
S. Gan, K. Chen, J. Zhang, L. Xiang, D. W. K. Ng, and X. Ge, “Completion Time Minimization
for Adaptive Semi-Asynchronous Federated Learning over Wireless Networks,” accepted
for presentation in IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC) - Workshops, Valencia, Spain, Sep. 2024.

©2024 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this works must be obtained from the IEEE.

Completion Time Minimization for Adaptive
Semi-Asynchronous Federated Learning over

Wireless Networks
Shiyi Gan1, Kui Chen1, Jing Zhang1, Lin Xiang2, Derrick Wing Kwan Ng3, and Xiaohu Ge1

1Huazhong Uni. Science and Technology 2Technische Universität Darmstadt 3Uni. New South Wales
Emails:{shiyigan,chenkui,zhangjing,xhge}@hust.edu.cn, l.xiang@nt.tu-darmstadt.de, w.k.ng@unsw.edu.au

Abstract—Federated learning (FL) over wireless networks offers
a promising approach to enable decentralized machine learning
among massive mobile edge nodes while ensuring privacy in
training data. However, the convergence speed of FL is limited
by the straggler effect, which arises from heterogeneous nodes,
wireless fading channels, and non-independently and identically
distributed (non-IID) training data. In this paper, we consider an
adaptive semi-asynchronous FL to mitigate the straggler effect,
by dynamically selecting subsets of nodes over time to synchro-
nize the global model. We jointly optimize the node scheduling
and computing/communication resource allocation to minimize
the completion time required for convergence of the adaptive
semi-asynchronous FL. Leveraging the convergence condition of
semi-asynchronous FL, we further propose a greedy heuristic
policy for node scheduling while tackling the remaining com-
puting/communication resource allocation problem by exploiting
a hidden convexity. Simulation results on open datasets demon-
strate that, compared with existing FL algorithms, our proposed
adaptive semi-asynchronous algorithm can significantly lower the
latency of FL convergence.

I. INTRODUCTION

Federated learning (FL) over wireless networks presents a
distributed learning paradigm that enables multiple mobile edge
nodes to collaboratively train a model, without sharing their
raw data with other nodes or the central server [1]. This
approach not only preserves privacy for the edge nodes, but
also conserves communication resources, attracting substantial
interest from both academia and industry [2], [3].

In the standard synchronous FL model, full synchronization
between the parameter server and the participating nodes is
required. The server waits for all nodes to complete their local
training before aggregating these updates to refine the global
model. However, the straggler effect poses significant chal-
lenges for implementing effective synchronous FL in wireless
environments [4], [5]. Specifically, due to heterogeneous nodes,
wireless fading channels, and non-independently and identically
distributed (non-IID) training data, local models are sent to the
parameter server at varying speeds. Consequently, under the
synchronous FL setting, the server can only update the global
model once it has received all local models.

To mitigate the straggler effect in FL, a novel method
called semi-asynchronous FL was introduced in [6]. In this
approach, the server updates the global model upon receiving
local models from a predetermined number of nodes. This
substantially shortens the time required for global model ag-
gregation, thereby alleviating the straggler effect. Since [6],

The work is supported by the National Natural Science Foundation of China
(No.U2001210), the National Key Research and Development Program of
China (No.2020YFB1806605). The work of L. Xiang has been funded by the
LOEWE initiative (Hesse, Germany) within the emergenCITY center under
grant LOEWE/1/12/519/03/ 05.001(0016)/72 and has been supported by the
BMBF project Open6GHub under grant 16KISKO14.

various node scheduling policies have been developed for semi-
asynchronous FL, to enhance its performance in wireless net-
works. For example, FedSA was proposed in [7] to adaptively
adjust the learning rate based on node participation frequency.
Additionally, a priority function was introduced in [8] to select
nodes based on data volume and computational capability,
aiming to accelerate the convergence of semi-asynchronous
FL. Furthermore, considering devices with unreliable network
connections in [9], a cache-based latency tolerance mechanism
was implemented by the aggregation server to improve round
efficiency and enhance convergence.

Despite the fruitful development in [6]–[9], several unsolved
issues continue to impede the efficacy of semi-asynchronous
FL in wireless networks. One primary challenge involves
determining the optimal number of nodes that should transmit
their trained local models, while taking into account varying
data distributions and edge heterogeneity. Typically, data col-
lected from nodes exhibits distinct characteristics, resulting in
different convergence rates when local models are trained on
such data. As such, selecting a fixed number of nodes for model
uploading may not promote the most effective convergence in
semi-asynchronous FL. As another critical issue, the efficiency
of global model aggregation can deteriorate when an excessive
number of nodes upload their trained local models. In such
scenarios, due to limited and heterogeneous radio resources at
the wireless nodes, increasing the number of participating nodes
can add to the latency in model uploading.

To address the challenges associated with semi-asynchronous
FL in wireless networks, in this paper, we propose a novel
node scheduling and resource allocation algorithm for mini-
mizing completion time, namely the time required for semi-
asynchronous FL to converge. Unlike existing works [7]–
[9], our algorithm dynamically selects a subset of nodes per
communication round, based on the volume of untrained data
at each node, to implement global model aggregation. Given
the node selection policy, we further jointly optimize the
number of nodes for uploading trained local models and their
order of scheduling and resource allocation to accelerate the
convergence of semi-asynchronous FL under finite power and
energy budget for each node. Our contributions are:

• We propose a novel node selection and resource alloca-
tion algorithm to minimize the completion time required
for semi-asynchronous FL to converge. This algorithm
utilizes a greedy heuristic policy for node selection and
jointly optimizes the order of scheduling and computa-
tion/communication resources for the selected nodes.

