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Abstract—This paper studies joint beamforming and trajectory

optimization for integrated sensing and communication (ISAC)

enabled by an energy-constrained unmanned aerial vehicle

(UAV). The UAV transmits information-bearing signals using

an onboard uniform linear array (ULA), for simultaneously

serving downlink communication users and sensing multiple

targets during its flight. To explore the synergy between UAV

and ISAC, we jointly optimize the UAV’s flight trajectory, ISAC

beamforming, and mission completion time for maximizing the

accumulated sensing energy for ground targets under a finite

energy budget for the UAV, while guaranteeing quality-of-service

for communication users. The formulated problem is highly non-

convex, which is generally intractable. Motivated by the success of

approximate dynamic programming (DP) methods, we propose

a novel low-complexity high-quality solution by combining the

one-step lookahead rollout algorithm in approximate DP and the

semidefinite programming technique in convex optimization. Our

simulation results show that, compared to two baseline schemes,

the proposed scheme can significantly enlarge the achievable

sensing and communication performance region for ISAC.

I. INTRODUCTION

Integrated sensing and communication (ISAC) is an ad-
vanced physical layer technology designed to enable simul-
taneous sensing and communication in the sixth-generation
(6G) wireless networks, utilizing common transmit signals
over shared spectrum and transmitter hardware [1]. Recently,
enabling ISAC via unmanned aerial vehicles (UAVs) has
attracted a growing research interest. The flexible mobility
of UAVs can significantly enhance the performance of ISAC
and extend the range of ISAC services [2], [3], particularly
in areas of disrupted or limited network infrastructures, in
both normal and emergency situations [4]. So far, UAV-enabled
ISAC has been widely considered for simultaneous collection
and transmission of sensed data [5], joint sensing/localization
and communication [3], [6], as well as sensing-/tracking-
assisted (secure) communication [7].

However, UAVs are usually constrained by size, weight,
and power (SWAP). To facilitate efficient UAV-aided ISAC
in 6G, several recent works have explored joint optimization
of UAV movements and beamforming design for ISAC signal
transmission in UAV-enabled ISAC systems [8]–[10]. In [8],
the authors optimized UAV’s hovering position/flight trajectory
and transmit beamforming for maximizing the communication
data rate while ensuring sufficient beam pattern gain on
sensing targets. The authors of [9] exploited sensed informa-
tion regarding the propagation environment to optimize the
selection of beamforming vectors from a given codebook,
aiming to maximize the communication data rate in a down-
link multiuser scenario. However, UAV’s flight energy was
ignored in both [8] and [9]. In [10], the authors optimized
transmit beamforming, UAV trajectory, and sensing schedule
to minimize the UAV’s total energy consumption over a
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given mission completion time, with sensing performed at
fixed locations. However, predetermining a “suitable” mission
completion time in [10] is a nontrivial task, which should be
sufficient for the mission while avoiding energy waste, for
energy-efficient operations. Moreover, the previous works [8]–
[10] underscore difficulties in solving the joint beamforming
and trajectory optimization problem for UAV-enabled ISAC,
a formidable endeavor even when the UAV’s flight energy is
ignored. Existing optimization methods and exhaustive search
approaches employed in tackling the problem in [8]–[10] can
be either inefficient or computationally intensive.

To bridge these research gaps, this paper introduces a novel
energy-aware joint beamforming and trajectory design for
UAV-enabled ISAC. The UAV, equipped with a uniform linear
array (ULA), is tasked with transmitting information-bearing
signals to simultaneously serve downlink communication users
and sense multiple targets during its flight. In order to best
exploit the UAV with limited energy, we jointly optimize the
beamforming, trajectory, and the mission time to maximize
the sensing performance while satisfying the quality-of-service
(QoS) requirements of the communication users and respecting
a total energy budget for the UAV. Compared with fixing the
mission time a priori as in [10], optimizing it under the energy
budget avoids energy waste and can significantly improve
energy utilization. Our contributions are:

• We investigate joint trajectory design, transmit beamform-
ing, and mission completion time optimization for a UAV-
enabled ISAC system with finite onboard energy. The aim
is to maximize the accumulated sensing performance over
the whole mission while satisfying communication, flight
and energy requirements.

