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Abstract—In the context of the metaverse, digital twins (DTs)

enable the convergence of the virtual space and the physical
world. To this aim, in this work, we investigate DT placement
in Mobile Edge Computing (MEC) systems, i.e., the selection of
an edge server (ES) to host the DT of a physical system (PS).
DT placement in MEC is a challenging task. Firstly, the dynamic
characteristics of MEC systems, e.g., wireless channels and the
loads of the ESs, are unknown and can exhibit a statistically
non-stationary behavior. Secondly, the accuracy of the DT relies
on periodically synchronizing the PS with its DT. However, in
order for the synchronization to be successful, the incurred latency
must be below a predefined deadline. Thirdly, the synchronization
should be energy efficient as many PSs are battery powered.
Lastly, switching between ESs causes additional overhead as it
requires the migration of the DT to a new ES. In this work,
we investigate the DT placement problem in a dynamic and
statistically non-stationary MEC system. Our goal is to jointly
minimize the synchronization latency and energy consumed by
the PS while accounting for the overhead caused by switching
between ESs. Furthermore, we aim for reducing the risk of failed
synchronization events. To this end, we propose a novel risk-aware
piece-wise stationary Multi-Armed Bandit (MAB) algorithm. Our
simulations verify that our proposed algorithm outperforms state-
of-the-art schemes by 50% and 58% in terms of the percentage
of failed synchronizations and the number of DT migrations,
respectively.

I. INTRODUCTION

Digital twins (DTs) are virtual software-based representa-
tions of physical systems (PSs), such as Internet of Things (IoT)
devices or autonomous vehicles [1]. A DT emulates the behav-
ior of its PS in real-time by simulating the PS’s status. For this
reason, DTs are regarded as a key enabling technology for the
metaverse. The metaverse is a virtual three-dimensional space
in which humans, represented by avatars, can interact with
other humans and objects in real-time using virtual reality and
augmented reality [2]. Leveraging DTs, the metaverse merges
the physical and virtual space by constructing digital replicas of
the physical world [3] and allowing DTs to interact on behalf
of their PSs with other objects and avatars. Enabled by the
future sixth-generation (6G) mobile networks, the metaverse is
expected to benefit various applications, ranging from gaming
over education to healthcare [4].

For a seamless integration of the physical world in the
metaverse, DTs need to accurately represent their PSs. To
maintain a precise replica of its PS, the DT relies on regular
status updates from the PS, i.e., the PS periodically sends data
about its current state to the DT over a wireless link. The
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DT, which is hosted on a computation server, processes this
data to update its model of the PS. This process is called
synchronization. However, having in mind that IoT devices are
battery powered, two challenges arise when synchronizing DTs.
Firstly, ensuring a frequent and timely synchronization for a
reliable PS emulation. Secondly, using the available energy at
the PS efficiently for the status update transmission.

In order to achieve a small synchronization latency and
reduce the energy consumption of the PS, it is advantageous to
deploy the computation servers that host the DTs in proximity
of the PSs. Mobile Edge Computing (MEC) [5] is particularly
suitable for this purpose, because in MEC systems, computa-
tion servers are deployed at the network edge. Furthermore,
by flexibly changing the edge server (ES) that hosts the
DT to another ES, one can account for dynamic changes
of the environment or PS mobility while maintaining a low
synchronization latency.

The aim of DT placement in MEC systems is to select the
optimal ES for hosting the DT considering the synchronization
latency and energy consumed by the PS. The DT placement is
challenging, as both, synchronization latency and energy con-
sumption, depend on the dynamic characteristics of the MEC
system, i.e., the quality of the wireless channels between the
PS and the ESs as well as the ESs’ computational capabilities
and their varying loads. Moreover, the migration of a DT from
one ES to another ES causes additional overhead due to the
effort required for instantiating the DT on the new ES.

To accurately represent the physical world in the metaverse,
recent works solve the DT placement problem using opti-
mization theory. [6], [7] and [8] derive algorithms to approx-
imately solve optimization problems for the minimization of
the synchronization latency. However, these works are based
on the unrealistic premise of perfect knowledge of the MEC
system characteristics, i.e., wireless channels, ES computation
capabilities and loads. In a realistic setting, these quantities
cannot be known in advance as they change over time.

