guarantees convergence to
a stable matching [37]. However, for our MCS problem, this
approach would not be adequate because of several reasons.
First, the MUs do not know how much effort is required for
each task type z. Consequently, each MU has to learn its
MU-side information IMU

k and its preferences by exploration.
Second, collisions with competing MUs occur while exploring
different task types. To avoid collisions and to ensure a good
learning performance, a collision-avoidance mechanism is
required. As such, we propose a novel approach that combines
online learning with matching theory including a collision-
avoidance mechanism. This is more appropriate here because
we can overcome the challenge of incomplete information and
collisions due to the competition of the MUs.

In each time slot t, MU k may send one sensing offer Ok,t

for a task type z together with its payment proposal P̂k,z . The
payment proposal P̂k,z is calculated by the MUs based on their
observed efforts for task type z. To lower the communication
overhead between the MCSP and the MUs, we assume that
the MUs can only send sensing offers for one task type at
a time. The MUs’ challenge in sending a good sensing offer
lies in the fact that the MUs do not know their expected utility
and effort, i.e. time and energy, required to complete tasks of
type z in advance. When more MUs attempt to execute the
same task type than tasks are available, i.e., sensing offers
are colliding, the MCSP decides which MUs are assigned to
the tasks according to the MCSP’s utility (7) and the number
|Az,t| of tasks with type z. As shown in Fig. 1c, the MCSP
then sends a response Ōk,t which contains whether the sensing
offer was accepted, and which task was assigned to the MU.

Only the MU accepted by the MCSP and therefore, assigned
to an,t, i.e., Ōk,t = an,t, can perform the task. Therefore,
it is the only MU able to measure its utility UMU

k,n,t and
effort in terms of time τk,n,t and energy Ek,n,t. The MUs
which were declined only learn that there are other MUs
competing for task type z which were preferred by the MCSP.
The competition between the MUs for the sensing tasks is
especially challenging in the exploration phase, i.e., when the
utility and effort for each task type are not well estimated. As
a result, the payment proposals are either too low, which leads
to a low utility, or too high, which increases the probability
of a sensing offer being declined.

In this section, our goal is to provide a fully decentralized
online learning algorithm, which overcomes the challenges
of the unknown information I and the competition between
MUs. In particular, we propose a novel decentralized online
learning method termed CA-MAB-SFS. The algorithm is fully
decentralized and it consists of two strategies: The strategy of
the MUs and the strategy of the MCSP. The strategy of the MU
is to select the best task type z for which to send a sensing

7

Algorithm 1 CA-MAB-SFS (MUs’ online learning)
Require: ϵt, λ ∈ [0, 1), α ∈ [0, 1)

1: Initialize Ûk,0(z) and Ĵk,0(z), set γk,z = 0 ∀k ∈ K, z ∈ Z
2: for t = 1, . . . , T do
3: MCSP publishes sensing tasks At and Pz,t−1 =

max{P̂k,z |xk,n,t−1 = 1, an,t ∈ Az,t}.
4: Determine available task types Z from the set At of published tasks

and the sets Az,t.
5: if t = 1 then
6: MU k sends sensing offer Ok,t ← z, to a uniformly random

chosen task type z ∈ Z .
7: else
8: Draw i.i.d. random variable Dk,t with P(Dk,t = 1) = λ,

P(Dk,t = 0) = 1− λ.
9: if Dk,t = 0 then

10: for each z ∈ 1, . . . , Z do
11: if γk,z > ϵa then P̂k,z ←− 0 ▷ free sensing offer
12: else P̂k,z ←− P effort(Ĵk,t−1(z)) ▷ paid sensing offer
13: end for
14: Update plausible set, i.e., Sk = {z : Pz,t−1 ≥ P̂k,z , ∀z =

1, . . . , Z}
15: Select z ∈ Sk using ϵ - greedy and send sensing offer Ok,t ←−

z.
16: else
17: Send same sensing offer Ok,t ← Ok,t−1 as in the previous

timestep.
18: end if
19: end if
20: Wait for the MCSP’s decision Ōk,t from Algorithm 2.
21: if MU k is accepted, i.e., Ōk,t = an,t then
22: Assign the task to MU k, i.e., xk,n,t ← 1, where Ōk,t = an,t.
23: Perform the task an,t and observe UMU

k,n,t, τk,n,t and Ek,n,t.
24: Update estimates Ûk,t(z) and Ĵk,t(z).
25: Reset rejection counter, i.e. γk,z ←− 0.
26: else
27: Ûk,t(z)←− Ûk,t−1(z), Ĵk,t(z)←− Ĵk,t−1(z)
28: if t < ϵe then increase rejection counter of task type z, i.e.,

γk,z ←− γk,z + 1
t

29: end if
30: end for

offer and the payment proposal. The strategy of the MCSP
is to select the best sensing offers out of the received MUs’
sensing offers for each task type. Our algorithm only requires
information exchange between the MUs and the MCSP. No
information is exchanged between different MUs.

As mentioned before, a major challenge for the MUs is
the exploration of task types, particularly at the beginning.
Exploration is needed to estimate the effort associated with
each task type. However, at the beginning, all MUs compete
with each other because they all have only poor estimates
of the required effort for each task type. Intuitively, MUs
may get rejected by the MCSP because they overestimated
the effort associated with a task type. This will cause high
payment proposals for this task type in the future, leading to
further rejections and, thus, to an inability to correctly learn
the estimate of the effort. To overcome this, we propose the
concept of strategic free sensing. MUs can decide to sense
a task from a certain task type for free and in exchange
learn about the task type characteristics. This is done in the
following way: The MU proposes to the MCSP to perform
the task for free, i.e., the payment proposal Pk,n,t is 0. Each
MU k updates a rejection counter γk,z for each task type z
if it has been rejected by the MCSP. After a threshold value
is reached, the MU sends a free sensing offer to get accepted
with a high probability.