• The formulated problem is highly nonconvex. By refor-
mulating it as a multi-stage dynamic program (DP), we
propose a novel efficient solution via combining the one-
step lookahead rollout (OSLR) technique in approximate
DP and the semidefinite programming (SDP) in convex
optimization.

• Simulation results show that the proposed OSLR al-
gorithm can jointly exploit the UAV mobility and the
multi-antenna beamforming to significantly outperform
two baseline schemes in enlarging the achievable sensing
and communication performance region for ISAC.

Throughout this paper, matrices and vectors are denoted
by boldface capital and lower-case letters, respectively. AT ,
A

H , Rank(A), and Tr(A) denote the transpose, Hermitian
conjugate transpose, rank, and trace of matrix A, respectively.
| · | and k ·k denote the absolute value of a complex scalar and
the Euclidean norm of a complex vector, respectively. Finally,
d

dx
denotes the first-order derivative with respect to x.

II. SYSTEM MODEL

We consider a UAV-enabled ISAC system as illustrated in
Fig. 1. A rotary-wing UAV equipped with a ULA of S � 1
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Fig. 1. System model of UAV-enabled ISAC with limited onboard battery.

antennas is deployed as a dual-functional access point to
simultaneously communicate with K single-antenna ground
users (GUs) and sense M ground targets (GTs). Following [8],
[10], we assume that the ULA is vertically placed, cf. Fig. 1.
As such, the GUs and GTs located at different distances from
the UAV observe distinct angles of departure (AoDs) at the
ULA. The GU k, k = 1, ...,K, and GT m, m = 1, ...,M ,
are assumed to be at fixed locations given by u

c
k
2 R2⇥1 and

u
s
m

2 R2⇥1, respectively. For convenience of presentation,
we consider a continuous-time system model with time index
t throughout this section and formulate a continuous-time
optimization problem in Sec. III. We then seek an approximate
solution of the formulated problem in Sec. IV, by discretizing
the UAV’s flight path. We assume that the UAV flies at a fixed
altitude H during its mission, whereas its horizontal position
q(t) 2 R2⇥1 can vary flexibly over time. To avoid depletion
of the battery, the UAV needs to complete the mission within
a finite energy budget Etot.

A. Channel and Signal Models of UAV-Enabled ISAC

We assume that the UAV’s flying altitude H is sufficiently
large such that a strong LoS link exists between the UAV and
each GU [2]. Let hk(q(t),uc

k
) be the channel vector from the

UAV to GU k at time t. We model hk(q(t),uc
k
) as

hk(q(t),u
c
k
) =

p
�

d(q(t),uc
k
)
· a(q(t),uc

k
), (1)

where � denotes the channel power gain at a unit distance and
d(q(t),uc

k
) ,

p
kq(t)� u

c
k
k2 +H2 is the Euclidean distance

between the UAV and GU k at time t. Moreover, a(q(t),uc
k
)

is the steering vector of the ULA toward GU k at time t,

a(q(t),uc
k
) ,[1, ejz(q(t),u

c
k), . . . , e

jz(q(t),uc
k)(S�1)]T , (2)

where we define z(q(t),uc
k
) , 2⇡ d

ULA

�
cos (✓(q(t),uc

k
)) with

spacing d
ULA between adjacent ULA elements and carrier

wavelength �. Here, due to the vertical array placement, the
steering vector depends only on the AoD ✓(q(t),uc

k
) of GU

k observed from the UAV, which is given as

✓(q(t),uc
k
),arccos (

Hp
||q(t)� u

c
k
||2 +H2

). (3)

Let ck 2 C and wk 2 CS⇥1 be the information-bearing
symbol intended for GU k and its associated beamforming

vector, respectively. We assume that ck is a circularly sym-
metric complex Gaussian (CSCG) random variable with zero
mean and unit variance. The UAV’s transmit signal is given
by x(t) =

P
K

i=1 wi(t) ci(t). Meanwhile, the received signal
yk(t) at GU k at time t is given by

yk(t) = h
H

k
(q(t),uc

k
)x(t) + nk(t), (4)

where nk(t) is the additive white Gaussian noise at GU k and
is modeled as a zero-mean Gaussian random variable with
variance �

2
k
. Assume a system bandwidth of B Hz. Based on

(4), the instantaneous data rate of GU k at time t is given as

Rk(t)=B log2

 
1+

|h
H

k
(q(t),uc

k
)wk(t)|2P

K

i=1,i 6=k
|hH

k
(q(t),uc

k
)wi(t)|2+�

2
k

!
.

