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Abstract—Status Update Systems (SUSs) are central compo-
nents in applications like environmental sensing or smart cities.
They consist of a sender monitoring a remote process and sending
the sensed information to a receiver. The sender aims to deliver
fresh information about the monitored process’s state to allow
the receiver to timely respond to the process’s changes. In SUSs,
the sender is usually battery operated. Therefore, to increase the
available energy we consider Energy Harvesting (EH). Moreover,
as at the receiver the information transmitted by the sender
is only relevant when the process’s state changes, we measure
the information’s freshness using Age of Incorrect Information
(AoII). Finding the optimal transmission strategy at the sender
that minimizes the AoII requires perfect system knowledge, i.e.,
the behavior of the monitored process, the channel quality, and
the available energy. However, in real applications this knowledge
is usually not available. To overcome this challenge, we first
establish the optimality of threshold-based policies for AoII
minimization in SUSs with EH capabilities by proving that there
exists an AoII value depending on the observed state of the
monitored process, the battery level and the receiver’s estimation
of the monitored process’s state beyond which transmitting is
preferable over idling. Next, we exploit the threshold-based
policies’ structure and deploy a learning algorithm based on
Finite-Difference Policy Gradient (FDPG). Our proposed ap-
proach finds the AoII thresholds without requiring perfect system
knowledge. Simulations show that our approach outperforms
reference algorithms by at least 20% and efficiently learns near-
optimal policies for AoII minimization.

I. INTRODUCTION

A Status Update System (SUS) consists of a sender and a
receiver. The sender monitors a process and communicates
the sensed information to the receiver. SUSs are useful in
numerous applications in the Internet of Things (IoT), such
as environmental monitoring [1], [2], industrial IoT [3], and
in smart cities [4] including traffic monitoring [5]. Due to
such wide variety of applications, SUSs have drawn significant
interest from industry as well as from academia.

To enable fast reactions to changes in the monitored process,
SUSs demand fresh information at the receiver. To measure
the freshness of this information, the Age of Information
(AoI) metric was proposed in [6]. The AoI indicates the
time elapsed since the sensing of the most recent successfully
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received status update. The drawback of the AoI is that it
does not consider the content of the available information at
the receiver. In cases where the monitored process remains
constant, or if the monitored process returns to a previous state,
the AoI falls short as it triggers unnecessary transmissions of
irrelevant information. This is particularly undesirable when
the sender is battery limited. Although many works [7]–
[9] consider Energy Harvesting (EH) capabilities in SUS to
increase the available energy, this does not reduce the number
of unnecessary transmissions. Furthermore, EH brings the
additional challenge that the amount of energy harvested by
the sender is not constant and varies over time.

A recent communication paradigm called semantic commu-
nication focuses on transmitting only the relevant information
to improve resource utilization [10]–[12]. This idea can be
transferred to SUSs by measuring the Age of Incorrect Infor-
mation (AoII) instead of the AoI. The AoII as introduced in
[10] measures the time elapsed since the receiver last had cor-
rect information about the monitored process. This allows the
sender to transmit only in cases where the information at the
receiver is incorrect, thus reducing the number of unnecessary
transmissions as compared to the AoI. Note that the relevance
of the information which the sender transmits highly depends
on the state transitions of the monitored process, i.e., how the
state of the process changes.

To make optimal decisions about transmissions, the sender
needs perfect knowledge about the state transitions of the
monitored process, the channel quality between the sender
and the receiver, and the amounts of energy harvested by
the sender. However, the availability of this knowledge at
the sender is unrealistic to assume. In the literature, many
works [7], [9], [13] consider different transmission strategies
to ensure freshness of the information in SUS. In [7], the
optimality of threshold-based policies to minimize the AoI
is shown. In [13], assuming a constant power source, the
authors prove that the optimal transmission policy to minimize
AoII uses a threshold approach. This means that the sender
attempts to transmit once a certain AoII value is reached.
Their approach, however, relies on perfect causal knowledge.
The authors of [9] propose a threshold-based solution to
minimize AoII for an EH sender. However, the authors use
a single AoII threshold irrespective of the battery state of the
sender, which is in general suboptimal. Moreover, the works
considering AoII [9], [13] make the simplifying assumption
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that the monitored process has equiprobable transitions to any
different state. This is unrealistic in real-world applications.
Thus, the design of transmission strategies to minimize the
AoII in EH SUS when perfect knowledge about the state
transitions of the monitored process, channel quality, and the
amounts of energy harvested by the sender, is not available is
still an open research question.