Algorithm 1 describes the online learning process of each

MU. In the beginning, each MU k initializes its estimates
Ĵk,0(z) and Ûk,0(z) (see line 1). If prior knowledge is avail-
able at MU k, it may initialize Ĵk,0(z) and Ûk,0(z) according
to its prior knowledge. Otherwise, these values are initialized
to zero. In each time slot t, MU k receives a list of available
sensing tasks At together with information about the payment
proposal

Pz,t−1 = max{P̂k,z|xk,n,t−1 = 1, an,t ∈ Az,t} (11)

of the MU which was most expensive in the previous task
assignment in t − 1 for each task type (line 3). In the first
time slot t = 1, MU k sends a sensing offer for a random
task type (line 5-7), as no information about the utility and
the effort for each task type is available. For t > 1, MU k
draws a random number Dk,t which is equal to one with
probability λ and zero with probability 1 − λ (line 8). If
Dk,t = 1, MU k sends a sensing offer to the same type as in
the offer sent in the last time slot t−1 (lines 16-18). The idea
behind this mechanism is that not all MUs change their sensing
offers simultaneously, which is required for the convergence
of the online learning [26]. The parameter λ controls the trade-
off between initial learning speed and convergence, which is
discussed in Section V. If Dk,t = 0, MU k determines the
payment proposal for each task type z based on its effort
estimate Ĵk,t(z). If MU k’s rejection counter γk,z is larger
than a predefined threshold ϵa (line 12), MU k offers to sense
the task for free. Furthermore, MU k determines the plausible
set Sk containing all task types z where its payment P̂k,z is
lower than Pz,t−1 from (11), i.e., all the task types which
MU k can perform for a lower or equal payment than the
most expensive MU who performed a task of the same type
in the last assignment (line 14). A task type from the plausible
set Sk is chosen according to the ϵ-greedy strategy [38], i.e.
with probability ϵt a random task type is chosen, and with
probability 1− ϵt the task with the highest expected utility is
selected (line 15). The sensing offer Ok,t with the payment
proposal Pk,n,t is sent to the MCSP. Afterwards, MU k waits
for the response of the MCSP, described in Algorithm 2.

After MU k receives the MCSP’s response, its next action
depends on whether it was accepted or not. If MU k was
accepted, the task an,t is performed and the utility UMU

k,n,t and
the effort regarding time τk,n,t and Ek,n,t is observed and used
to update the estimate Ûk,t(z) of the utility and the estimate
Ĵk,t(z) of the task types’s effort. The update of Ûk,t(z) is then
given as

Ûk,t(z) = Ûk,t−1(z) +
1

Nk(z)
· (UMU

k,n,t − Ûk,t−1(z)), (12)

which is the iterative estimate of the mean value of UMU
k,n,t,

where Nk(z) represents the number of times that MU k has
been assigned to task type z. The estimate of the effort Ĵk,t(z)
for task type z is updated analogously. If MU k was rejected
by the MCSP, it receives no information about the utility of the
task type and the required effort (line 26). Only the rejection
counter γk,z of task type z is increased by the value t/ϵs

(line 27). The analysis of the convergence of the proposed
CA-MAB-SFS is presented in the following Section IV.

Algorithm 2 describes the decision-making process of the

8

Algorithm 2 CA-MAB-SFS (MCSP’s decision)
Require: K,A, wz,t

1: for t = 1, . . . , T do
2: Publish available sensing tasks At and Pz,t−1 =

max{P̂k,z |xk,n,t−1 = 1, an,t ∈ Az,t}.
3: Wait for all sensing offers Ok,t and payment proposals P̂k,z .
4: for z = 1, . . . , Z do
5: Select the |Az,t| MUs with the lowest payment proposals.
6: Send acceptance response to the selected MUs, i.e., Ōk,t =

an,t ∀an,t ∈ Az,t

7: Send rejection response to all other MUs, i.e., Ōl,t = ∅.
8: end for
9: end for

MCSP for each task. After the list of available tasks is
published by the MCSP, it waits for the MUs’ sensing offers.
Then, for each task type, the MCSP selects the MUs with
the lowest payment proposal to complete all |Az,t| tasks of
type z (line 5). If the lowest payment proposal is larger than
wz,t, the MCSP rejects all MUs. For each MU k, the MCSP
sends a response Ōk,t indicating whether the MU is accepted
or rejected.

IV. CONVERGENCE AND REGRET BOUND ANALYSIS FOR
THE PROPOSED CA-MAB-SFS ALGORITHM

In this section, we show that the proposed algorithm is
guaranteed to converge to a stable solution and its regret bound
is fixed. For the proof, we assume that in each round the
number |Az,t| of tasks of each type is fixed. Furthermore,
we assume that the mapping function gt : At → Z is constant
over time, i.e., the type of the task an,t is the same in every
round. This applies to MCS scenarios in which each task has to
be repeated regularly to update the measurements, e.g., traffic
or temperature measurements in a smart city.

A. Solution with complete information

In this section, the solution of the matching-based, task
assignment game is discussed when all players have complete
information I. This assumption is unrealistic and it is only
used to derive a baseline for our CA-MAB-SFS algorithm. We
will only briefly discuss this approach and refer the reader to
the related works [16] on stable matching for MCS. We define
the oracle as a decision maker with complete information I
who is able to calculate an stable solution in one time slot t.
When every MU and the MCSP know I, a stable solution of
the task assignment game can be calculated using the deferred
acceptance algorithm [37]. The deferred acceptance algorithm
to reach a stable task assignment is presented in Algorithm 3.
The input is the task assignment game Gt in time slot t, where
all players have access to the complete information I. Each
MU is initialized without any assigned task and an empty
sensing offer history Zhistory

k . After receiving the set At from
the MCSP, each MU determines the set Z of available task
types (line 1). The sensing offer history Zhistory

k contains all
the task types z to which MU k has sent a sensing offer Ok,t

in the considered time slot t (line 2). The algorithm is an
iterative approach that runs as long as at least one MU remains
unmatched and there are task types to which it has not yet sent
a sensing offer (line 3). Each unmatched MU k sends a sensing
offer considering its most preferred task type z which is not in
the sensing offer history (line 4). If all the tasks an,t of type

Algorithm 3 Offline Deferred Acceptance
Require: Gt = (K,At,⪰MU

k ,⪰MCSP
z)

1: Determine available task types Z from the set At of published tasks.
2: Ok,t ←− ∅, Zhistory

k ←− {}, ∀k ∈ K
3: while ∃Ok,t = ∅ ∧ Zhistory

k ̸= Z do
4: Send sensing offer Ok,t for task type z, with z : z ⪰MU

k z′, z ̸=
z′, ∀z, z′ ∈ {Z \ Zhistory

k }
5: if all an,t ∈ Az,t are assigned then
6: if MU k ⪰MCSP

z MU l then
7: Assign task an,t to MU k instead of MU l, i.e., xk,n,t =

1, xl,n,t = 0
8: end if
9: else

10: if MU k ⪰MCSP
z ∅ then assign task an,t to MU k, i.e.,

xk,n,t = 1
11: end if
12: Zhistory

k ←− Zhistory
k ∪ {z} ▷ Add task type z to the proposal history

13: end while
14: return Xt = {xk,n,t}∀k,n

z are already assigned, and the sensing offer from MU k has
a higher expected utility than any of the assigned MU l, the
current assigned MU l is exchanged with MU k (lines 5-9). If
there are still unassigned tasks of type z, MU k is assigned to
one of these tasks as long as MU k has a positive utility (line
11). MU k adds the task type z to which it sent its sensing
offer to its sensing offer history (line 13). When all MUs are
either assigned to a task or have sent sensing offers to all
task types, the output is a stable task assignment Xt. Note
that Algorithm 3 is only used as a benchmark and cannot be
implemented in real applications due to its strict requirement
on I, which as discussed before, cannot be fulfilled.