(5)
We consider radar sensing towards the GTs, by reusing the

communication signal x(t). To this end, the UAV collects
echos of the communication signal reflected/scattered from
the GTs, which are further used to e.g. detect the presence of
active users, track changes in the target area [8], or separate
the GTs by e.g. their angles of arrival and round-trip times at
the radar receiver [1]. For these applications, the objective is to
improve the accumulated sensing energy for the GTs, namely
the total sensing energy radiated to the GTs during the whole
mission. This metric can also be extended to evaluate the
energy of reflected/scattered echo signals when received at the
UAV with matched filters, by including additional power losses
from the GTs to the UAV. However, our problem formulation
and solution remain applicable for both metrics. Assume that,
similar to communications, the sensing is performed over
a LoS-dominant link with path loss model as in (1). The
accumulated sensing energy for GT m is given as

�m(T ) =

Z
T

t=0

�P
s(q(t),us

m
)

d2(q(t),us
m
)

dt, (6)

where T is the overall mission time and its value depends on
the energy utilization within the budget during ISAC and flight.
Moreover, P s(q(t),us

m
) is the power of transmitted signal in

the direction of us
m

at time t, given as

P
s(q(t),us

m
) =

XK

k=1
|w

H

k
(t)a(q(t),us

m
)|2. (7)

B. Energy Consumption of the UAV

The UAV consumes energy during both ISAC transmission
and flight. The instantaneous power consumption for signal
transmission at time t, denoted by P

c(wk(t)), is given as

P
c(wk(t)) =

XK

k=1
w

H

k
(t)wk(t) + Pconst, (8)

which includes the transmit power in the first term and a
constant power, Pconst, consumed in the circuitry and signal
processing etc. Let V (t) = kdq(t)/dtk be the instantaneous
speed of the UAV. The instantaneous propulsion power con-
sumption of the rotary-wing UAV is modeled as [11]

P
f(V (t)) =P0

 
1+

3V (t)2

U
2
tip

!
+Pi

 s

1+
V (t)4

4V 4
0

�
V (t)2

2V 2
0

!1/2

+
1

2
d0⇢sAV (t)3. (9)
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TABLE I
PARAMETERS OF FLIGHT POWER CONSUMPTION MODEL (9).

Notation/Value Definition

⌦ = 300 rad/s Blade angular velocity
A = 0.503 m2 Rotor disc area
Utip = 120 m/s Tip speed of the rotor blade
s = 0.05 m3 Rotor solidity
⇢ = 1.225 kg/m3 Air density
d0 = 0.6 Fuselage drag ratio
V0 = 4.03 m/s Mean rotor velocity induced in forward flight
P0 = 80 W Blade profile power during hovering
Pi = 88.6 W Induced power during hovering

Fig. 2. Comparison of propulsion power function (9) and its approximation
(10), using typical parameter settings as shown in Table I.

Table I summarizes the definition and typical values of the
parameters involved in (9) [11].

However, the second term in (9), for modeling the power
consumption during hovering, is a nonconvex function of
speed V (t). So is the propulsion power P

f(V (t)), which is
difficult to optimize. To tackle this challenge, we approximate
the nonconvex term in (9) by a convex function

P
f
(V ) , P0

 
1+

3V 2

U
2
tip

!
+Pi

 
1

1 + 3 V

4V0

!
+
1

2
d0⇢sAV

3
, (10)

since
⇣q

1 + V 4

4V 4
0
�

V
2

2V 2
0

⌘ 1
2
⇡

⇣
1 + 3V

4V0

⌘�1
for small V � 0.

A comparison in Fig. 2 shows that (9) and (10) closely match
with each other for a wide range of flight speeds. Note that (9)
can also be (successively) approximated by other convex func-
tions for improved accuracy, where our proposed optimization
solution still applies, though at increased computational costs.