Other works treat the DT placement problem from an online
learning perspective. The authors of [9] and [10] propose
algorithms for the synchronization latency minimization while
accounting for uncertainty about the dynamic MEC system
characteristics. However, these works fail to address the fact
that MEC systems can evolve in a statistically non-stationary
fashion. Examples for non-stationary changes are sudden ob-
structions of the line-of-sight (LoS) transmission path that
deteriorate the channel quality or abrupt increases in the ES
load. Statistical non-stationarity is particularly challenging,
as an online-learning algorithm has to autonomously identify



when the learned policy is no longer valid without knowing
when or how a change in the performance occurred. Moreover,
despite the fact that [9] and [10] consider a synchronization
latency constraint, i.e., a maximum latency allowed for the syn-
chronization process, they only aim at satisfying the constraint
on average. This means that some synchronization events might
fail as they cannot be completed before the deadline. In order
for the DT to be a precise representation of its PS in the
metaverse, it is crucial to finish the synchronization processes
to ensure that the DT can properly track the PS’s dynamics.
Thus, the risk of not completing the synchronization process
should be reduced.

In this paper, we consider DT placement in a statistically
non-stationary MEC system. In our model, a PS selects one
ES for hosting its DT, while having no prior knowledge
about the system characteristics, such as expected uplink data
rates as well as ES computation capabilities and loads. Our
contributions are:
• We investigate ES selection for DT placement in an uncer-

tain, dynamic and statistically non-stationary environment.
We model the wireless channels and the loads of the ESs
with piece-wise stationary random variables.

• We propose a novel risk-aware reinforcement lear-
ning algorithm, named Risk-Aware Discounted Upper-
Confidence-Bound (RAD-UCB), for a joint minimization
of the PS’s energy consumption and the synchroniza-
tion latency. RAD-UCB is based on Multi-Armed Ban-
dits (MABs) and quickly adapts to the statistically non-
stationary behavior of MEC systems. Furthermore, RAD-
UCB reduces the risk of not completing the synchro-
nization processes. Moreover, it considers the additional
overhead incurred by switching the selected ESs.

• Our simulation results show that our proposed algorithm
strikes an excellent balance between adaptability to sta-
tistically non-stationary environment changes, low risk of
failed synchronization processes as well as low average
energy consumption and synchronization latency.

In the following, Sec. II introduces the system model. The
problem formulation and our proposed algorithm are explained
in Sec. III and Sec. IV, respectively. In Sec. V, the simulation
results are presented and Sec. VI concludes the paper.

II. SYSTEM MODEL
A. Overview

Our scenario consists of a PS and a set K = {1, . . . ,K}
of K ∈ N base stations. Each base station is equipped with
an adjacent ES that can host the DT of the PS. For notational
simplicity, in the remainder of this work, we consider a base
station with co-located ES as one unit and refer to it as an
ES. In order for the DT to maintain a reliable model of the
PS, it is assumed that the PS needs to synchronize with its DT
periodically every τ seconds. Thus, the considered finite time
horizon is divided into T ∈ N time steps of length τ .

We assume that the ESs are positioned at fixed locations.
Furthermore, similarly to [11], it is assumed that the PS only
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Fig. 1. DT placement in a MEC system.

makes small movements. Thus, the distances between the PS
and the ESs stay approximately constant during the considered
time horizon of T time steps. However, the PS’s mobility can
still cause significant variations in the quality of the wireless
channel, as the PS can move from line-of-sight (LoS) to no-
line-of-sight (NLoS).

At the beginning of every time step t = 1, . . . , T , the PS
selects one ES k ∈ K for hosting its DT. Switching between
ESs can improve the performance, as it allows for an adaptation
to environment dynamics, e.g., changes of wireless channels or
ES loads. However, it also causes an additional overhead, as
the DT needs to be migrated to and instantiated on the new
ES. Due to the complexity of real systems, the aforementioned
overhead is hard to quantify [11]. In order to facilitate our
considerations, we model the additional effort required for the
DT migration with the constant β ∈ R+.

For synchronization, in every time step t, the PS wirelessly
transmits a status update with the size of D bits to the selected
ES k. Upon receiving the PS’s status update, ES k processes it
to update the corresponding DT. The computational complexity
associated with processing the PS’s status update is denoted
by Γ and measured in CPU-cycles. After ES k completed the
status update processing of the DT, it instantly informs the
PS about the completion of the synchronization process via a
perfect feedback channel with negligible latency.