B. Convergence and regret bound for CA-MAB-SFS

In the decentralized task assignment setting, the stable regret
concept [26] is used to evaluate the performance of learn-
ing algorithms. The stable regret describes the performance
compared to the offline stable task assignment with complete
information from Section IV-A. We define the instantaneous
stable regret in t as

rk(t) = ŪMU,stable
k −

N∑
n=1

x
k,n,t

ŪMU
k,z . (13)

rk(t) is computed as the difference between the expected
utility ŪMU,stable

k for the stable matching and the expected
utilities of the task assignment Xt. The stable regret of
a sequence of task assignments {Xt}t=1,...,T for MUk is
defined as

Rk(T) =

T∑
t=1

rk(t). (14)

Rk(T) is computed as the sum of all instantaneous regrets
over the whole time horizon T .

Theorem 1. The stable regret is bounded by a sublinear
function which is given by

Rk(T) ≤ O

(
∆k

8Z5K2e
∆2

Z∆U

ρZ4+1(1− ∆2

Z∆U)
log(T)T 1− ∆2

Z∆U

)
, (15)

where ρ = (1 − λ)λZ−1, ∆k = maxz=1,...,Z{ŪMU,stable
k −

ŪMU
k,z } and ∆ = mini,j∈,i̸=j{ŪMU

k,i − ŪMU
k,j }.

Proof. See Appendix A.

9

The stable regret Rk(T) is bounded by a sublinear function,
which means that the average instantaneous stable regret
rk(t) = Rk(T)/T goes to zero for T → ∞. The average
instantaneous stable regret of the task assignment for each
MU diminishes during the online learning procedure.

To prove the convergence of CA-MAB-SFS, we analyze
the probability P(XT /∈ X stable) of not reaching a stable
matching in time step T .

Theorem 2. The probability of not reaching a stable matching
in time step T is bounded by

P(XT /∈ X stable) ≤ O

(
8Z5K2e

∆2

Z∆U

ρZ4+1(1− ∆2

Z∆U)

log(T)

T
∆2

Z∆U

)
. (16)

Proof. See Appendix B.

This probability P(XT /∈ X stable) goes to 0 for T → ∞
as limT→∞

log(T)

T
∆2

Z∆U

= 0. This implies that the probability

P(XT ∈ X stable) of achieving a stable matching approaches
1, therefore CA-MAB-SFS converges. When reaching a stable
matching, all MUs and the MCSP would not profit from
changing the assignment.

C. Computational complexity analysis

We now analyze the computational complexity of the pro-
posed CA-MAB-SFS algorithm from the perspective of the
MUs and the MCSP. For the MUs, we analyze the complexity
of one iteration of their learning algorithm (Algorithm 1). Note
that the MU’s decision only depends on the number Z of
available task types. Therefore, we evaluate the algorithm’s
complexity with regard to Z. From Algorithm 1, we can see
that the complexity of lines 1-9 does not grow with the number
Z of task types, therefore the computational complexity of
each of this lines is constant and of the order O(1). The
complexity of line 10-15 is linearly dependent on the number
of task types, as the loop iterates over each task type once,
and therefore is of the order O(Z). The lines 16-30 are not
dependent on Z and are of constant complexity O(1). From
this analysis, we can determine that the complexity of the
proposed CA-MAB-SFS algorithm grows only linearly with
the number Z of available task types, i.e., O(Z).

The MCSP has to choose among the set of proposing MUs
K, and therefore the algorithm complexity is analyzed with
regard to the number of MUs, K. For the MCSP, the maximum
computational complexity stems from the selection of the
cheapest payment for each task (Algorithm 2, line 5). For
this, the MCSP has to evaluate the cost of each MU once,
leading to a linear complexity with regard to the number K of
MUs. Therefore, the computational complexity of the MCSP’s
algorithm is characterized by O(K).

For both, the MUs and the MCSP, the communication
overhead is low. The MCSP broadcasts the list of available
tasks, receives the sensing offers and transmits the accept and
defer messages. Each MU only receives the list of available
tasks, submits one sensing proposal, and receives an accept or
defer message.

TABLE II
EVALUATION PARAMETERS

Parameter Value
Number of MUs K = 100

Size of the sensing task result [29] sz ∈ [50 ,100] Mbits
Number of task types Z = 10
Tasks per task type |Az,t| ∈ [5, 10]

Mean communication rate τ̄comm
k,z ∈ [0.025, 0.1] s

Mbit

CPU frequency [39] f local
k ∈ [1, 2] GHz

Mean sensing time [29] τ̄ sensek,z ∈ [60, 180] s

Transmission power [39] pcomm
k = 200mW

Power required for computation [39] pcomp
k = 1W

Computational complexity [29] [200, 300] CPU Cycles
bit

Earning of MCSP wz,t = 1.4 + 3 ·sz
MUs’ cost for energy consumption αk = 0.01 Monetary units

J

MUs’ cost for time spent sensing βk = 0.004 Monetary units
s

Payment to the MUs P effort(τk,n,t, Ek,n,t)
= 1.1 · Ceffort

k (Ek,n,t, τk,n,t)

Exploration rate ϵt = min{1, 1/t}
Collision-avoidance parameter λ = 0.1

Free-sensing parameters ϵe = 30, ϵa = 0.5

V. SIMULATION RESULTS AND ANALYSIS

In this section, we evaluate the performance of the proposed
CA-MAB-SFS algorithm and compare it to baseline schemes.

A. Evaluation metrics

As the MUs and the MCSP have different goals, the assess-
ment of the system’s performance depends on the considered
perspective. We argue that different evaluation metrics need to
be considered to assess the system’s performance.

1) Social Welfare: Social welfare is often used in game
theory to evaluate the performance of a solution from the
whole network’s perspective [15], as it represents a joint utility
of all players in the game. The social welfare USW

t (Xt) at
time slot t can be calculated by

USW
t (Xt) =

K∑
k=1

N∑
n=1

x
k,n,t

(UMCSP
k,n,t + UMU

k,n,t), (17)

which is the sum of all MUs’ utilities and the MCSP’s utility.
2) Average completion time: We consider the time that is

required to complete the tasks of the MCSP.
3) Energy efficiency: We consider the energy that is re-

quired to complete the tasks of the MCSP.
4) Stability and number of blocking pairs: Stability ensures

that the MCSP and all MUs are satisfied, i.e., neither the
MCSP nor the MUs have an incentive to deviate from the
current task assignment. Intuitively, stability is important to
ensure that all MUs and the MCSP will use this strategy,
as their individual goals are achieved [35]. The number of
blocking pairs indicates how many MU-task pairs would profit
from changing the task assignment. We measure the number
of MUs that are part of a blocking pair, which represents how
many MUs could improve their utility by adopting another
task assignment.