• We reveal a hidden convexity underlying the resource al-
location optimization and derive properties of the optimal
scheduling order. Leveraging these results, we propose an
iterative algorithm to solve the completion time minimiza-
tion problem.

Round 1 Round 3 Round 4Round 2

1v

2v

3v

4v

0w 1w 3w2w
4w

1
1w

1
2w

1
3w

2
1w

2
2w

1
4w

3
2w

2
4w

1
1 0

1
2 0

1
3 0

1
4 0

2
1 0

2
2 0

2
3 1

2
4 1

3
1 1

3
2 0

3
4 2

2
3w

3
3 0

4
4 0

4
2 1

3
1w

4
1 0

4
3 1

AP

Fig. 1: Illustration of semi-asynchronous FL over a wireless
network consisting of an AP and M = 4 nodes, with N = 2
nodes selected per round to upload locally trained models.
• Simulation results on open datasets demonstrate that,

compared with existing FL algorithms, our proposed semi-
asynchronous algorithm can significantly lower the com-
pletion time required for FL to converge.

In the remainder of this paper, Section II introduces the sys-
tem model for semi-asynchronous FL over wireless. The com-
pletion time minimization problem is formulated and solved in
Section III and Section IV, respectively. Simulation results are
presented in Section V and finally, Section VI concludes the
paper.

Notations: Throughout this paper, vectors and sets are de-
noted in lower-case boldface and upper-case calligraphic letters,
respectively. ‖x‖ and |X | denote the norm of vector x and
the cardinality of set X , respectively. 〈x,y〉 denotes the inner
product of vectors x and y. �·� is the ceiling operator and
E{·} is the expectation operator. For FL, local models and loss
functions are distinguished from their global counterparts by
including the node indices in the subscripts. Specifically, wk

i
and wk denote local model at node i and the global model in
round k, respectively. Besides, Fi(w,Di) and F (w) are the
loss functions for local training at node i and the empirical
risk function for global model updating. Finally, we adopt T
to denote time duration, while t for time instance.

II. SYSTEM MODEL

A. FL over Wireless Network
As shown in Fig. 1, we consider FL in a wireless net-

work comprising an access point (AP) and M heteroge-
neous wireless nodes indexed by set V = {1, 2, ..., i, ...,M}.
The AP is equipped with a computing server and main-
tains bidirectional communications with the nodes over
wireless links. Each node owns a local dataset Di �
{(xi

1, y
i
1), ..., (x

i
j , y

i
j), ..., (x

i
Di

, yiDi
)} with Di � |Di| samples.

The jth sample in Di, denoted as
(
xi
j , y

i
j

)
, is composed by

the training data xi
j and label yij . Without loss of generality,

Di, i ∈ V are considered to be non-IID, with a total volume
given by D =

∑
i∈V Di.

Let w be the global model parameter to be learned. More-
over, f(w,xi

j , y
i
j) is a loss function to measure the error or

deviation between the training model on data xi
j and the label

yij . The FL system aims to find the optimal parameter vector
w∗ that minimizes the empirical risk function defined by

F (w) � 1

D

∑M

i=1

∑Di

j=1
f(w,xi

j , y
i
j), (1)

without sharing the local datasets among nodes or with the AP,
where

w∗ = argminwF (w) . (2)

To this end, each node trains a local model leveraging its local
dataset. The loss function for the local training at node i is
defined as

Fi(w,Di) �
1

Di

∑Di

j=1
f(w,xi

j , y
i
j), i ∈ V. (3)

The model parameters obtained by the nodes are then uploaded
to and aggregated at the AP in a global model aggregation
phase. The latter aims to generate a new global model to
minimize the empirical risk function F (w). Based on (1) and
(3), we have

F (w) =
∑M

i=1

Di

D
Fi (w,Di) . (4)

To guarantee the convergence for FL, we assume that the loss
functions Fi, i ∈ V satisfy the following typical assumptions
[10].

• Assumption 1 (Smoothness): Fi is L-smooth with L > 0,
i.e., for all w1,w2, we have Fi (w2,Di)−Fi (w1,Di) ≤
〈∇wFi (w1,Di) ,w2 −w1〉+ L

2 ‖ w2 −w1 ‖2.
• Assumption 2 (Strong Convexity): Fi is μ-strongly convex

with μ ≥ 0, i.e., we have Fi(w2,Di) − Fi(w1,Di) ≥
〈∇wFi(w1,Di),w2 −w1〉+ μ

2 ‖ w2 −w1 ‖2, ∀w1,w2.
Here, L and μ are hyperparameters for the FL. Assumption 1
prevents drastic changes in the gradient ∇wFi(·, ·) to enhance
the robustness of FL. Assumption 2 ensures that a global
optimum exists for the loss function Fi(·).
B. Semi-Asynchronous FL