If the PS cannot complete the status update transmission
or does not receive the ES’s feedback before the end of time
step t, i.e., within τ seconds, the synchronization process is
considered unsuccessful and terminated, i.e., either the PS stops
the transmission or informs the ES to cancel the status update
processing. At the beginning of the next time step, the PS
selects again an ES and sends a new status update. Since the
wireless channels as well as the ESs’ computational capabilities
and loads are dynamic and unknown to the PS, it cannot be
guaranteed that the synchronization process will always be
completed within the required time of τ seconds.
B. Communication Model

The channel coefficient hk,t of the wireless channel between
the PS and ES k in time step t is sampled from a Rician
distribution. Therefore, both, LoS and NLoS transmission con-
ditions, are accounted for. hk,t is assumed to be constant for
the duration of one time step. As in [12], hk,t is given by

hk,t =

√
κk

κk + 1
ejθk,t +

√
1

κk + 1
h̃k,t, (1)



where the phases θk,t are uniformly distributed on the interval
[0, 2π] and statistically independent. Additionally, h̃k,t is drawn
from a zero-mean and unit-variance complex Gaussian distribu-
tion. Moreover, κk ≥ 0 denotes the energy ratio between LoS
and NLoS for the wireless channel between PS and ES k, i.e.,
κk = 0 corresponds to NLoS and the larger κk, the stronger
the LoS component. κk is assumed to be piece-wise constant,
i.e., κk can change at certain time steps and stays constant
for the time steps in between. These changes originate from
the PS’s mobility and mean that hk,t is drawn from a piece-
wise stationary probability distribution. The channel gain of
the wireless channel between PS and ES k in time step t is
denoted by Hk,t and can be expressed as

Hk,t = d
−ϵ/2
k,t hk,t, (2)

where dk,t is the distance between PS and ES k in time step
t. d−ϵ/2k,t is the path loss and ϵ ≥ 2 is the path loss coefficient.

It is assumed that the PS shares the wireless link to the ES
with other users. To avoid interference between the PS and
other connected users, each ES uses a separate frequency band
and an orthogonal frequency-division multiple-access scheme.
In order to account for the influence of other connected users
on the load of the wireless network, N tx

k,t denotes the number
of additional users that connect to ES k in time step t. N tx

k,t is
sampled from a Poisson distribution Pois(ηk) with parameter
ηk > 0. According to Shannon’s channel capacity formula, the
highest possible data rate when transmitting from the PS to ES
k in time step t is given by

Rk,t =
B

1 +N tx
k,t

log2

(
1 +

|Hk,t|2P
σ2
n

)
in

bit
s
, (3)

where P is the PS’s constant transmit power, σ2
n denotes the

thermal noise power and B > 0 is the maximum system
bandwidth, which the PS shares with the other N tx

k,t connected
users. The parameter ηk is assumed to be piece-wise constant.
Thus, the bandwidth allocated to the PS is a piece-wise
stationary random variable, which captures varying loads of
the wireless network. Finally, the transmission latency when
selecting ES k in time step t can be expressed as

T tx
k,t =

D

Rk,t
. (4)

C. Computation Model

The computation resources available at ES k ∈ K are
denoted by Fmax

k and measured in CPU-cycles per second.
Moreover, let NES

k,t be the number of users being served by
ES k in addition to the PS in time step t. NES

k,t is drawn from
a Poisson distribution Pois(νk) with νk > 0. It is assumed that
Fmax
k is split equally among all users simultaneously served by

ES k. Consequently, the computation resources allocated to the
PS, if it selects ES k in time step t, are given by

Fk,t =
Fmax
k

1 +NES
k,t

. (5)

In order to capture the varying loads of the ESs, νk is assumed
to be piece-wise constant. As a result, Fk,t is a sample from

a piece-wise stationary random distribution. The latency term
T ES
k,t caused by the processing of the PS’s status update is given

by

T ES
k,t =

Γ

Fk,t
. (6)