III. PROBLEM FORMULATION

This paper aims to jointly exploit the spatial degrees of
freedom (DoFs) of the transmit ULA and the mobility of
the UAV to maximize the performance gains of UAV-enabled
ISAC within the given energy budget. In order to properly
illuminate the GTs, we use the accumulated sensing energy
defined in (6) as the sensing performance metric, similar
to [10]. Moreover, assuming that GU and GT locations are
known, we formulate the joint trajectory, beamforming, and
mission time optimization problem for UAV-enabled ISAC
under finite energy budget as

P1 : max
q(t),wk(t),T

XM

m=1
�m (11)

s.t. C1a: Rk(t) � Rmin,k 8k, 8t 2 [0, T ]

C1b: |�m � �o|Edi↵ , 8m 6=o

C1c:
Z

T

t=0

⇣
P

c(wk(t)) + P
f
(V (t))

⌘
dt  E

tot

C1d: V (t)  Vmax, 8t 2 [0, T ]

C1e:
XK

k=1
w

H

k
(t)wk(t)  Pmax, 8t 2 [0, T ]

C1f: q(0) = qI , q(T ) = qF .

In problem P1, constraint C1a ensures that the UAV maintains
communication with GU k during the ISAC mission with an
instantaneous rate exceeding Rmin,k to guarantee communica-
tion QoS. C1b requires similar levels of accumulated sensing
energy for different GTs to enhance fairness while sensing the
GTs [12]. C1c defines a finite total energy budget for the UAV
mission. C1d and C1e limit the maximum flight speed and the
maximum transmit power of the UAV by Vmax and Pmax,
respectively. Finally, C1f specifies the UAV’s starting position
and destination as qI 2R2⇥1 and qF 2R2⇥1, respectively.

Problem P1 poses several challenges for solution. Firstly,
P1 is nonconvex due to its nonconvex objective function
and constraints C1a, C1b, and C1c. Secondly, the objective
function and all constraints in P1 depend on the free variable
T , which is not given a priori, but must be determined via
optimization. Thirdly, the beamforming vectors wk(t) and
the UAV’s trajectory q(t) are tightly coupled in (4) and (7),
where the steering vector dynamically changes with the UAV’s
position in a highly nonlinear and nonconvex manner, cf. (2).
Lastly, both q(t) and wk(t) are continuous functions over time
t, involving an infinite number of variables, and P1 contains
continuous-time integrals, which are inconvenient to handle.

To tackle these challenges, in Sec. IV we discretize the
UAV’s flight path and reformulate P1 as a multi-stage DP. The
reformulated problem can be (asymptotically) optimally solved
using the Bellman equation and SDP, with the structure of
the optimal solution also revealed, though at an overwhelming
computational complexity [13]. Inspired by the huge success
of approximate DP and reinforcement learning, we further
propose a low-complexity high-quality approximate solution
based on the rollout algorithm [14].

IV. PROBLEM SOLUTION

A. Path Discretization

We approximate the continuous-time optimization problem
P1 by discretizing the UAV’s flight path as in [11]. Compared
with the well-known time discretization method [8], [10],
the considered path discretization seems more suitable for
ISAC application, as it can drastically reduce the number of
optimization variables when UAV hovers or flies at low speeds
along the trajectory. Here, the UAV’s flight path is discretized
into N line segments defined by N + 1 waypoints {qn}

N

n=0,
where q0 = qI , qN = qF , and

||qn+1 � qn||  �max, 8n. (12)

We require �max ⌧ H such that the distances d(q(t),uc
k
)

and d(q(t),us
m
) between the UAV and each GU/GT rarely

change when the UAV flies along each line segment. Note
that the total length of the line segments, N�max gives a
lower bound on the total flight distance. This bound tightens
as N increases, but extremely large N should be avoided for
computational savings. Moreover, assume that the UAV flies at
a constant speed on each line segment, with the flight time over
the nth line segment denoted by ⌧n. Once the values of ⌧ns
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are determined, we can calculate the UAV’s flying speed along
line segment n as Vn = ||qn+1�qn||/⌧n and the mission time
as T =

P
N

n=1 ⌧n. Hence, problem P1 can be approximated as

P2 : max
qn,wn,k,⌧n

XM

m=1
�N,m

s.t. C2a: Rn,k � Rmin,k 8k, n

C2b: |�N,m � �N,o|Edi↵ , 8m 6=o

C2c:
XN

n=1

⇣
P

c
n
+ P

f
(Vn)