Due to heterogeneous nodes and fading wireless channels,
the completion time of local model training may vary signifi-
cantly across the edge nodes, slowing down the overall global
model aggregation. This is known as the straggler effect and
defines a performance bottleneck for FL. In this paper, we
consider semi-asynchronous FL to mitigate the straggler effect,
by dynamically selecting different subsets of nodes of a given
size for implementing global model aggregation.
K = {1, 2, ..., k, ...,K} denotes the round set for FL training,

and the system operates in multiple rounds indexed by k. At
the beginning of round k = 1, the AP broadcasts the initial
global model w0 to all nodes to start the local training at each
node. At the end of each round k ≥ 1, a subset of nodes,
denoted by Vk ⊆ V with size |Vk|= N ≤ M , are selected to
upload their locally trained models to the AP for further global
model aggregation. Let Li,k ∈ {0, 1} be a binary variable. We
set Li,k = 1 for each selected node i ∈ Vk. We assume that
each selected node removes or inactivates the trained data from
its dataset after successfully uploading the trained local model.
These selected nodes then receive the updated global model
from the AP in round k + 1 and adopt it together with their
remaining local data to start a new local training. On the other
hand, we set Li,k = 0 for node i ∈ V\Vk, which continues
to train its local models without uploading in round k. This
process continues until the FL converges.

Due to node selection, staleness is incurred for edge nodes
that have received the latest global model in round k − 1 but
cannot upload their local models in round k, for k > 1. Let
τki be the staleness of node i ∈ V in round k, which is an
integer representing the number of rounds elapsed since it lastly
received the global model. The updating rule for staleness is
τk+1
i = (1+τki)(1−Li,k). The AP records the staleness of each

node. Fig. 1 illustrates the considered semi-asynchronous FL

with M = 4 and N = 2. For instance, after node v1 receives
the global model w1, it performs a local update, obtains the
updated local model w2

1, and sends w2
1 to the AP in round 3.

The resulting staleness of node 1 in round 3 is τ31 = 3−1−1 =
1.

When τki > 0 in round k, node i has been continuing an
ongoing local training for (τki + 1) rounds. Note that both k
and τki increase at the same pace for all continuing rounds of
local training at node i before uploading the trained model,
such that the value of k − τki remains unchanged. To capture
the impact of staleness in semi-synchronous FL, we denote the
local training parameter of node i in round k by w

k−τk
i

i , which
is updated according to

w
k−τk

i
i = wk−τk

i −1 − ηi∇wFi

(
wk−τk

i −1,Di

)
. (5)

In (5), a learning rate ηi is used for node i. In the special case
of τki = 0, i.e., when a selected node i receives the latest global
model wk−1 in round k, it updates its local model in round k
according to wk

i = wk−1 − ηi∇wFi

(
wk−1,Di

)
.

Upon receiving the local models from the selected N nodes,
the AP updates the global model in round k according to

wk =

(
1−

∑
i∈Vk

Di

D

)
wk−1 +

∑
i∈Vk

Di

D
w

k−τk
i

i , (6)

where w
k−τk

i
i is the local model uploaded from node i with a

staleness of τki in round k. According to (6), the AP updates
the global model wk in round k through a convex combination
of the received N local models w

k−τk
i

i , i ∈ Vk and the global
model wk−1 in the previous round k− 1, in order to decrease
F (wk) in (4) such that F (wk) ≤ F (wk−1). The AP further
transmits the updated global model wk to the N selected nodes
to continue FL, until F (wk) obtains a minimum value, where
the global model converges.

Note that a small N may result in large staleness at the edge
nodes. In this case, the nodes would use significantly different
global model parameters than the other nodes in local training,
slowing down the convergence of semi-asynchronous FL. On
the other hand, a large N may not effectively mitigate the
straggler effect. Therefore, the value of N should be judiciously
chosen to improve the convergence of semi-asynchronous FL.
C. Time and Energy Consumption of Edge Nodes

Let T b
i,k be the time (duration) required for broadcast-

ing/multicasting the global model from the AP to the nodes. We
assume that T b

i,k is constant to facilitate a tractable problem.
Let dki be the number of data samples trained at node i in round
k. The time required for computing the local model at node i
is given by

T c
i,k =

dkiCi

gi,k
, (7)

where gi,k represents the computing capability of node i in
round k, measured in number of CPU cycles per second, and
Ci denotes the number of CPU cycles required for processing
one data sample at node i during local training. Note that T c

i,k
is independent of the scheduling decision Li,k. Meanwhile, the
energy consumption for local computation at node i in round
k is

Ec
i,k = κid

k
iCig

2
i,k, (8)

where κi is the effective switching capacitance of the CPU at
node i [11].

Assume that the scheduled nodes upload their trained local
models over a shared spectrum of Bu Hz utilizing time division
multiple access (TDMA). When Li,k = 1, the time consumed
for uplink transmission from node i to the AP is given as

Tu
i,k =

ui

ri,k
, (9)

where ui and ri,k are the size of the local model parameters
and the achievable data rate of node i, respectively. We consider
block fading channels between the node i and the AP. Let hi,u

be the instantaneous channel gain between node i and the AP.
We assume that hi,u remains constant during updating in each
round but may vary from one round to another. We have ri,k =

Bulog2(1 +
pi,k|hi,u|2

BuN0
), where pi,k is the transmit power of

node i and N0 is the power spectral density of noise. Hence,
the energy consumption of node i for the uplink transmission
is given as

Eu
i,k = Tu

i,kpi,k =
pi,kui

Bulog2(1 +
pi,k|hi,u|2

BuN0
)
. (10)

Under the TDMA scheme, nodes have to wait for spectrum
access before they can upload their trained models. Let Tw

i,k be
the time that node i spends waiting to be scheduled in round k
under TDMA. We have Tw

i,k = tui,k − (t0k + T b
i,k + T c

i,k), where
t0k marks the beginning of round k, tui,k is the time instance
when node i begins to upload its local model. Therefore, the
time consumed by node i after K rounds is given as