D. Synchronization Latency and PS’s Energy Consumption

Taking into account that the synchronization process is ter-
minated if it is not completed within τ seconds, the PS cannot
perceive synchronization latencies larger than τ . Therefore, we
define the synchronization latency Tk,t when ES k hosts the
DT of the PS in time step t as

Tk,t = min{T tx
k,t + T ES

k,t, τ} (7)

and the PS’s energy consumption associated with the DT
synchronization as

Ek,t = min{T tx
k,tP, τP}. (8)

Note that both, Tk,t and Ek,t, are realizations of piece-wise
stationary random variables, as the corresponding probability
distributions depend on the piece-wise constant parameters
κk, ηk and νk. We assume that all the underlying probability
distributions for Tk,t and Ek,t can change in up to Φ ∈ N time
steps for all k ∈ K until t = T is reached, with Φ << T .

III. PROBLEM FORMULATION

Hosting the PS’s DT on an ES incurs a cost in terms of the
synchronization latency Tk,t and the PS’s energy consumption
Ek,t. For this purpose, we define the cost Ck,t associated with
hosting the DT on ES k in time step t as

Ck,t = αẼk,t + (1− α)T̃k,t ∈ [0, 1], (9)

where T̃k,t = Tk,t/τ and Ẽk,t = Ek,t/(τP ) are the normalized
synchronization latency and PS’s energy consumption, respec-
tively, with T̃k,t, Ẽk,t ∈ [0, 1]. The parameter α ∈ [0, 1] is a
weighting factor for the latency and energy consumption.

Let yk,t be a decision variable, i.e., yk,t = 1 if the PS selects
ES k in time step t and yk,t = 0 if not, and 1{·} denote the
indicator function. Accounting for the fact that besides the cost
Ck,t of hosting the DT on an ES, switching ESs causes the
additional overhead β, we formulate our optimization problem

minimize
{yk,t}k∈K, t∈{1,...,T}

T∑
t=1

K∑
k=1

yk,tCk,t + β1{yk,t=1∧yk,t−1 ̸=1}

(10a)

subject to

K∑
k=1

yk,t = 1, ∀t, (10b)

yk,t ∈ {0, 1}, ∀k, ∀t, (10c)

where constraint (10b) enforces that only one ES is selected
per time step and constraint (10c) ensures that the decision
variable is binary.



IV. RAD-UCB ALGORITHM

A. Overview

Solving the optimization problem in (10) requires non-
causal knowledge of the synchronization cost Ck,t of every
ES k ∈ K and for every time step t = 1, . . . , T . However,
in real systems, the PS has neither prior knowledge about the
statistically non-stationary behavior of the wireless channels
nor about the ESs’ computation capabilities and loads. Thus,
the PS has to autonomously learn the optimal ES in an
unknown and dynamically changing environment. To this end,
we propose Risk-Aware Discounted Upper-Confidence-Bound
(RAD-UCB). RAD-UCB is a novel risk-aware reinforcement
learning approach that reduces the risk of selecting ESs that
lead to failed synchronization events, is capable of adapting to
statistically piece-wise stationary changes in the behavior of
the cost, and reduces the number of DT migrations.

RAD-UCB is based on a MAB approach and aims to learn
the expected cost of every ES. In the MAB context, the PS
is the learning agent, which has no prior knowledge about
the expected cost or the probability of successfully completing
the synchronization associated to every ES. The arms of the
bandit correspond to the K ESs in the set K which the PS
can choose from. Moreover, we define the reward as the cost
Ck,t associated with hosting the DT on an ES. Note that
this definition slightly abuses the terminology as the reward
is usually maximized and our goal is minimizing the reward.

In order to reduce the risk of selecting ESs that lead to
an incomplete synchronization process, RAD-UCB penalizes
failed synchronization events by increasing the associated cost
by a finite factor ρ ≥ 1. Furthermore, to adapt to piece-
wise stationary probability distributions of the cost Ck,t, i.e.,
changes in the expected cost over time, RAD-UCB considers
discounting of the past rewards as done in [13]. In particular,
RAD-UCB uses discounted estimates of the expected synchro-
nization cost. To this aim, the discount factor γ ∈ (0, 1] is
considered. Using γ, RAD-UCB computes a weighted average
of the obtained cost samples in which recently obtained cost
samples are weighted higher than older ones. Note that in this
way, we account for the fact that older samples might have been
obtained even before the occurrence of a non-stationary change
in the probability distribution of the cost. Additionally, RAD-
UCB takes into account the overhead for switching between
ESs by limiting the exploration of ESs if the synchronization
events are expected to be successful when choosing the ES
with lowest expected cost.