B. Baseline Algorithms

We use the following algorithms to benchmark our pro-
posed CA-MAB-SFS. Assuming complete information I for

10

0 10 20 30 40 50 60 70 80 90 100
Time slot (t)

155

160

165

170

175

180

E
ne

rg
y

ef
fic

ie
nc

y
(m

J/
M

bi
t)

MCSP-strategic
CA-MAB-SFS

Centralized OPT
DCA-ε-greedy

Fig. 2. Energy efficiency as a function of the time
step t.

0 10 20 30 40 50 60 70 80 90 100
Time slot (t)

80

90

100

110

120

130

140

A
ve

ra
ge

co
m

pl
et

io
n

tim
e

(s
)

MCSP-strategic
CA-MAB-SFS

Centralized OPT
DCA-ε-greedy

Fig. 3. Average task completion time as a function
of the time step t.

0 10 20 30 40 50 60 70 80 90 100
Time slot (t)

60

65

70

75

80

85

90

So
ci

al
W

el
fa

re

MCSP-strategic
CA-MAB-SFS

Centralized OPT
DCA-ε-greedy

Fig. 4. Social welfare as a function of the time
step t.

each MU and the MCSP, we consider the following offline
approaches:

• Offline Centralized Optimization, which is abbreviated
as Centralized OPT: For this approach, an optimization
problem of the social welfare is formulated with complete
information I. This approach is based on the centralized
optimization method proposed in [12], which is adapted
to maximize the social welfare (17). The optimal solution
is calculated using a solver from the OR-Tools [40].

• Offline Game-Based Solution, which is abbreviated as
Offline Game-Based, as described in Section IV-A and
Algorithm 3. We adapted the stable matching approach
from [16] to our considered scenario. The complete
information is available, therefore the payment of the
MUs is calculated based on the actual effort required to
perform the task, as specified in (4).

Additionally, we consider the following baseline algorithms
which do not require complete information:

• Decentralized ϵ-greedy multi-armed bandit (D-ϵ-greedy):
Each MU uses the decaying ϵ-greedy online-learning
algorithm [38] to learn the effort and utility for each
task in a decentralized way. In case the sensing offer
of the MU is rejected, the MU’s utility is assumed to be
zero. The exploration of tasks is performed according to
a probability ϵ which is decreasing over time.

• Decentralized collision-avoidance ϵ-greedy online-
learning (DCA-ϵ-greedy): Similar to the decaying
ϵ-greedy multi-armed bandit, each MU learns the
effort and utility for each task using the ϵ-greedy
online learning strategy. Additionally, each MU learns
an acceptance probability representing the MCSP’s
preferences for each task type to avoid collisions with
other MUs. The expected utility (12) and effort are
weighted with the acceptance probability for the decision
making.

• Only MCSP-strategic: Each MU randomly selects a task
type z and sends a sensing offer to this task type. The
payment proposal is calculated at the MUs using the
average of the past efforts. The MCSP selects the MU
with the lowest payment proposal.

C. Evaluation Setup

For the simulations, the parameters listed in Table II are
considered, unless otherwise specified. The number K of
MUs is chosen to be K = 100. The number N of tasks

is chosen from the interval [50, 100], whereas Z = 10
different task types are available. The sensing time varies
every time slot for each MU and is drawn from a normal
distribution with mean τ̄ sensek,z and standard deviation 10 s.
The mean communication rate is randomly drawn from the
interval [10, 40]Mbit s−1, which corresponds to the mean
communication time τ̄ comm

k,z = [0.025, 0.1] sMbit−1 · sz . The
communication time varies in every time slot for each MU, and
it is drawn from a normal distribution with mean τ̄ comm

k,z and
standard deviation 0.01 sMbit−1. The mean CPU frequency
available at each MU is f local

k ∈ [1, 2] GHz. Each time slot,
it is drawn from a Gaussian distribution with the mean f local

k

and standard deviation 100 MHz. For each figure, 100 Monte-
Carlo iterations were performed and the results are averaged.

D. Results and Discussion

We assess the energy efficiency of the proposed CA-MAB-
SFS algorithm and the baseline algorithms in Fig. 2. The
energy consumption is normalized to the size of the task result
sz , i.e., the energy efficiency is given by the energy consumed
for each bit of the task result. The energy efficiency of the
proposed CA-MAB-SFS is slightly lower than the baseline
algorithms for t < 20. This is due to the strategic free
sensing mechanism in the CA-MAB-SFS algorithm, where
MUs explore task types for free. The MCSP prefers the MUs
which perform the task for free over the most energy-efficient
MUs, and therefore does not select the most efficient MU in
this case. The exploration of task types is challenging due
the competition between MUs, which initially causes poorer
performance of the CA-MAB-SFS in the learning phase for
t < 20. This degraded performance is due to the fact that
the strategic free sensing activates simultaneously for multiple
MUs. After the initial exploration of all Z task types, multiple
MUs activate the free sensing mechanism (see Algorithm 1
line 11) simultaneously. When the exploration rate and the
strategic free sensing reduces for t > 20, the CA-MAB-SFS
shows a fast improvement in terms of energy efficiency. Fig. 2
demonstrates that for t > 50, the proposed CA-MAB-SFS
algorithm achieves a 7.5% increase in energy efficiency com-
pared to the DCA-ϵ-greedy algorithm and an 11.5% increase
compared to the MCSP-strategic algorithm. Furthermore, the
performance of the CA-MAB-SFS algorithm is within 1.2%
of the Centralized OPT algorithm which requires complete
information. The D-ϵ-greedy algorithm is not shown, as its
performance is significantly worse than its improved version
given by DCA-ϵ-greedy.

11

100 200 300 400
Number of MUs (K)

0

100

200

300

400

500

So
ci

al
W

el
fa

re
Centralized OPT
CA-MAB-SFS

DCA-ε-greedy
MCSP-strategic

Fig. 5. Social welfare for an increasing network
size for K = N , Z = 10.

5 10 20 25
Number of task types (Z)

0

25

50

75

100

125

So
ci

al
W

el
fa

re

Centralized OPT
CA-MAB-SFS

DCA-ε-greedy
MCSP-strategic

Fig. 6. Social welfare as a function of the number
Z of task types, K = N = 100.

80 100 120 140
Number of tasks (N)

0

25

50

75

100

125

N
or

m
al

iz
ed

U
til

ity
(%

) MUs MCSP

Fig. 7. Normalized utility of the MUs and the
MCSP using CA-MAB-SFS as a function of N ,
K = 100, Z = 20.