Ti =
∑K

k=1
(T c

i,k + Li,kT
u
i,k + Li,kT

b
i,k + Li,kT

w
i,k). (11)

Meanwhile, the energy consumption of node i in computation
and communication after K rounds is given as

Ei =
∑K

k=1
(Ec

i,k + Li,kE
u
i,k). (12)

III. OPTIMIZATION PROBLEM FORMULATION

For deploying FL in wireless networks, the time required for
achieving convergence in the global model is a key performance
metric. However, an inherent trade-off between the convergence
time and the incurred energy consumption exists in FL systems.
As the edge nodes are usually powered by batteries, it is
crucial to accelerate the FL without draining the batteries
of the edge nodes. To strike an effective balance between
both objectives, we jointly optimize the node selection and
scheduling {N,Li,k} as well as the allocation of computing
and communication resources at each node {gi,k, pi,k}. This
approach aims to minimize the completion time for all nodes
implementing FL, under finite power and energy budget for
each node, while ensuring that the global model converges
within K rounds. The resulting the optimization problem is
formulated as

P1 : min
N,Li,k,gi,k,pi,k

max
i∈V

{Ti}

s.t. C1 : gmin
i ≤ gi,k ≤ gmax

i , i ∈ V, k ∈ K,

C2 : 0 ≤ pi ≤ pmax
i,k , i ∈ V, k ∈ K,

C3 : F
(
wK

)
≤ F (w∗) + ε,

C4 : N ∈ {1, 2, ...,M},

C5 : Li,k ∈ {0, 1}, i ∈ V, k ∈ K,

C6 : Li,kE
u
i,k + Ec

i,k ≤ Eb, i ∈ V, k ∈ K. (13)

In problem P1, constraints C1 and C2 limit the computing
capability and the maximum transmit power at node i, respec-
tively. C3 ensures the convergence of the global model after
K rounds with a training accuracy of ε ≥ 0. C4 requires
the number of scheduled nodes in each round, N , to be any
positive integer not exceeding the total number of nodes. C5 is
the binary variable for scheduling the transmission of locally
trained models in round k. Finally, C6 denotes a total energy
consumption constraint for computation and communication at
each node in each round.

Note that P1 is a nonconvex mixed-integer nonlinear pro-
gramming (MINLP) problem due to the integer optimization
variables N and Li,k for node scheduling in constraints C4

and C5, and the nonconvex constraint C6. Moreover, constraint
C3 is difficult to tackle due to the implicit dependence of
function F (·) on parameters K and N and FL hyperparameters.
This type of optimization problem is generally NP-hard [12].
To facilitate a real-time solution to problem P1, we analyze
the properties of optimal scheduling policy in Section IV and
further propose a suboptimal node scheduling and resource
allocation algorithm based on convex optimization combined
with a greedy-based heuristic approach.

IV. PROPOSED SOLUTION

To tackle the aforementioned challenges for solving P1,
Section IV-A first discusses the convergence condition of semi-
asynchronous FL, cf. Lemma 1. Based on Lemma 1, we then
propose in Section IV-B a greedy heuristic policy for node
selection and transform the resulting computing/communication
resource allocation problem into a convex problem for solution.
Given these results, it remains to optimize the uploading order
for the selected nodes, which is further tackled by deriving the
optimality conditions in Lemmas 2 and 3 in Section IV-C.

A. Convergence of Semi-Asynchronous FL

To facilitate the analysis, we define η̃ � max
i∈V

ηi as the

maximum learning rate among nodes and η̃max � max
i∈Vk

ηi is

the maximum learning rate among the chosen nodes. Moreover,
β̃ � minvi∈V{βi} is the minimum proportion of trained
data among all nodes, relative to the total data volume and
β̃min � min

k=1,...,K
{∑i∈Vk

βi} denotes the minimum portion of

data trained by the chosen nodes per round over K rounds,
relative to the total amount of data, where βi � Di/D.
Furthermore, τmax = max

k=1,...,K

i∈V
τki represents the maximum

staleness for nodes throughout the training process.

Lemma 1. If η̃ < μ/L2, λ < [2Nβ̃min(μ− η̃L2)/M]−1 and
αλβ̃min

(
μ− η̃L2

)
∈ (0, 1

2), after K rounds of global model
aggregation, the obtained global model wk satisfies

E
{
F (wK)

}
− F (w∗) ≤ ρK

(
F (w0)− F (w∗)

)
+ δ, (14)

where E{F (wK)} is the expected risk function after K com-

munication rounds. ρ = [1− 2Nβ̃min(μ− η̃L2)/M]
1

1+τmax <
1 is the convergence factor and characterizes the con-
vergence rate of the loss function in one round. δ =

η̃L

2β̃min(μ−η̃L2)

∑
i∈V βi|Fi (w

∗) |2 is the residual error.

Proof: The proof follows from [7, Theorem 1] and is
ignored here due to page limitation.

According to Lemma 1, the global model is guaranteed to
converge after K rounds, i.e., satisfying constraint C3, provided
E
{
F
(
wK

)}
− F (w∗) ≤ ρK(F (w0)− F (w∗)) + δmax ≤ ε,

where δmax = η̃maxL

2β̃(μ−η̃maxL2)

∑
i∈V βi|Fi (w

∗) |2 stands for the
maximum residual error. Therefore, we rewrite C3 as

C̃3 : K ≥ (1 + τmax)
log2 φ

log2(1− 2N
M λβ̃min (μ− η̃L2))

, (15)

where φ= ε−δmax

F (w0)−F (w∗) represents the target training accuracy
relative to the suboptimality of the starting point, namely
F (w0)−F (w∗). C̃3 ensures convergence in the global model
within K rounds, regardless of how the nodes are scheduled
for model uploading.