B. ES Selection Process

The main objective of RAD-UCB is to select the ES with
the lowest estimated expected cost while reducing the risk
of a failed synchronization and accounting for the migration
overhead. As the cost Ck,t is not known in advance, in every
time step t, RAD-UCB updates the estimates µ̂cost

k,t for the
expected synchronization cost of every ES k ∈ K.

The pseudocode of RAD-UCB is found in Algorithm 1. Let
Nk,t be a variable to track the number of times each ES has

Algorithm 1 RAD-UCB
1: Input Parameters: γ, ξ, ρ, λ and T
2: Set Nk,0 = 0, ∀k.
3: for each t = 1, . . . , T do
4: if Nk,t−1 > 0 ∀k ∈ K then
5: Select best ES kt. ▷ Eq. (11)
6: else
7: Select ES kt randomly from {k ∈ K|Nk,t−1 = 0} with equal probability.
8: end if
9: Observe synchronization cost Ckt,t and latency Tkt,t for selected ES kt.

10: if Synchronization is unsuccessful then
11: Set Ckt,t ← ρ Ckt,t.
12: Set Tkt,t ← ρ Tkt,t.
13: end if
14: Update µ̂cost

k,t and Nk,t for all k ∈ K. ▷ Eqs. (12) and (13)
15: Update bk,t and µ̂lat

k,t for all k ∈ K. ▷ Eqs. (14) and (15)
16: Identify ES k∗

t = arg mink∈Kµ̂cost
k,t with lowest expected cost.

17: if µ̂lat
k∗
t ,t ≤ τ then

18: Set bk,t ← λ bk,t for all k ∈ K.
19: end if
20: end for

been selected. Nk,t is initialized with zeros for all k ∈ K
(line 2) before the iteration over the time steps t = 1, . . . , T
starts (lines 3-20). To guarantee that we have a sample for the
estimated cost µ̂cost

k,t of each ES k ∈ K, in the first K time steps,
every ES is selected once (lines 6-7). In every succeeding time
step t > K, the PS selects an ES kt based on the estimated
cost µ̂cost

k,t and the exploration term bk,t. The exploration term
bk,t encourages the selection of ESs that have not been selected
frequently until time step t. Specifically, the PS selects an ES
kt according to the following rule (lines 4-5)

kt = arg min
k∈K

(
µ̂cost
k,t−1 − bk,t−1

)
. (11)

Next, the PS observes the synchronization cost Ckt,t and
latency Tkt,t (line 9). If the synchronization process was in-
complete, RAD-UCB increases Ckt,t and Tkt,t by multiplying
both with ρ in order to account for the risk of a failed
synchronization (lines 10-13). Note that ρ tunes the risk-
awareness, i.e., ρ = 1 corresponds to the risk neutral case
and the larger ρ, the greater the focus on minimizing the
risk of incomplete synchronization. Afterwards, the estimated
expected cost is updated for all ESs k ∈ K as

µ̂cost
k,t =

1

Nk,t

t∑
n=1

γt−n Ck,n 1{kn=k} (12)

(line 14) and the counter Nk,t is updated as

Nk,t =

t∑
n=1

γt−n 1{kn=k}, (13)

where the potentially penalized cost samples Ck,n obtained in
time step n are discounted with the discount factor γt−n. As
mentioned before, this discounting allows RAD-UCB to adapt
to the changes in the piece-wise stationary cost distributions.