The average time required to complete the tasks is shown in
Fig. 3. For t > 50, the proposed CA-MAB-SFS algorithm out-
performs the DCA-ϵ-greedy by 16% and the MCSP-strategic
by 41%. It achieves a slightly lower average task completion
time than the Centralized OPT algorithm. This is due to the
fact that the cost factor αk of the MUs for the time is higher
than the cost factor βk for the energy, therefore the MUs
prefer to execute tasks which require a lower completion time.
The Centralized OPT algorithm maximizes the social welfare
and therefore assigns tasks to MUs without considering their
individual preferences, which will not yield the time-optimal
result. Initially, the CA-MAB-SFS algorithm is slightly worse
than the baseline algorithms due to the strategic free sens-
ing procedure, but then outperforms the baseline algorithms
significantly.

Figure 4 depicts the achieved social welfare of the different
algorithms. The achievable maximum of the social welfare
is given by the task assignment of the Centralized OPT algo-
rithm. The proposed CA-MAB-SFS shows a good convergence
to the social welfare maximum, whereas the DCA-ϵ-greedy
and the MCSP-strategic algorithm are not able to converge to
the optimum. The DCA-ϵ-greedy online learning achieves a
7.2% lower social welfare than the optimum and the MCSP-
strategic a 22% lower social welfare. As in the Fig. 3, the
decrease in social welfare of the proposed CA-MAB-SFS for
t < 20 is due to the strategic free sensing mechanism, where
some MUs execute tasks for free to learn more about the
different task types.

The impact of the number K of MUs and the number
N of tasks on the social welfare is shown in Fig. 5 for
t = 1000. It can be seen that even for large MCS network
sizes K = N = 400, the proposed CA-MAB-SFS is within
2% of the optimal social welfare given by the Centralized
OPT algorithm, whereas the DCA-ϵ-greedy achieves 14% less
social welfare. For larger networks, CA-MAB-SFS achieves
near-optimal social welfare, while DCA-ϵ-greedy is 18%
below optimum.

The impact of the heterogeneity of tasks is shown in Fig. 6.
The number Z of task types is varied while keeping the
number K of MUs and the number N of tasks constant.
We observe for all values of Z that the proposed algorithm
achieves a near optimal performance within 6% of the social
welfare optimum.

Next, we analyze the effect of the competition between the

MUs by varying the ratio K/N between the number of tasks
and the number of MUs. The utility of the MUs and the MCSP
using CA-MAB-SFS is shown in Fig. 7 for a varying ratio
between MUs and tasks. For an increased competition between
the MUs, i.e., less MUs than tasks (K/N < 1), we can see
that the utility of the MUs decrease whereas the MCSP’s
utility increases. This is due to the fact that MUs with a lower
payment proposal are selected by the MCSP and therefore the
average payment between for each task decreases. When fewer
MUs compete (K/N > 1), the utility of the MUs increases
as they more frequently select tasks with higher payments.

To assess the stability of the solution, we depict the number
of blocking pairs in Figure 8. Note that fewer blocking
pairs result in more MUs satisfied with the task assignment.
The proposed algorithm converges to zero blocking pairs,
which demonstrates that CA-MAB-SFS converges to the stable
solution, as shown in Theorem 2. The regular DCA-ϵ-greedy
algorithm, which does not consider the competition between
the MUs, leaves 60% of MUs that could improve by changing
the task assignment. As the MCSP-strategic algorithm does not
consider the utility of the MUs, more than 80% of the MUs
are not satisfied with the task assignment.

To understand the impact of the collision-avoidance param-
eter λ on the performance, we varied λ in Fig. 9. For λ = 0,
we observe a faster initial learning for t < 12. This is due to
the fact that the MUs’ suboptimal decisions are not repeated.
However, this configuration does not converge to the maximum
social welfare. For λ = 0.4, we observe a significantly lower
learning speed, as 40% of the MUs in average repeat the
same decision as in the last time slot, which is ineffective.
The collision-avoidance parameter therefore controls the trade-
off between initial learning speed and convergence. Lower
values of λ exhibit a higher initial learning speed, but may
converge much slower. Higher values of λ have a lower initial
learning speed, but converge faster. For our simulations, we
chose λ = 0.1 as it empirically yields the best results.

Fig. 10 shows the cumulative number of free sensing offers,
i.e., how many sensing offers without payment proposal have
been sent. To analyze the impact of the free sensing param-
eter ϵa, we analyze the cumulative number of free sensing
proposals. In our analysis of CA-MAB-SFS, we clearly see
two phases: The phase with free sensing offers t ≤ ϵe, and
the phase without free sensing offers t > ϵe. In the phase with
free sensing offers, MUs submit a free sensing offer after their

12

Fig. 8. Number of blocking pairs as a function of
the time step t, K = 100, N = 10, Z = 10.

0 10 20 30 40 50 60 70 80 90 100
Time slot (t)

80

90

100

110

So
ci

al
W

el
fa

re

λ = 0.1
λ = 0

λ = 0.4
λ = 0.2

Fig. 9. Social welfare as a function of the time
step t for varying collision-avoidance parameters
λ.

0 10 20 30 40 50 60 70 80 90 100
Time slot (t)

0

200

400

600

N
um

be
ro

ff
re

e
se

ns
in

g
of

fe
rs

εa = 30,
No free sensing

εa = 100
εa = 50

Fig. 10. Number of free sensing offers as a
function of time step t for varying SFS parameters.

0 100 200 300 400 500
Time slot (t)

0

1000

2000

3000

C
um

ul
at

iv
e

nu
m

be
ro

fc
ol

lis
io

ns

CA-MAB-SFS
DCA-ε-greedy

D-ε-greedy

Fig. 11. Cumulative number of col-
lisions as a function of time step t,
K = 200, N = 20, Z = 10.

Fig. 12. Cumulative utility of the
MUs as a function of the time step
t for varying free-sensing parameters.

respective rejection threshold ϵa is exceeded. This is done to
ensure that the MU will be accepted by the MCSP and the
effort estimate will improve. From Fig. 10, we can see that
increasing ϵa leads to a higher number of cumulative free
sensing offers. The number of free sensing offers does not
increase for t > ϵa, so it does not increase indefinitely.

Fig. 11 shows the cumulative number of collisions, i.e., how
many MUs are rejected by the MCSP because too many MUs
propose to the same task type. For t < 150, the proposed CA-
MAB-SFS algorithm suffers from a slightly higher number
of collisions than the DCA-ϵ-greedy algorithm. This is due
to the free sensing mechanism, which stimulates the MUs’
exploration of the task types. During this exploration, more
collisions might occur, as MUs try to estimate the expected
effort for different task types. For t = 500, the proposed
CA-MAB-SFS algorithm reduces the cumulative number of
collisions by 33% compared to the DCA-ϵ-greedy algorithm
and by 47% compared to the D-ϵ-greedy algorithm.