Note that in (15), φ, λ, M , μ, and L are all constants, whose
values are independent of the optimization variables in problem
P1. In contrast, N and β̃ still depend on the scheduling policy
of the nodes in K rounds, which are coupled with each other
and also with constraints C1, C2, and C6 for resource alloca-
tion. To facilitate the solution, in Section IV-B, we consider a
greedy-based heuristic policy for node scheduling, which can
decouple the node selection from the resource allocation.

B. Greedy Heuristic Policy for Selection of Uploading Nodes
For a given N , we select the N edge nodes having the most

amount of untrained data to upload their trained local models.
Given the selected uploading nodes, we further show below that
the resulting resource allocation problem can be transformed
into a convex problem and solved with convenience. Finally,
the value of N is optimized via a one-dimensional search over
set {1, . . . ,M}.

Let Di,k be the amount of data remaining at node i at the
begining of round k, where Di,1 = Di, i ∈ V . After node i
uploads its local model in round k, the dki amount of trained
data is removed/inactivated from node i. We thus have

Di,k+1 = Di,k − dki . (16)

Arranging Di,k, i ∈ V, in a descending order, the first N nodes
are scheduled to upload their local models.

For the selected N nodes, we have L∗
i,k = 1. Otherwise,

L∗
i,k = 0. Based on this node selection, P1 reduces to

P2 : min
gi,k,pi,k

max
i∈Vk

{Ti,k}

s.t. C1, C2,

C̃6 : L∗
i,kE

u
i,k + κid

k
iCig

2
i,k ≤ Eb, k ∈ K, (17)

where Ti,k =
dk
i Ci

gi,k
+

L∗
i,kui

Bulog2(1+
pi,k|hi,u|2

BuN0
)
+L∗

i,kT
b
i,k+L∗

i,kT
w
i,k.

Problem P2 is still nonconvex due to the nonconvex objective
function and the nonconvex constraint C̃6. However, unlike
P1, problem P2 exhibits a hidden convexity, which can be
exploited to obtain its global optimal solution. To unveil this, let
us introduce auxiliary variables ωk and χk and rewrite problem
P2 equivalently as

P3 : min
gi,k,pi,k,ωk,χk

max
i∈Vk

(
dkiCi

gi,k
+ L∗

i,kωk + L∗
i,kT

b
i,k

)

s.t. C1, C2,

C̃6 : L∗
i,kχk + κid

k
iCig

2
i,k ≤ Eb, k ∈ K,

C7 :
p2i,kui

χk
− pi,kBulog2(1 +

pi,k|hi,u|2
BuN0

) ≤ 0, k ∈ K,

C8 :
ui

ωk
−Bulog2(1 +

pi,k|hi,u|2
BuN0

) ≤ 0, k ∈ K,

C9 : ωk > 0, k ∈ K,

C10 : χk > 0, k ∈ K. (18)

Here, Tw
i,k is omitted in the objective function of P3, because

it depends only on the scheduling order of selected nodes in
TDMA, rather than gi,k and pi,k. As P3 is a convex problem,
it can be solved using off-the-shelf tools such as CVX [13].

C. Optimization of Scheduling Order in Each Round
As discussed in Section IV-B, the scheduling order of com-

puting and communication operations for the selected nodes
significantly affects the waiting time Tw

i,k in the objective
function of P2 or P1. To minimize the overall completion time,
it remains to optimize the scheduling order for each individual
round. In the following discussions, we consider an arbitrary
round and for brevity, omit the round index k. For example,
the beginning of the round is denoted by t0.

As the time required for AP broadcasting, T b
i , is independent

of node scheduling, we only need to schedule the data compu-
tation and uploading communication for the N selected nodes
in each round. This involves a set of 2N operations denoted by
O � {Oc

1, O
c
2, . . . , O

c
N , Ou

1 , O
u
2 , . . . , O

u
N}, where Oc

i and Ou
i

denote the computation and communication operations for node
i, to be completed within duration T c

i and Tu
i , respectively. A

scheduling policy Π maps O into an operation order, i.e., a
series of computation and communication operations for all
nodes. Here, Ou

i has to follow Oc
i for each node i in order to

guarantee causality.
Let tji be the time instance at which node i completes

operation Oj
i , j ∈ {c, u}. We have

tci = t0 + T b
i + T c

i , (19)

since a node can execute data computation immediately after
receiving the global model, in parallel with other nodes. In con-
trast, the node can execute uploading communication only after
it finishes data computation and other nodes scheduled before
it finish uploading communication. Thus, let I(i) be the set of
nodes scheduled for uploading communication before node i.
The time instance for completing uploading communication by
I(i) is given as tuI(i) � maxs∈I(i){tus}. Consequently, we have

tui = max{tuI(i), tci}+ Tu
i . (20)

The scheduling policy Π impacts the time needed for all
nodes to execute FL, which in turn affects the convergence
time of the global model. Let Π∗ be the optimal scheduling
policy that minimizes the completion time for the round under
consideration. We have the following lemmas.
Lemma 2. The optimal scheduling policy Π∗ should imple-
ment N data computation operations followed by N upload
communication operations.