⌘
⌧n  E

tot

C2d:
XK

k=1
w

H

n,k
wn,k  Pmax, 8n

C2e: ||qn+1 � qn||  min(�max, Vmax⌧n), 8n

C2f: q0 = qI , qN = qF ,

where �N,m is the accumulated sensing energy for GT m, cf.
(6), over the N line segments and is given as

�N,m =
XN

n=1

�P
s
n,m

d2(qn,u
s
m
)
⌧n. (13)

Rn,k is the instantaneous rate of GU k while the UAV flies
over line segment n and is defined as

Rn,k = B log2

 
1 +

|h
H

k
(qn,u

c
k
)wn,k|

2

P
i 6=k

|hH

k
(qn,u

c
k
)wn,i|

2 + �
2
k

!
. (14)

Other notations in P2 can be derived from their continuous-
time counterparts in the same manner.

B. Beamforming and Flight Duration Optimization

Assume that the waypoints qns are given. We show below
that wn,k and ⌧n in problem P2 can be jointly optimized
using the SDP approach. Although SDP has been used for
optimal beamforming design in [8]–[10], we consider here a
different problem setting. In Sec. IV-C, we further extend the
SDP approach to tackle the joint optimization problem P2.

Let Wn,k , ⌧nwn,kw
H

n,k
, with Wn,k ⌫ 0 and

Rank(Wn,k)  1. Using Wn,k as well as defining �min,k ,
2

Rmin,k
B � 1 and Hn,k , hk(qn,u

c
k
)hH

k
(qn,u

c
k
), we can

reformulate C2a as

C2a ()
⌧n · |h

H

k
(qn,u

c
k
)wn,k|

2

⌧n ·

⇣P
K

i=1,i 6=k
|hH

n,k
wn,i|

2 + �
2
k

⌘ � �min,k

()
Tr(Wn,kHn,k)P

K

i=1,i 6=k
Tr(Wn,iHn,k) + �

2
k
⌧n

� �min,k

() C3a: (1 + �
�1
min,k)Tr(Wn,kHn,k)

�

XK

i=1
Tr(Wn,iHn,k) � �

2
k
⌧n. (15)

Then, P2 can be reformulated as

P3 : max
Wn,k,⌧n

XM

m=1
�N,m

s.t. C3a, C2c, C2e, C2f,
C3b:

���N,m � �N,o

��Edi↵ , 8m 6=o

C3d:
XK

k=1
Tr(Wn,k)  Pmax⌧n, 8n

C3g: Wn,k ⌫ 0, 8n, 8k (16)

C3h: Rank(Wn,k)  1, 8n, 8k.

Where, we similarly let An,m , am(qn,u
s
m
)aH

m
(qn,u

s
m
) and

rewrite the accumulated sensing energy for GT m as

P s
n,m · ⌧n =

XK

k=1
Tr(Wn,kAn,m),

�N,m =
XN

n=1

XK

k=1

�Tr(Wn,kAn,m)

d2(qn,u
s
m
)

. (17)

Problems P3 and P2 are equivalent in the sense that they
achieve exactly the same optimal objective value and their
optimal solutions bear a one-to-one correspondence.

However, P3 is still nonconvex due to the nonconvex rank
constraint C3h. We solve P3 by employing the SDP relax-
ation technique, i.e., by dropping C3h. The resulting convex
optimization problem can be efficiently solved using off-the-
shelf solvers such as CVX [15]. Generally, the SDP relaxation
approach finds a performance upper bound for the original
problem, as the relaxed solution of Wn,k may violate C3h.
However, for problem P3 at hand, we can show below (as well
as offline in simulations) that the SDP relaxation approach is
tight, i.e., the relaxed solution always fulfills C3h.

Lemma 1: Assume that the relaxed SDP problem P3 admits
at least one feasible solution. Then an optimal rank-one
solution of Wn,k can always be obtained by solving P3.

Proof: Our proof follows a similar approach as [16,
Theorem 2], but extends it to solve the joint beamforming and
flight duration optimization problem P2 for UAV-aided ISAC.
Due to limited page space, the details are ignored.