The exploration term bk,t is updated for all ESs k ∈ K as

bk,t = ξ

√√√√ log
(∑K

k′=1 Nk′,t

)
Nk,t

(14)



(line 15), where ξ > 0 is a factor for adjusting the exploration
sensitivity. The term bk,t encourages the exploration of ES k
if bk,t is large, i.e., if the counter Nk,t is small. This happens
either if ES k has not been explored in many time steps, or if
the last time step ES k has been selected lies many time steps
in the past. While exploration helps to identify the optimal ES
and changes of the expected cost, a frequent exploration can
also be disadvantageous, as this increases the impact of the
migration overhead. Furthermore, from a risk-aware point of
view, the risk of incomplete synchronization processes might be
increased due to recurrent exploration. Therefore, we aim for a
risk-aware reduction of the exploration frequency. Specifically,
RAD-UCB reduces the exploration terms bk,t for all ESs
if it is expected that the synchronization processes can be
completed when picking the ES that minimizes the cost. To
this aim, RAD-UCB first updates estimates of the expected
synchronization latency µ̂lat

k,t for all ESs (line 15) as

µ̂lat
k,t =

1

Nk,t

t∑
n=1

γt−n Tk,n 1{kn=k}. (15)

Next, RAD-UCB determines the ES k∗t with the lowest
expected cost (line 16). If the expected synchronization latency
µ̂lat
k∗
t ,t

when picking ES k∗t is below the deadline τ , RAD-UCB
reduces the exploration term bk,t with a scaling factor λ ∈ (0, 1]
for all ESs (lines 17-19). If even the best ES, in terms of cost,
is not expected to complete the synchronizations, RAD-UCB
explores more opportunistically as the PS might identify an ES
that improved due to a non-stationary change.

V. NUMERICAL RESULTS

We consider an area of 500 m × 500 m for our simulations.
We assume that this area is partitioned into 25 squares of equal
size. If not stated otherwise, we place K = 16 ESs uniformly
inside of this area at the intersections of the squares. For every
simulation instance, we place the PS at a random location
within the considered area and draw the available computation
resources for every ES k from uniform distributions with
intervals stated in Table I. For capturing the non-stationary
variations of the wireless channels between the PS and the
ESs as well as the loads of the ESs, we assume that the
underlying probability distributions describing the aforemen-
tioned quantities change at Φ time steps within the considered
time horizon, i.e., there are Φ + 1 stationary phases of equal
duration. Specifically, for every stationary phase, we assume
that for a random number of ESs, which is drawn with equal
probability from {1, . . . ,K}, the distribution parameters κk, νk
and ηk are randomly redrawn from uniform distributions with
intervals given in Table I. The remaining simulation parameters,
which are based on [7] and [9], are summarized in Table I.
To benchmark RAD-UCB, the following state-of-the-art MAB
approaches are considered:
• UCB [14]: The risk-neutral Upper-Confidence-Bound

MAB algorithm for stationary reward distributions.
• D-UCB [13]: Risk-neutral Discounted Upper-Confidence-

Bound MAB algorithm, that adapts to piece-wise station-
ary reward distributions by discounting reward samples.

TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value
B 20 MHz D 1 Mb
σ2
n 10−13 W Γ 108 CPU-cycles
P 100 mW τ 50 ms
ϵ 3 α 0.75

Fmax
k [8, 24] GHz νk [1, 10]
κk [0, 5] ηk [1, 10]
γ 0.98 ρ 2
ξ 0.005 λ 0.001

• Risk-Aware Oracle: Assumes perfect knowledge of the
expected synchronization cost and penalizes failed syn-
chronization events.

The hyper-parameters for all baseline schemes are tuned such
that the benchmark algorithms perform best in the considered
simulation scenario. We use MATLAB for our simulations and
consider the average of 400 Monte Carlo simulation runs with
a time horizon of T = 2000 time steps.