Proof: Recall that Ou
i must follow Oc

i for each node i.
Any policy other than Π∗ can be obtained by interchanging
two operations in Π∗ or performing such interchange for a
finite number of times. In this case, the new scheduling policy

will ensure that at least one node undergoes communication
operation before another node begins its computation operation.
Without loss of generality, we consider scheduling policy Π′ =
{Π1, O

u
m, Oc

n,Π2}, obtained by interchanging operations Oc
n

and Ou
m in Π∗. Consequently, we rewrite the optimal scheduling

policy as Π∗ = {Π1, O
c
n, O

u
m,Π2}, where Π1 and Π2 denote

the other operations for Π′ and Π∗.
With policy Π′, the time instances of completing Ou

m and
Oc

n are given by tum = max{tus∈I(m), t
c
m} + Tu

m and tcn =
max{tus∈I(m), t

c
m}+Tu

m +T c
n, respectively. Since node m can

perform local training while node n implementing uploading
communication, we can rewrite tcn as tcn = max{tus∈I(m) +
T c
n, t

c
m + T c

n} + Tu
m. Meanwhile, with policy Π∗, the time

instances of completing Oc
n and Ou

m are tcn = t0 + T c
n

and tum = max{t0 + T c
n, t

c
m} + Tu

m = max{tcn, tcm} + Tu
m,

respectively.
We have max{tus∈I(m) + T c

n, t
c
m + T c

n} + Tu
m >

max{tcn, tcm} + Tu
m. Thus, the operations before Π2 in Π′ are

completed later than those in Π∗, and hence, Π′ cannot do
better than Π∗. Similarly, we can show that other policies are
also suboptimal, which completes the proof.
Lemma 3. Assume that the selected nodes complete local
training at time instances sorted in an increasing order as
tcπ(1) ≤ tcπ(2) ≤ . . . ≤ tcπ(N), where π(n) is the node index
in the nth order. Then, the optimal scheduling policy Π∗ has
to schedule the uploading operations for the selected nodes
according to Ou

π(1), O
u
π(2), . . . , O

u
π(N) sequentially.

Proof: Without loss of generality, assume that nodes m
and n satisfy tcm ≤ tcn. Other than the optimal policy Π∗ =
{Π1, O

u
π(m), O

u
π(n),Π2}, let us consider a scheduling policy

defined as Π = {Π1, O
u
π(n), O

u
π(m),Π2}. The time instance of

completing Ou
π(n) in Π∗ is tun = max{tcm + Tu

m, tcn} + Tu
n .

Meanwhile, the time instance of completing Ou
π(m) in Π

satisfies tum = max{tcn + Tu
n , t

c
m} + Tu

m = tcn + Tu
n + Tu

m,
where the second equality is due to tcn ≥ tcm, and Tu

n > 0.
Now, let us compare tun in Π∗ and tum in Π. When tcm +

Tu
m > tcn, i.e., max{tcm + Tu

m, tcn} = tcm + Tu
m, we have tun =

tcm + Tu
m + Tu

n ≤ tcn + Tu
n + Tu

m for Π∗, due to tcm ≤ tcn. Note
that tcn+Tu

n +Tu
m is the time instance of completing Ou

π(m) in
Π. Thus, tun in Π∗ is smaller than tum in Π. On the other hand,
when tcm + Tu

m < tcn, i.e., max{tcm + Tu
m, tcn} = tcn, we have

tun = tcn + Tu
n ≤ tcn + Tu

n + Tu
m for Π∗, since Tu

m > 0 always
holds. Again, tun in Π∗ is smaller than tum in Π.

Meanwhile, the time instances of completing the operations
before Π2 in Π is larger than that in Π∗. Therefore, Π is
suboptimal, which completes the proof.

The optimal order for scheduling the local model training
and uploading communication of the selected nodes can be thus
determined according to Lemmas 2 and 3. The overall greedy
node scheduling procedure and resource allocation is outlined
in Algorithm 1.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
scheme via experiments. We consider a U -class classification
task with hypothesis space C = {c1, c2, · · · , cu, · · · , cU}, and
we set the amount of data on node i with class cu is Di,cu .
The loss function at node i is defined as [14]

Fi(w,Di) =
∑

cu∈C
−Di,cu

Di
Ex|y=cu [log pu(x,w)], (21)

Algorithm 1 Proposed Joint Node Scheduling and Resource
Allocation Optimization Algorithm

1: Initialization : Set the amount of data remaining for
node i in round k is Di,k, and Di,1 = Di, i ∈ V . Set
τ1i = 0, i ∈ V .