C. Trajectory Design and Rollout Algorithm

1) DP based Reformulation: Based on the results in Sec.
IV-B, we now proceed to jointly optimize the waypoints qn,
the beamforming vectors wn,k, and the flight durations ⌧n,
to solve problem P2. To this end, we first reformulate P2 as
an N -stage DP problem in a discrete-event dynamic system
and then apply the DP algorithm for solution. In particular, let
n be the index of stages. The system is represented by state
on , [Qn, En], which includes the sequence of waypoints
Qn = {q0, . . . ,qn} known till stage n, and the remaining
energy En. Due to the system dynamics, the state evolves
according to the equation on+1 = fn(on, zn), when action
zn is applied at stage n, and fn is a function of (on, zn)
that describes the mechanism by which the state is updated
from stage n to n+1. The action zn = [qn+1, ⌧n+1,wn+1,k]
consists of the selected next waypoint qn+1 2 R2⇥1, flight
duration ⌧n+1 2 R+ allocated to reach next waypoint, and
the beamforming vectors wn+1,k 2 CS⇥1 to be used in the
next waypoint. The action zn is determined by a policy of
the form ⇡ = {µ0, . . . , µN�1}, and constrained to take values
in a given subset zn = µn(on) 2 Z(on) that depends on
the current state on. Here, set Z(·) captures all constraints on
action zn given in P2. We denote by ⇧ the set of all policies
constructed using feasible actions.

The transition from state on to on+1 under the action
zn generates a reward gn(on, zn). We define gn(on, zn) as
the incremental sensing energy for the GTs at stage n, i.e.,
gn(on, zn) , P

M

m=1
�P

s
n+1,m

d2(qn+1,us
m)⌧n+1. Now, given an initial

state o0 = [Q0 = {qI}, E0=E
tot] and policy ⇡, the sum of

the rewards, denoted as J⇡(o0)=gN (oN )+
P

N�1
n=0 gn(on, zn),

recaps the accumulated sensing energy. Hence, problem P2 is
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equivalent to seeking from the set ⇧ the optimal policy ⇡
⇤

that maximizes J⇡(o0) [13], i.e.,

⇡
⇤
2 argmax

⇡2⇧ J⇡(o0). (18)

The resulting optimal sum of rewards starting from state on

till oN , denoted by J
⇤
n
(on), is known as the optimal value

function of state on.
Note that (18) involves a multi-stage optimization. To obtain

the optimal policy, we need to solve at each stage n =
0, . . . , N�1 the Bellman optimality equation,

J
⇤
n
(on) = max

zn2Zn(on)
[gn(on, zn) + J

⇤
n+1(fn(on, zn))], (19)

using e.g. the DP algorithm. We start with solving the terminal
problem J

⇤
N
(oN ), and then move one stage backwards to

solve J
⇤
N�1(oN�1). This process continues until J

⇤
0 (o0) is

obtained. Based on J
⇤
n
(on), n = 0, . . . , N � 1, the optimal

policy is further constructed via forward optimization steps,
see [13] for details. However, executing the DP algorithm (19)
is prohibitively time-consuming, due to the infinite-space of
the continuous action variables (even if they are discretized
into a finite set of numbers) [13]. This motivates us to seek
practical low-complexity approximation methods, such as the
rollout algorithm [14], to tackle (19).

2) One-Step Lookahead Rollout (OSLR) Algorithm: For the
DP algorithm, the bottleneck for computation lies in calcu-
lating the optimal value function J

⇤
n+1(·). To overcome this

difficulty, the OSLR algorithm approximates J
⇤
n+1(·) by the

reward function J̃n+1(·) of a base policy ⇡̃={µ̃0, . . . , µ̃N�1}.
The base policy ⇡̃ is a heuristic algorithm whose reward
J̃n+1(on+1) , gN (oN ) +

P
N�1
i=n+1 gi(oi, zi) can be conve-

niently calculated for zi= µ̃i(oi), i = n+1, . . . , N�1. Using
J̃n+1(·), the action z̃n for stage n is selected by OSLR as

z̃n 2 argmax
zn2Z(on)

[gn(on, zn) + J̃n+1(f(on, µ̃n(on))]. (20)