To achieve a fair comparison, Figure 2 shows the syn-
chronization cost per time step, normalized with respect to
the fraction of synchronizations that failed in the respective
time step. Specifically, for every time step, we weight the
cost with the corresponding fraction of failed synchronization
events. Moreover, we consider Φ = 1 non-stationarity, which
is located at time step t = 1000, i.e., the expected cost
changes at t = 1000. During the first stationary phase, RAD-
UCB reaches a stable normalized cost 25% above the oracle
within 100 time steps. Note that the oracle represents a lower
bound for the performance of RAD-UCB by assuming perfect
knowledge of the expected cost associated to each ES. In the
succeeding time steps, the normalized cost achieved by RAD-
UCB slowly converges closer to the oracle achieving a 5%
higher cost than the oracle at t = 750. UCB and D-UCB
also reach a stable cost after 100 time steps. However, the
cost achieved by UCB and D-UCB is approximately twice
as large as for RAD-UCB. This can be explained by the
fact that, unlike RAD-UCB, UCB and D-UCB are risk-neutral
in the sense that they do not account for the risk of failed
synchronization events. Thus, the cost normalized in terms
of the frequency of uncompleted synchronization processes is
larger. Furthermore, it can be observed that the normalized
cost obtained from RAD-UCB behaves more stable over time
compared to D-UCB. This is caused by D-UCB frequently re-
exploring suboptimal ESs. Our proposed algorithm does not
suffer from this, because we safely limit the exploration as long
as we can expect the synchronization events to be successful.
After the non-stationarity at t = 1000, both, RAD-UCB and
D-UCB, exhibit a similar reaction time. Within 500 time steps,
they both converge to a stable normalized cost comparable
to before the occurrence of the non-stationarity. It is worth
noting that within 100 time steps, RAD-UCB already reaches
a normalized cost smaller than the normalized cost achieved by
D-UCB and UCB before t = 1000. Within the considered time
horizon, UCB is not capable of converging to the cost achieved
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Fig. 3. Frequency of failed synchronization
processes versus Φ for K = 16 ESs.

2 4 8 16

Number K of ESs

0

0.02

0.04

0.06

0.08

0.1

A
v
e

ra
g

e
 N

u
m

b
e

r 
D

T
 M

ig
ra

ti
o

n
s
 /

 T UCB

D-UCB

RAD-UCB

Fig. 4. Frequency of DT migrations versus
number of ESs K for Φ = 5.

before t = 1000, as it is basing its decisions on outdated cost
estimates from before the non-stationarity.

In Figure 3, the number of failed synchronizations during
the time horizon divided by T , i.e., the frequency of failed
synchronizations, is displayed over the number Φ of non-
stationarities. The error-bars indicate the 95% confidence inter-
vals. For the stationary case, i.e., Φ = 0, RAD-UCB exhibits a
50% lower frequency of failed synchronization events when
compared to the risk-neutral algorithms UCB and D-UCB.
Moreover, RAD-UCB performs close to the oracle, as the
frequency of uncompleted synchronization processes of RAD-
UCB is only 18% higher. When increasing the number of non-
stationarities Φ, the frequency of failed synchronization events
increases for UCB, D-UCB and RAD-UCB, as the algorithms
are unaware of when the non-stationarities appear and have
to relearn their estimates after every occurrence. For Φ = 8,
compared to the risk-aware RAD-UCB, the frequency of failed
synchronizations achieved by UCB and D-UCB is 140% and
85% higher, respectively. Additionally, the confidence intervals
for RAD-UCB are significantly narrower compared to UCB and
D-UCB, which indicates that RAD-UCB consistently achieves
a lower frequency of failed synchronization events.

In Figure 4, the number of DT migrations during the time
horizon normalized with T , i.e., the frequency of DT migra-
tions, is shown for different numbers K of ESs. As explained
in Sec. II, switching ESs comes at an additional overhead.
With increasing K, the frequency of migrations tends to grow,
as there are more ESs to choose from during exploration
phases. However, since our proposed algorithm RAD-UCB
safely restricts the exploration if the synchronization events can
be successfully completed, the frequency of DT migrations is
only 5.7 times larger when increasing the number of ESs by
factor of 8. For D-UCB and UCB, the DT migration frequency
grows by a factor of 7.6 and 10.8, respectively.

VI. CONCLUSION

In this work, we considered DT placement in a statistically
non-stationary MEC system. Specifically, a PS selects an ES for
hosting its DT. The dynamic characteristics of the considered
MEC system, i.e., wireless channels and the ESs’ loads, were
modeled using piece-wise stationary random variables. The
objective of the DT placement problem was to jointly minimize
the synchronization latency and the energy consumed by the PS

while reducing the additional overhead incurred by switching
the selected ES. Moreover, we considered the risk of not com-
pleting the DT synchronization process within a given deadline.
We proposed a novel risk-aware MAB algorithm that reduces
the risk of failed synchronization events, quickly adapts to
piece-wise stationary changes in the probability distributions of
synchronization latency and energy consumption, and reduces
the number of DT migrations. Numerical results revealed the
effectiveness of our proposed algorithm when benchmarking it
against state-of-the-art schemes.
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