Fig. 12 shows the cumulative utility of an MU depending
on different free-sensing parameters. The cumulative utility
is averaged over all MUs. Clearly, the strategic free sensing
mechanism requires an initial investment from the MU’s
perspective, as the MU performs tasks without payment from
the MCSP. Performing tasks for free results in a negative utility
of the MU at the beginning. For ϵe = 0, i.e., no free sensing,
the utility is slightly negative for t < 80 as the estimates of
the efforts are incorrect in the beginning. For ϵe = 50, the
cumulative utility of the MU reaches a minimum of −20,
but for t = 500, it achieves a 20% higher cumulative utility
for the MU than the version without free sensing. The free
sensing parameter ϵe controls the tradeoff between the initial
investment from the MUs and the long term reward achieved
by the better exploration of task types. A higher value of ϵe

leads to a lower utility of the MU in the beginning, but leads
to a higher cumulative utility in the long run.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have studied the assignment of tasks in
MCS. We have analyzed the conflicting interests of the MCSP
and the MUs, the statistical nature of the tasks and MU’s
characteristics, as well as the competition between MUs. To
consider the conflicting goals of the MCSP and MUs, we
have formulated a matching-based task assignment game. We
have proposed a novel decentralized online learning algorithm
for the task assignment game, termed CA-MAB-SFS, which
incorporates an innovative free sensing strategy. We have then
proven its convergence to a stable task assignment, i.e., an
assignment where neither the MUs nor the MCSP can improve.
The stable regret, i.e., the loss of the online learning compared
to having complete information, is bounded by a sublinear
function and decreases to zero. Furthermore, we showed that
the computational complexity for each MU and the MCSP
is low. Simulation results show that, compared to the popular
decentralized ϵ-greedy online learning approach, our proposed
CA-MAB-SFS algorithm does not only reduce the average
completion time of tasks by 16%, but also enhances the
energy efficiency of the MCS system by up to 7.5%. We
have also shown that the number of blocking pairs, i.e., the
number of MUs that would improve by deviating from the task
assignment, converges to zero. Furthermore, we have proven
that our proposed CA-MAB-SFS converges to the maximum
of the social welfare, whereas state-of-the-art online learning
approaches are not able to reach it.

Future works could analyze how to assign multiple MUs
to a task in parallel. When multiple MUs perform a task in
parallel, the interactions between the assigned MUs in terms
of willingness to cooperate or social relationships may affect
the results. Another interesting direction for future research is
the use of data inference methods, e.g., inspired by [41], to
increase the coverage of sensing data provided by MCS and to
overcome missing data when only a small number of MUs is
participating. Additionally, an interesting area for future works
is the use of non-orthogonal multiple access schemes which
requires the research of novel resource allocation schemes to
mitigate interference between sensing and communication. An
exciting future research area is the application of multi-armed
bandits to handle non-stationary probability distributions in
MCS. Finally, a fully-fledged implementation of the proposed

13

approach over a real-world testbed, will be also of interest for
future work.

REFERENCES

[1] Statista, “Forecast number of mobile devices worldwide from 2020 to
2025 (in billions),” https://www.statista.com/statistics/245501/multiple-
mobile-device-ownership-worldwide/, accessed: 28.07.2022, 2021.

[2] A. Capponi, C. Fiandrino, B. Kantarci, L. Foschini, D. Kliazovich, and
P. Bouvry, “A Survey on Mobile Crowdsensing Systems: Challenges,
Solutions, and Opportunities,” IEEE Commun. Surveys & Tutorials,
vol. 21, no. 3, pp. 2419–2465, Apr. 2019.

[3] J. Nie, J. Luo, Z. Xiong, D. Niyato, and P. Wang, “A Stackelberg Game
Approach Toward Socially-Aware Incentive Mechanisms for Mobile
Crowdsensing,” IEEE Trans. Wireless Commun., vol. 18, no. 1, pp. 724–
738, Dec. 2019.

[4] S. Wang, M. Chen, Z. Yang, C. Yin, W. Saad, S. Cui, and H. V.
Poor, “Distributed Reinforcement Learning for Age of Information
Minimization in Real-Time IoT Systems,” IEEE Journal of Selected
Topics in Signal Processing, vol. 16, no. 3, pp. 501–515, Jan. 2022.

[5] H. Ma, D. Zhao, and P. Yuan, “Opportunities in mobile crowd sensing,”
IEEE Commun. Mag., vol. 52, no. 8, pp. 29–35, Aug. 2014.

[6] W. Gong, B. Zhang, and C. Li, “Task Assignment in Mobile Crowd-
sensing: Present and Future Directions,” IEEE Network, vol. 32, no. 4,
pp. 100–107, Mar. 2018.

[7] S. Dongare, A. Ortiz, and A. Klein, “Deep reinforcement learning for
task allocation in energy harvesting mobile crowdsensing,” in Proc. of
the IEEE Global Commun. Conf. (GLOBECOM), Rio de Janeiro, Dec.
2022, pp. 269–274.

[8] Z. Wang, J. Hu, R. Lv, J. Wei, Q. Wang, D. Yang, and H. Qi, “Person-
alized Privacy-Preserving Task Allocation for Mobile Crowdsensing,”
IEEE Trans. Mobile Computing, vol. 18, no. 6, pp. 1330–1341, Jul.
2019.

[9] K. Ahuja and M. V. d. Schaar, “Dynamic matching and allocation of
tasks,” ACM Trans. Economics and Computation, vol. 7, no. 4, pp. 1–27,
Oct. 2019.

[10] J. Wang, L. Wang, Y. Wang, D. Zhang, and L. Kong, “Task Allocation
in Mobile Crowd Sensing: State-of-the-Art and Future Opportunities,”
IEEE Internet of Things J., vol. 5, no. 5, pp. 3747–3757, Aug. 2018.

[11] X. Gong, X. Chen, J. Zhang, and H. V. Poor, “Exploiting Social Trust
Assisted Reciprocity (STAR) Toward Utility-Optimal Socially-Aware
Crowdsensing,” IEEE Trans. on Signal and Information Processing over
Networks, vol. 1, no. 3, pp. 195–208, Aug. 2015.

[12] M. Karaliopoulos, O. Telelis, and I. Koutsopoulos, “User Recruitment
for Mobile Crowdsensing over Opportunistic Networks,” in Proc. of the
IEEE Conf. on Computer Commun. (INFOCOM), Hong Kong, China,
Apr. 2015, pp. 2254–2262.

[13] F. Yucel and E. Bulut, “Online Stable Task Assignment in Opportunistic
Mobile Crowdsensing With Uncertain Trajectories,” IEEE Internet of
Things J., vol. 9, no. 11, pp. 9086–9101, Oct. 2022.

[14] B. Simon, S. Dongare, T. Mahn, A. Ortiz, and A. Klein, “Delay-
and Incentive-Aware Crowdsensing: A Stable Matching Approach for
Coverage Maximization,” in Proc. of the IEEE Int. Conf. Commun.
(ICC), Seoul, May 2022.