In this work, we design transmission strategies for an EH
sender in SUSs which uses the AoII to evaluate the freshness
of the information. We prove that the optimal transmission
policy which minimizes the AoII is threshold-based, i.e., for
each battery level of the sender and each state of the monitored
process, there exists an AoII value above which it is always
optimal to transmit. However, the sender requires perfect
knowledge about the SUS to evaluate the optimal transmission
policy, which is an unrealistic assumption. In addition to
this, the computational complexity of the optimal policy is
directly dependent on the number of states in the monitored
process, and the battery levels of the sender. To solve this,
we propose a Reinforcement Learning (RL) solution based
on Finite-Difference Policy Gradient (FDPG) algorithm which
does not rely on perfect knowledge about the SUS and is com-
putationally feasible. Moreover, FDPG exploits the threshold-
based structure of the optimal transmission policy and learns
different transmission policies depending on different battery
levels and states of the monitored process. In contrast to other
approaches in RL, FDPG optimizes the transmission policy
directly based on the AoII thresholds. Through numerical
simulations, we demonstrate that our approach performs close
to the optimum determined through Value Iteration (VI).
Additionally, we showcase the superior performance of our
approach in minimizing AoII compared to baseline methods.

The rest of the paper is organized as follows: Section II
presents the system model. Section III details the problem
formulation aiming at minimizing the AoII. The proof of the
threshold-based policy’s optimality is provided in Section IV.
Our novel approach employing RL is elaborated in Section V.
Section VI provides extensive simulation results to validate the
effectiveness of the proposed approach. Finally, conclusions
are drawn in Section VII.

II. SYSTEM MODEL

We consider a time-slotted SUS consisting of a sender
and a receiver. Time is divided into discrete time steps with
index t ∈ N0. Each time step has the same duration, which
is assumed to be long enough to sense and transmit new

information about the monitored process. The set of possible
states of the monitored process is X with |X | = N . In each
time step t, the sender senses the current state Xt ∈ X of
the monitored process. The monitored process is modeled as
a Markov chain. This means that the transition to a new state
only depends on the current state.

The sender decides, in each time step, whether to transmit or
not. This decision is denoted by At, where At = 0 means that
the sender idles and At = 1 means that the sender transmits.
Status updates are transmitted via a wireless channel, which
we model as a packet erasure channel. If the sender decides
to transmit, the status update is correctly detected at the
receiver with a probability of pc. We use the Automatic Repeat
Request (ARQ) protocol to inform the sender about whether
a transmission was successful. This means that the receiver
sends an error- and latency free feedback to the sender. If
the receiver successfully decoded the transmitted information,
Kt = 1 (ACK), otherwise Kt = 0 (NACK). The receiver
updates its estimate X̂t of the current state Xt:

X̂t+1 :=

{
Xt+1, if Kt = 1,

X̂t, otherwise.
(1)

Using the feedback Kt, the sender keeps track of the receiver’s
estimation X̂t of Xt. The sender also keeps track of the AoII
at the receiver at time t+1, termed ∆t+1, which is then defined
recursively by:

∆t+1 :=

{
0, if Xt+1 = X̂t+1,

min(∆t + 1,M), otherwise,
(2)

where we set ∆1 := 0. We assume M ∈ N is the maximum
allowable AoII. Above this limit, the estimate of the current
state of the monitored process at the receiver is assumed to be
too high for the receiver to make appropriate decisions. We
further define the set of all allowable AoIIs at the receiver as
D := {0, 1, . . . ,M}.

The sender is powered through harvested energy. To store
the harvested energy, the sender is equipped with a recharge-
able battery. This battery has a capacity of Bmax ∈ N, such that
in each time step t, the current battery level bt is from the set
of possible battery levels B := {0, 1, . . . , Bmax}. At the end
of each time step, the battery is recharged and a harvested
amount et ∈ E = {0, ..., Emax} of energy is added to the
battery level. In real world scenarios, the amount of harvested
energy is often time-correlated. For this reason, we assume
that et depends on the previously harvested energy et−1. The
probability that the harvested amount of energy in time step t
is et is defined as:

p(et|et−1) := Pr(et|et−1) > 0. (3)

For transmission (At = 1) the sender consumes an amount
Etx ∈ N of energy. We assume that Etx remains constant over
time. For simplicity, we omit the energy consumed by the
sender when sensing and during idle mode. Constants model-
ing both could be easily added to the model. Consequently, the



battery level is not reduced if At = 0. With this, the battery
in time step t+1 is calculated from the previous time step as

bt+1 = min
(
bt + et − Etx1[At = 1], Bmax

)
. (4)

Here, the 1[At = 1] is an indicator function with a value of
1 if At = 1 and 0 otherwise. The battery level of the sender
cannot be negative, i.e., the sender cannot choose an action
At = 1 if the battery status bt is lower than Etx.