Algorithm 1 summarizes the proposed OSLR algorithm. In
each stage n, J̃n+1(on) is calculated via the computationally
efficient base policy ⇡̃. Based on the sequence of selected
actions (waypoints) z̃0, . . . , z̃n�1 and actions zn+1, . . . , zN�1

deduced by base policy ⇡̃, we utilize the formulated SDP
problem P3 to calculate the sum rewards of multiple actions to
select the best action z̃n (20). The state is then updated using
the action z̃n that maximizes the accumulated sum reward.
Procedure followed for all N stages, to find all waypoints.
Let O(⌦) be the complexity of utilized heuristic algorithm in
base policy ⇡̃, and |Z| be the maximum number of actions at a
stage. Then the overall complexity of Algorithm 1 is bounded
by O(N |Z|⌦), much lower than that of the DP algorithm.
Moreover, instead of applying the heuristic algorithm itself,
the OSLR algorithm optimizes the action by considering the
potential long-term reward (20). As such, the OSLR algorithm
guarantees a performance improvement over the original base
policy with low computational costs [14].

V. SIMULATION RESULTS

We evaluate the performance the proposed joint beamform-
ing and trajectory optimization algorithm for UAV-enabled
ISAC with finite energy budget via simulations. We consider
a 500m⇥500m area that is divided into 400 smaller squares
with size 25m⇥25m. This results in 441 grid nodes to be
considered as UAV waypoints. In the area there are K = 2

Algorithm 1 Joint Trajectory and Beamforming Optimization
with OSLR

1: Input:N, ⇡̃, Etot, Vmax,qI ,qF , {uc
k, Rmin,k}Kk=1, {us

m}Mm=1;
2: for n = 0 : N � 1 do . For each stage n
3: Find Z(on) based on C2a-f; . P2
4: Calculate J̃n+1,(on) by simulating the base policy and col-

lecting the rewards;
5: z⇤n = argmax

zn2Z(on)
[gn(on, zn) + J̃n+1,(on)];

6: Update system: on+1 = fn(on, z
⇤
n);

7: end for

8: Output: [z0, . . . , zN�1], J
⇤
0 (o0).

TABLE II
PARAMETER SETTINGS FOR SIMULATION

Parameter Notation/Value

Path discretization length �max = 35 m
Number of UAV antennas S = 6
UAV’s max flight speed Vmax = 20 m/s
UAV’s flight altitude H = 100 m
UAV’s energy budget E

tot = 15000 J
Fairness constraint, cf. C3b Edi↵ = 0.1
Channel gain at reference distance � = �30 dB
Noise power �

2
k = �110 dBm

Maximum transmit power Pmax = 40 dBm
Communication requirement per GU Rmin,k = 2 Mbps
System bandwidth B = 1 MHz
Circuitry power consumption Pconst = 5 W

GUs and M =2 GTs, with locations shown in Fig. 3. Unless
otherwise stated, the simulation parameters are set according
to Table I and II. The UAV’s initial and destination locations
are set as qI = [50, 50]T and qF = [50, 450]T , respectively.

Recall that OSLR employs a base policy to approximate
the value function in Algorithm 1. In this paper, we employ
a base policy for minimizing the distance to the destination
location from the UAV position. For performance comparison,
we consider two baseline schemes. For baseline scheme 1, we
employ the trajectory of the base policy, without OSLR. For
baseline scheme 2, we adopt zero-forcing (ZF) beamforming
for mitigating interference between the GUs, and jointly opti-
mize flight durations and trajectory similar to problem P2.

Figure 3 depicts the optimized trajectories and flight du-
rations of the UAV for the proposed and baseline schemes.
To illustrate flight durations, we mark the trajectories with
points evenly spaced in time. That is, each marker point
indicates a fixed amount of flight time along the trajectory.
We observe that, as expected, the baseline scheme 1 designs
the UAV’s trajectory using the shortest path between the
UAV’s initial and destination positions. As GT 1 is located
further away from the designed trajectory than GT 2, the
UAV flies near GT 1 for a long time, indicated by dense
time marks on the trajectory. This ensure fairness for sensing,
cf. C2b in problem P2. Unlike the baseline scheme 1, both
the proposed scheme and the baseline scheme 2 design the
UAV’s trajectories to fly toward the GT locations, thanks to
the OSLR based Algorithm 1. This can significantly reduce the
loss of signal energy for sensing the GTs, while maintaining
communication QoS for information transmission to the GUs.
Recall that the base policy of the OSLR algorithm is the same
as the baseline scheme 1. This result implies that the OSLR
algorithm can significantly outperform the base policy, by
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Fig. 3. Optimized flight trajectories and flight
durations of the UAV for the considered schemes.