[15] Y. Wang, Z. Cai, Z.-H. Zhan, Y.-J. Gong, and X. Tong, “An Optimization
and Auction-Based Incentive Mechanism to Maximize Social Welfare
for Mobile Crowdsourcing,” IEEE Trans. Computational Social Syst.,
vol. 6, no. 3, pp. 414–429, Apr. 2019.

[16] G. Yang, B. Wang, X. He, J. Wang, and H. Pervaiz, “Competition-
Congestion-Aware Stable Worker-Task Matching in Mobile Crowd Sens-
ing,” IEEE Transactions on Network and Service Management, vol. 18,
no. 3, pp. 3719–3732, 2021.

[17] M. Xiao, J. Wu, L. Huang, R. Cheng, and Y. Wang, “Online Task
Assignment for Crowdsensing in Predictable Mobile Social Networks,”
IEEE Trans. Mobile Computing, vol. 16, no. 8, pp. 2306–2320, Oct.
2017.

[18] X. Wang, R. Jia, X. Tian, and X. Gan, “Dynamic Task Assignment
in Crowdsensing with Location Awareness and Location Diversity,” in
Proc. of the IEEE Conf. on Computer Commun. (INFOCOM), Honolulu,
USA, Apr. 2018, pp. 2420–2428.

[19] J. Zhang and X. Zhang, “Multi-Task Allocation in Mobile Crowd
Sensing with Mobility Prediction,” IEEE Trans. on Mobile Computing,
pp. 1081–1094, Jun. 2021.

[20] H. Gao, H. Xu, L. Li, C. Zhou, H. Zhai, Y. Chen, and Z. Han, “Mean
Field Game based Dynamic Task Pricing in Mobile Crowd Sensing,”
IEEE Internet of Things J., pp. 18 098–18 112, Sep. 2022.

[21] M. Xiao, B. An, J. Wang, G. Gao, S. Zhang, and J. Wu, “CMAB-
based Reverse Auction for Unknown Worker Recruitment in Mobile
Crowdsensing,” IEEE Trans. Mobile Computing, pp. 3502–3518, Feb.
2021.

[22] S. Dongare, A. Ortiz, and A. Klein, “Federated Deep Reinforcement
Learning for Task Participation in Mobile Crowdsensing,” in Proc. of the
IEEE Global Commun. Conf. (GLOBECOM), Kuala Lumpur, Malaysia,
Dec. 2023.

[23] C. Xu and W. Song, “Decentralized Task Assignment for Mobile
Crowdsensing With Multi-Agent Deep Reinforcement Learning,” IEEE
Internet of Things Journal, vol. 10, no. 18, pp. 16 564–16 578, Sep.
2023.

[24] A. Magesh and V. V. Veeravalli, “Decentralized Heterogeneous Multi-
Player Multi-Armed Bandits With Non-Zero Rewards on Collisions,”
IEEE Trans. on Information Theory, vol. 68, no. 4, pp. 2622–2634,
Dec. 2022.

[25] C. Shi and C. Shen, “Multi-player multi-armed bandits with collision-
dependent reward distributions,” IEEE Trans. on Signal Processing,
vol. 69, pp. 4385–4402, Jul. 2021.

[26] L. T. Liu, F. Ruan, H. Mania, and M. I. Jordan, “Bandit Learning in
Decentralized Matching Markets.” J. Mach. Learn. Res., vol. 22, pp.
1–50, Sep. 2021.

[27] L. T. Liu, H. Mania, and M. Jordan, “Competing Bandits in
Matching Markets,” in Proc. of the Twenty Third Int. Conf. on
Artificial Intelligence and Statistics, ser. Proceedings of Machine
Learning Research, S. Chiappa and R. Calandra, Eds., vol. 108.
PMLR, 26–28 Aug 2020, pp. 1618–1628. [Online]. Available:
https://proceedings.mlr.press/v108/liu20c.html

[28] M. H. Cheung, F. Hou, J. Huang, and R. Southwell, “Distributed Time-
Sensitive Task Selection in Mobile Crowdsensing,” IEEE Trans. on
Mobile Computing, vol. 20, no. 6, pp. 2172–2185, Feb. 2021.

[29] Y. Huang, H. Chen, G. Ma, K. Lin, Z. Ni, N. Yan, and Z. Wang,
“OPAT: Optimized Allocation of Time-Dependent Tasks for Mobile
Crowdsensing,” IEEE Trans. on Industrial Informatics, vol. 18, no. 4,
pp. 2476–2485, Jul. 2022.

[30] X. Li, G. Feng, Y. Liu, S. Qin, and Z. Zhang, “Joint Sensing, Com-
munication, and Computation in Mobile Crowdsensing Enabled Edge
Networks,” IEEE Transactions on Wireless Communications, vol. 22,
no. 4, pp. 2818–2832, 2023.

[31] A. Capponi, C. Fiandrino, D. Kliazovich, P. Bouvry, and S. Giordano,
“A cost-effective distributed framework for data collection in cloud-
based mobile crowd sensing architectures,” IEEE Trans. on Sustainable
Computing, vol. 2, no. 1, pp. 3–16, Feb. 2017.

[32] G. Gao, J. Wu, M. Xiao, and G. Chen, “Combinatorial Multi-Armed
Bandit Based Unknown Worker Recruitment in Heterogeneous Crowd-
sensing,” in Proc. of the IEEE Conf. on Computer Commun. (INFO-
COM), Toronto, Canada, Jul. 2020, pp. 179–188.

[33] Y. Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han, “Matching theory
for future wireless networks: fundamentals and applications,” IEEE
Commun. Magazine, vol. 53, no. 5, pp. 52–59, May 2015.

[34] L. S. Shapley and M. Shubik, “The Assignment Game I: The Core,”
Int. J. Game Theory, vol. 1, no. 1, p. 111–130, Dec. 1971. [Online].
Available: https://doi.org/10.1007/BF01753437

[35] S. H. Cen and D. Shah, “Regret, stability & fairness in matching markets
with bandit learners,” in Proc. of the Int. Conf. on Artificial Intelligence
and Statistics (AISTATS), Valencia, Spain, Mar. 2022, pp. 8938–8968.

[36] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic
Game Theory. New York, NY, USA: Cambridge University Press, 2007.

[37] A. E. Roth, “Deferred acceptance algorithms: History, theory, practice,
and open questions,” Int. Journal of Game Theory, vol. 36, no. 3, pp.
537–569, Jan. 2008.

[38] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp. 235–
256, May 2002.

[39] T. Mahn and A. Klein, “A Global Orchestration Matching Framework
for Energy-Efficient Multi-Access Edge Computing,” in Proc. of the
IEEE Int. Conf. on Cloud Networking (CloudNet), Cookeville, USA,
Nov. 2021, pp. 11–18.