2: for k = {1, ...,K} do
3: Vk = ∅
4: while card(Vk) < N do
5: Dj = max

i∈V
{Di,k}

6: V = V\{j}
7: Vk = Vk ∪ {j}
8: end while
9: for i = {1, ...,M} do

10: if i ∈ Vk then
11: Set Li,k = 1.
12: else
13: Set Li,k = 0.
14: end if
15: end for
16: For given Li,k, optimize resource allocation {p′i,k, g′i,k}

by solving problem P3 in CVX.
17: For given {p′i,k, g′i,k}, obtain tci,k and tui,k by (7) and (9),

respectively.
18: According to Lemma 2, all chosen nodes are scheduled

to train local model firstly.
19: Based on Lemma 3, chosen nodes upload their trained

local model according to the ascending of tci,k.
20: if Li,k = 1 then
21: Di,k+1 = Di,k − dki
22: end if
23: τk+1

i = (1 + τki)(1− Li,k).
24: end for

where pu(x,w) is the probability that model w predicts that
input sample x belongs to label cu. In this manner, the empirical
risk function of the global model is expressed as F (w) =∑

cu∈C −
∑

i∈V Di,cu

D Ex|y=cu [log pu(x,w)].
In the experiments, we evaluate the proposed scheme using

the MNIST dataset [15], which contains 7000 samples of 10
kinds of 28×28 greyscale images, and the CIFAR-10 dataset
[16], which contains 10 classes 6000 samples of 32×32 color
images. We implement semi-asynchronous FL on a 6-core 12-th
Generation Intel(R) Core(TM) i5-12400 CPU, to simulate FL
between one AP and M = 10 nodes. In order to analyze the
training performance of non-IID data, all data in the dataset is
divided into two groups based on the parity of the labels of the
data. Then the data in the odd group are equally distributed to
nodes 1-5, and the data in the even group are equally distributed
to nodes 6-10.

Each node processes a local dataset and uses it for local
training. The local trained models are further uploaded to the
AP for aggregation, thus realizing the simulation environment
of the FL. To realize the proposed semi-synchronous FL
scheme, we choose the number of nodes to be uploaded in each
round. Unless otherwise specified, the simulation parameters

TABLE I: Simulation Parameter Settings [17].

Target training accuracy, φ 0.05

Number of CPU cycles, Ci [1, 3]× 104 cycle/sample
Spectrum bandwidth of AP, Bu 160 MHz
Noise power density, N0 −170 dBm/Hz
Maximum energy consumption, Eb 500J

Global learning rate, λ 0.01

Maximum transmit power, Pmax
ue 1 W

Maximum CPU Frequency, gmax
i 4× 109cycle/s

Minimum CPU Frequency, gmin
i 1× 109cycle/s

Size of trained model parameters, ui 5 KB
Effective switch capacitance, κi 10−28

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Completion time of training (s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Ac
cu

ra
cy

Proposed Scheme-MNIST
Baseline Scheme 1-MNIST
Baseline Scheme 2-MNIST
Baseline Scheme 3-MNIST
Baseline Scheme 4-MNIST
Proposed Scheme-CIFAR-10
Baseline Scheme 1-CIFAR-10
Baseline Scheme 2-CIFAR-10
Baseline Scheme 3-CIFAR-10
Baseline Scheme 4-CIFAR-10

Fig. 2: Accuracy versus completion time of training.

are set according to Table I. For performance comparison, we
evaluate four benchmark schemes.

• Baseline Scheme 1 [18]: A fixed scheduling policy is
adopted, where the local models of the first �N/2� nodes
and the remaining N − �N/2� nodes are alternately
uploaded, for which the staleness does not exceed 1.

• Baseline Scheme 2 [19]: N nodes are randomly selected
to upload their local models.

• Baseline Scheme 3: A fully asynchronous FL is adopted
which selects only one node per round to upload local
model.

• Baseline Scheme 4: All nodes have to upload their local
models for synchronized FL in each round.

We compare the benchmarks with our proposed algorithm
by training the models for given amount of time on different
datasets. Fig. 2 and Fig. 3 show the accuracy and the loss
function value of the considered schemes versus total training
time under non-IID training data. We observe that semi-
asynchronous FL achieves the highest learning accuracy and
the smallest loss comparing for various baseline schemes in
both the MNIST and the CIFAR-10 datasets. This is because
when N = 1 in baseline 3, asynchronous FL mechanism
is utilized for global model updates. This scheme leads to a
large staleness of nodes, which slows down the convergence
of FL. When N = M = 10 in baseline 4, synchronization
mechanism is utilized for global model update and the straggler
effect degrades the convergence rate and accuracy. Unlike
baselines 1 and 2 that employ fixed and random nodes selection,
respectively, the greedy heuristic node selection scheme can

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Completion time of training (s)

0

0.5

1

1.5

2

2.5

Va
lu

e
of

 th
e

lo
ss

 fu
nc

tio
n

Proposed Scheme-MNIST
Baseline Scheme 1-MNIST
Baseline Scheme 2-MNIST
Baseline Scheme 3-MNIST
Baseline Scheme 4-MNIST
Proposed Scheme-CIFAR-10
Baseline Scheme 1-CIFAR-10
Baseline Scheme 2-CIFAR-10
Baseline Scheme 3-CIFAR-10
Baseline Scheme 4-CIFAR-10

Fig. 3: Value of the loss function versus completion time of
training.

1 2 3 4 5 6 7 8 9 10
N

1500

2000

2500

3000

3500

4000

4500

5000

C
om

pl
et

io
n

tim
e

of
 tr

ai
ni

ng
 (s

)

Proposed Scheme-MNIST
Baseline Scheme 1-MNIST
Baseline Scheme 2-MNIST
Proposed Scheme-CIFAR-10
Baseline Scheme 1-CIFAR-10
Baseline Scheme 2-CIFAR-10

Fig. 4: Completion time of training versus N .

choose the nodes having maximal remaining data sizes and
hence, the learning rates of nodes are improved. Combining
with the node scheduling policy in Lemma 2 and 3, the
convergence rate and accuracy of semi-asynchronous FL can
be improved. Besides, we also note that the training accuracy
of all schemes for CIFAR-10 dataset is lower than that for
MNIST, due to it has higher noise.