III. PROBLEM FORMULATION

We formulate the AoII-minimization problem as a Markov
Decision Process (MDP) M := (S,A,P, c), where
• S := E×B×D×X ×X is the set of states at the sender,
• A := {0, 1} is the set of actions the sender can choose,
• P : S ×A× S → [0, 1] is the transition kernel and
• c : S ×A× S → R is the cost function.

The state st = (et, bt,∆t, Xt, X̂t) ∈ S in time step t consists
of the amount of harvested energy et, the battery level bt, the
AoII ∆t, the current state Xt of the monitored process at the
sender, and the current estimate X̂t of the monitored process
at the receiver. For all s, s′ ∈ S and a ∈ A, the transition
kernel P is defined by

P(s, a, s′) := Pr(st+1 = s′|st = s, at = a). (5)

Given all constants described in Sec. II, Pr(st+1 = s′|st =
s, at = a) can be derived from Eq. (1), (2) and (4). The cost
function c is defined by

c(s, a, s′) := ∆′, (6)

where ∆′ is the AoII of state s′.
We aim to find a policy π∗ : S → A, which minimizes the

average expected AoII.
The corresponding optimization problem related to the MDP

M is given by:

J∗ := min
π:S→A

lim
T→∞

1

T

T−1∑
t=0

E[c(st, π(st), st+1)], (7)

where the minimal average AoII J∗ is achieved under the
optimal policy π∗.

IV. STRUCTURE OF THE OPTIMAL POLICY

To solve the described problem, we first prove that the
optimal transmission policy is threshold-based with respect
to the AoII. Here, we roughly follow the structure of the
proof of Theorem 1 in [7]. We first define the state action
cost function Q. Intuitively, Q(s, a) expresses the discounted
expected future cost for action a in state s.

Definition 1. The state action cost function Q is defined as

Q(s, a) := ∆ + E[h(s′)|a, s], (8)

where s′ = (e′, b′,∆′, X ′, X̂ ′) is the successor of
s = (e, b,∆, X, X̂) and where the bias h satisfies

h(s) = min
a∈A

(∆ + E[h(s′)|s, a])− J∗. (9)

Theorem 2. The policy π, minimizing the state action cost
function Q is of threshold-type with respect to the AoII ∆.

Proof. To show the threshold-structure of π, it is sufficient to
show that the difference D := Q(s, 0)−Q(s, 1) between the
cost Q(s, 0) of idling (a = 0) in a state s = (e, b,∆, X, X̂)
and the cost Q(s, 1) of transmitting (a = 1) in the same state s
is monotonically increasing with the AoII ∆. If D < 0, a = 0
is the optimal action, while if D > 0, a = 1 is the optimal
action. If D is monotonically increasing in ∆, then there is a
threshold AoII value from which it is always better to transmit,
because from this threshold on, D remains positive.

π chooses the action minimizing Q(s, a). If hence the
difference Q(s, 0) − Q(s, 1) increases with increasing ∆, π
is of threshold type. To show this monotonicity, we compare
the difference Q(s, 0) − Q(s, 1) for the state s and a state
š = (e, b,∆ + 1, X, X̂). š differs from s only in the AoII-
component, while all other components remain fixed.

Using š and the definition of Q, we find the following:

Q(s, 0)−Q(s, 1) ≤ Q(š, 0)−Q(š, 1)

⇔E[h(s′)|s, 0]− E[h(s′)|s, 1] ≤ E[h(s′)|š, 0]− E[h(s′)|š, 1]
⇔E[h(s′)|s, 0]− E[h(s′)|š, 0] ≤ E[h(s′)|s, 1]− E[h(s′)|š, 1]
⇔h((e′, b′,∆+ 1, X ′, X̂ ′))− h((e′, b′,∆+ 2, X ′, X̂ ′))

≤ (1− pc) · (h((e′, b′,∆+ 1, X ′, X̂ ′))

− h((e′, b′,∆+ 2, X ′, X̂ ′)))

+ pc(h((e
′, b′, 0, X ′, X̂ ′))− h((e′, b′, 0, X ′, X̂ ′)))

⇔h((e′, b′,∆+ 1, X ′, X̂ ′))− h((e′, b′,∆+ 2, X ′, X̂ ′)) ≤ 0

⇔h((e′, b′,∆+ 1, X ′, X̂ ′)) ≤ h((e′, b′,∆+ 2, X ′, X̂ ′))

⇔h is monotonically increasing in ∆.