[40] L. Perron and V. Furnon, “OR-Tools,” Google. [Online]. Available:
https://developers.google.com/optimization/, accessed: 30.7.2022

[41] J. Huo, L. Wang, X. Wen, D. Gesbert, and Z. Lu, “Cost-Efficient Vehic-
ular Crowdsensing Based on Implicit Relation Aware Graph Attention
Networks,” IEEE Transactions on Industrial Informatics, pp. 1–11, Sep.
2023.

APPENDIX A
PROOF OF THEOREM 1

The core idea is to bound the probability P(xt /∈ Xstable)
of the event that no stable matching is achieved until time T .
If a stable matching is reached, the stable regret of all MUs

14

will be zero, otherwise, we bound the regret by the maximum
regret over all MUs which is given by

∆k = maxz=1,...,Z{ŪMU,stable
k − ŪMU

k,z }. (18)

Therefore, we formulate the following stable regret bound:

Rk(T) ≤ ∆k

T∑
t=0

P(xt /∈ Xstable) (19)

As ∆k can be directly calculated from the MUs expected
utilities ŪMU

k,z , we only need to bound the probability of an
unstable matching P(xt /∈ Xstable). The following events E1,t

and E2,t prevent a stable matching:

• E1,t: At least one user is exploring according to ϵ-greedy
and not selecting its stable task astablek in t.

• E2,t: Either one MU has statistical ranking mistakes, i.e.
its estimates of the utility result in a sensing offer for a
suboptimal task type, or there were no statistical ranking
mistakes but the matching at time t− 1 was unstable.

Considering E1,t and E2,t, we use the following bound

P(xt /∈ Xstable) ≤ P(E1,t) + P(E1,t)P(E2,t), (20)

with E1,t as the complementary event of E1,t. The stable
regret bound is given by

Rk(T) ≤ ∆k

(T∑
t=1

P(E1,t) +

T∑
t=1

P(E2,t)

)
, (21)

using P(E1,t) ≤ 1. In the following, we derive the probability
of the events E1,t and E2,t separately.
Derivation of P(E1,t): The probability of E1,t is given by

P(E1,t) ≤ 1−
(
(1− ϵt) + ϵt

1

Z

)K

= 1−
(
1− ϵt

Z − 1

Z

)K

(22)

which is the complementary event of all K MUs exploiting
in time t or randomly selecting the stable task out of the N
tasks. The summation over all time slots t yields

T∑
t=1

P(E1,t) ≤
T∑

t=1

1−
(
1− ϵt

Z − 1

Z

)K

= T −
T∑

t=1

(
1− ϵt

Z − 1

Z

)K

. (23)

We bound the inner term of the sum by Bernoulli’s inequality(
1− ϵt

Z − 1

Z

)K

≥ 1 +K · ϵt
Z − 1

Z
, (24)

that holds for ϵt
Z−1
Z ≤ 1, which can be easily checked.

Therefore,
T∑

t=1

P(E1,t) ≤
T∑

t=1

K · ϵt
Z − 1

Z
(25)

For a sufficiently fast decaying ϵt, e.g. ϵt = min{1, 1/t}, we
can show that:

T∑
t=1

P(E1,t) ≤ K
Z − 1

Z

T∑
t=1

min
(
1,

1

t

)
≤ K

Z − 1

Z
(log(T) + 1). (26)

Derivation of P(E2,t): Note that P(E2,t) is the probability
of MUs having statistical ranking mistakes or not achieving
a stable matching. For this proof, we assume that, as in real
applications, the utility of the MUs is limited to finite values
in an interval [Umin, Umax]. Therefore, we can define ∆U =
Umax − Umin. The proof is an adapted version of the proof
in [26], using arguments for ϵ-greedy MABs from [38]. The
authors of [26] show that

T∑
t=1

P(E2,t) ≤ 4
Z5K2

ρZ4+1
log(T)(x0 + 12), (27)

where x0 =
∑T

t=1 P{Q̂k,t(i) > Q̂k,t(j) ∩ xk,n,t = 1} ≤∑T
t=1 P{Q̂k,t(i) > Q̂k,t(j)} denotes the expected number of

statistical ranking mistakes up to T and ρ = (1− λ)λZ−1.

The expected number kt of sensing offers to a suboptimal
task type in time slot t during the exploration phase is defined
as

kt =
1

Z

t∑
t′=1

ϵt′ ≤
1

Z
(log(t) + 1). (28)

Using Hoeffding’s inequality and the definition in (28), we
can show that

P{Q̂k,t(i) > Q̂k,t(j)} ≤ 2e−
kt∆

2

∆U

= 2e
∆2

Z∆U 1

t
∆2

Z∆U

, (29)

with ∆ = mini,j∈,i̸=j{ŪMU
k,i − ŪMU

k,j }. The expected number
x0 of statistical ranking mistakes up to T can be bounded by

x0 ≤ 2e
∆2

Z∆U

T∑
t=1

1

t
∆2

Z∆U

≤ 2e
∆2

Z∆U

∫ T

t=0

1

t
∆2

Z∆U

dt

=
2e

∆2

Z∆U

1− ∆2

Z∆U

T 1− ∆2

Z∆U . (30)

Using (26), (27) and (30), the total regret bound can then be
calculated as

Rk(T) ≤ ∆k

(
K

Z − 1

Z
(log(T) + 1)

+ 8
Z5K2

ρZ4+1
log(T)

(
e

∆2

Z∆U

1− ∆2

Z∆U

T 1− ∆2

Z∆U + 6

))
. (31)

One can see that the leading order of the stable regret bound
is a sublinear function which is given by

O

(
∆k

8Z5K2e
∆2

Z∆U

ρZ4+1(1− ∆2

Z∆U)
log(T)T 1− ∆2

Z∆U

)
. (32)

15

B PROOF OF THEOREM 2

Starting from (20), we formulate
T∑

t=1

P(Xt /∈ Xstable) ≤
T∑

t=1

P(E1,t) +

T∑
t=1

P(E1,t)P(E2,t).

(33)

We use

T · P(XT /∈ Xstable) ≤
T∑

t=1

P(Xt /∈ Xstable) (34)

as P(Xt /∈ Xstable) is monotonically decreasing in t. Using
(26), (27) we can show that

P(XT /∈ Xstable) ≤ 1

T

(
K

Z − 1

Z
(log(T) + 1)

+ 8
Z5K2

ρZ4+1
log(T)

(
e

∆2

Z∆U

1− ∆2

Z∆U

T 1− ∆2

Z∆U + 6

))
(35)

One can see that the leading order of the probability P(XT /∈
Xstable) is given by a function

O

(
8Z5K2e

∆2

Z∆U

ρZ4+1(1− ∆2

Z∆U)

log(T)

T
∆2

Z∆U

)
. (36)