0 0.5 1 1.5 2 2.5 3 3.5 4

Communication requirement Rmin,k
 (Mbits/s)
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Ac
cu

m
ul

at
ed

 s
en

si
ng

 e
ne

rg
y 

fo
r t

he
 G

Ts Proposed scheme
Baseline scheme 1
Baseline scheme 2

+320%

+150%

Fig. 4. Accumulated sensing energy for the GTs
versus the minimum required data rate per GU.

4 6 8 10 12 14 16

Number of ULA antenna elements 
S
0

0.2

0.4

0.6

0.8

1

1.2

Ac
cu

m
ul

at
ed

 s
en

si
ng

 e
ne

rg
y 

fo
r t

he
 G

Ts Proposed scheme
Baseline scheme 1
Baseline scheme 2

+120%

+430%

Fig. 5. Accumulated sensing energy for the GTs
versus the number of transmit antennas.

using the latter to simulate and approximate future long-term
rewards in (20). However, constrained by ZF beamforming,
the baseline scheme 2 is bounded to remain close to the GUs
at later parts of the trajectory. On the other hand, the proposed
scheme flexibly adapts the ISAC to continue meeting the
communication requirements while flying closer to the GTs.

Figure 4 shows the accumulated sensing energy for the GTs,
cf. the objective of P2, versus the communication requirement
per GU, Rmin. We observe that the accumulated sensing
energy for all the considered schemes monotonically decrease
with Rmin. This reveals an inherent trade-off between sensing
and communication in UAV-enabled ISAC. In particular, as
Rmin increases, the UAV has to fly closer to the GU locations
and/or steer the ISAC beam more towards the GUs, to satisfy
the more stringent communication constraint, cf. C1a. Mean-
while, the proposed scheme significantly outperforms both
baseline schemes when Rmin  2 Mbits/s. For example, com-
pared with the baseline scheme 1 and 2, the proposed scheme
increases the accumulated sensing energy by up to 320%
and 150%, respectively, thanks to the extra DoFs brought by
joint trajectory and ISAC beamforming design. Interestingly,
the proposed scheme achieves the same performance as the
baseline scheme 2 when Rmin � 3 Mbits/s. This result
suggests that for UAV-enabled ISAC, ZF beamforming may be
optimal when Rmin is large and communication requirements
dominate the beamforming and trajectory design.

Finally, Figure 5 evaluates the accumulated sensing energy
for the GTs versus the number of antennas S deployed
deployed at the transmit ULA of the UAV. We observe that
increasing the number of antennas improves the performances
of all schemes, as signal energy can be focused towards the
GTs and GUs using narrower beams generated by the antennas.
Moreover, our proposed scheme significantly outperforms the
baseline schemes 1 and 2, claiming gains of up to 430% and
120%, respectively. This is because the baseline scheme 1
optimizes only the flight times and ISAC beamforming but
limits the flight trajectory to be along the shortest path between
the UAV’s initial and destination positions. Meanwhile, the
baseline scheme 2 optimizes only flight times and trajectory by
assuming ZF beamforming. In contrast, our proposed scheme
jointly optimizes the trajectory design, flight times and ISAC
beamforming. Hence, with the proposed scheme, the UAV can
better exploit the antenna array to increase the sensing power
toward the GTs while mitigating the inter-user interference.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we studied joint transmit beamforming opti-
mization and trajectory design for UAV-enabled ISAC with

limited onboard energy. We formulated a highly nonconvex
optimization problem to maximize sensing performance while
satisfying QoS requirements of communication, as well as
flight and energy constraints. By discretizing the flight path
and reformulating the problem as a multi-stage DP with
continuous states and actions, we proposed a computationally
efficient OSRL algorithm to obtain a high-quality suboptimal
solution. Simulation results revealed that the proposed scheme
can jointly exploit the UAV mobility and the spatial DoFs of
transmit ULA to significantly enlarge the achievable sensing
and communication performance region. The performance
gains are up to 430% compared to two baseline schemes. Moti-
vated by its high performance and low complexity, extending
the proposed OSLR algorithm to other base policies and/or
multi-UAV enabled ISAC are interesting topics left for our
future work.
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