Fig. 4 shows the completion time of training versus the
number of nodes N uploading the local model in each round
for different optimization schemes. Without loss of generality,
we set the target training accuracy φ = 0.05 in our experiments.
Notably, the completion time of training initially decreases and
then increases with N for all considered scenarios. This is
because the semi-asynchronous FL allows unscheduled nodes
to train their local models concurrently while other nodes
are uploading their models. When N = 5, the two baseline
schemes and our proposed algorithm can achieve minimal
completion time. However, the completion time of our proposed
algorithm is smaller than the baseline schemes thanks to the
adopted greedy heuristic node selection scheme and node
scheduling policy based on Lemmas 2 and 3. This result shows
that intelligent node selection and scheduling can significantly
affect the completion time of semi-asynchronous FL.

VI. CONCLUSION

This paper investigated a novel semi-asynchronous FL re-
source allocation framework including node selection, node
scheduling, and resource allocation to minimize the completion
time of the semi-asynchronous FL. The framework took into
consideration the presence of heterogeneous nodes, wireless
fading channels, and non-IID training data. To reduce the
training time for semi-asynchronous FL to reach convergence,
we proposed a greedy heuristic policy for node scheduling.
This approach allowed us to effectively solve the nonconvex
resource allocation problem. Additionally, we revealed the
properties of node scheduling in each round to determine the
optimal scheduling order. Simulation results demonstrated that
our proposed algorithm reduces the time duration of all nodes
implementing FL, ensuring faster convergence in the global
model when compared to the four baseline schemes.

REFERENCES

[1] X. Liu, Y. Deng et al., “Federated learning and meta learning: Ap-
proaches, applications, and directions,” IEEE Commun. Surveys Tuts.,
vol. 26, no. 1, pp. 571–618, 2024.

[2] S. Hu, X. Chen et al., “Distributed machine learning for wireless
communication networks: Techniques, architectures, and applications,”
IEEE Commun. Surveys Tuts., vol. 23, no. 3, pp. 1458–1493, 2021.

[3] S. Niknam, H. S. Dhillon et al., “Federated learning for wireless com-
munications: Motivation, opportunities, and challenges,” IEEE Commun.
Mag., vol. 58, no. 6, pp. 46–51, 2020.

[4] H.-S. Lee and J.-W. Lee, “Adaptive transmission scheduling in wireless
networks for asynchronous federated learning,” IEEE J. Sel. Areas
Commun., vol. 39, no. 12, pp. 3673–3687, 2021.

[5] F. Gauthier, V. C. Gogineni et al., “Asynchronous online federated learn-
ing with reduced communication requirements,” IEEE Internet Things J.,
vol. 10, no. 23, pp. 20 761–20 775, 2023.

[6] J. Zhang, W. Liu et al., “Semi-asynchronous model design for federated
learning in mobile edge networks,” IEEE Trans. Veh. Technol., vol. 72,
no. 12, pp. 16 280–16 292, 2023.

[7] Q. Ma, Y. Xu et al., “Fedsa: A semi-asynchronous federated learning
mechanism in heterogeneous edge computing,” IEEE J. Sel. Areas Com-
mun., vol. 39, no. 12, pp. 3654–3672, 2021.

[8] Q. Zhuohao, M. Firdaus et al., “A blockchain-based auditable semi-
asynchronous federated learning for heterogeneous clients,” IEEE Access,
vol. 11, pp. 133 394–133 412, 2023.

[9] W. Wu, L. He et al., “SAFA: A semi-asynchronous protocol for fast
federated learning with low overhead,” IEEE Trans. Computers, vol. 70,
no. 5, pp. 655–668, 2021.

[10] M. Kim, A. L. Swindlehurst et al., “Beamforming vector design and
device selection in over-the-air federated learning,” IEEE Trans. Wireless
Commun., vol. 22, no. 11, pp. 7464–7477, 2023.

[11] Z. Yang, M. Chen et al., “Energy efficient federated learning over wireless
communication networks,” IEEE Trans. Wireless Commun., vol. 20, no. 3,
pp. 1935–1949, 2021.

[12] A. Farajzadeh, A. Yadav et al., “FLSTRA: Federated learning in strato-
sphere,” IEEE Trans. Wireless Commun., vol. 23, no. 2, pp. 1052–1067,
2024.

[13] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” 2014.

[14] J. Tian, P.-W. Tsai et al., “Synergetic focal loss for imbalanced classifi-
cation in federated xgboost,” IEEE Trans. Artificial Intelligence, vol. 5,
no. 2, pp. 647–660, 2024.

[15] Y. Saadna, A. Behloul et al., “Speed limit sign detection and recognition
system using svm and mnist datasets,” Neural Computing and Applica-
tions, vol. 31, no. 9, pp. 5005–5015, 2019.

[16] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[17] Y. Mao, J. Zhang et al., “Dynamic computation offloading for mobile-
edge computing with energy harvesting devices,” IEEE J. Sel. Areas
Commun., vol. 34, no. 12, pp. 3590–3605, 2016.

[18] C. You, D. Feng et al., “Semi-synchronous personalized federated learn-
ing over mobile edge networks,” IEEE Trans. Wireless Commun., vol. 22,
no. 4, pp. 2262–2277, 2023.

[19] S. Lee, A. K. Sahu et al., “Partial model averaging in federated
learning: Performance guarantees and benefits,” Neurocomputing, vol.
556, p. 126647, 2023. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0925231223007701