Thus, if we show the monotonicity of h, we can deduce the
monotonicity of the difference Q(s, 0)−Q(s, 1) in ∆.

The monotonicity of h can be proven using induction. As a
starting point, we use sM−1 = (e, b,M − 1, X, X̂) and sM =
(e, b,M,X, X̂). A priori, we do not know which actions aM−1
and aM are optimizing the state action cost function Q for
sM−1 and sM . This results in four possible cases, namely

• aM−1 = 0 and aM = 0:

h(sM )− h(sM−1)

= 1 + E[h(s′)|sM , 0]− E[h(s′)|sM−1, 0] ≥ 0

• aM−1 = 0 and aM = 1: Due to optimality of aM−1,

h(sM )− h(sM−1)

= 1 + E[h(s′)|sM , 1]− E[h(s′)|sM−1, 0]
≥ 1 + E[h(s′)|sM , 1]− E[h(s′)|sM−1, 1] ≥ 0

• aM−1 = 1 and aM = 1:

h(sM )− h(sM−1)

= 1 + E[h(s′)|sM , 1]− E[h(s′)|sM−1, 1] ≥ 0



• aM−1 = 1 and aM = 0: Due to optimality of aM−1,

h(sM )− h(sM−1)

= 1 + E[h(s′)|sM , 0]− E[h(s′)|sM−1, 1]
≥ 1 + E[h(s′)|sM , 0]− E[h(s′)|sM−1, 0] ≥ 0

It remains to show the induction step. This time, we use s =
(e, b,∆, X, X̂) and š = (e, b,∆+1, X, X̂) and the respective
optimal actions a and a+. There are again four possible cases:
• a = 0 and a′ = 0: Using the induction hypothesis,

h(s′)− h(s) = 1 + E[h(s′)|s′, 0]− E[h(s′)|s, 0]
= 1 + h((e′, b′,∆+ 2, X ′, X̂ ′))

− h((e′, b′,∆+ 1, X ′, X̂ ′)) ≥ 0.

• a = 1 and a′ = 1: Using the induction hypothesis,

h(s′)− h(s) = 1 + E[h(s′)|s′, 1]− E[h(s′)|s, 1]
= 1 + (1− pc)(h((e

′, b′,∆+ 2, X ′, X̂ ′))

− h((e′, b′,∆+ 1, X ′, X̂ ′)))

+ pc(h((e
′, b′, 0, X ′, X̂ ′))

− h((e′, b′, 0, X ′, X̂ ′)))

= 1 + (1− pc)(h((e
′, b′,∆+ 2, X ′, X̂ ′))

− h((e′, b′,∆+ 1, X ′, X̂ ′))) ≥ 0.

• a = 0 and a′ = 1: Due to optimality of a,

h(s′)− h(s) = 1 + E[h(s′)|s′, 1]− E[h(s′)|s, 0]
≥ 1 + E[h(s′)|s′, 1]− E[h(s′)|s, 1] ≥ 0.

• a = 1 and a′ = 0: Due to optimality of a,

h(s′)− h(s) = 1 + E[h(s′)|s′, 0]− E[h(s′)|s, 1]
≥ 1 + E[h(s′)|s′, 0]− E[h(s′)|s, 0] ≥ 0.

V. PROPOSED SOLUTION

In this section, we present our proposed solution based on
the RL algorithm FDPG and the proof of the optimal policy’s
structure in Sec. IV. By using RL, we do not rely on perfect
knowledge of the state transitions of the monitored process,
the channel quality, and the amounts of harvested energy.
FDPG exploits the threshold structure of the optimal policy
by directly optimizing the AoII thresholds.

FDPG is a policy based RL algorithm. This means that the
learned policy πθ is directly parameterized by parameters θ,
which are optimized during learning.

For our problem, and based on Theorem 2, we use the
AoII threshold values as parameters θ for the policy. The
policy uses a separate AoII threshold θ(e, b,X, X̂) for each
tuple e ∈ E , b ∈ B, X, X̂ ∈ X . This threshold θ(e, b,X, X̂)
determines, whether the sender should remain idle or transmit.
However, as it is generally more efficient for FDPG to use
stochastic policies during learning [14], the policy’s decision

is not deterministic. Instead, we use a commonly used parame-
terized sigmoid function and define the probability to transmit

Pr(πθ(s) = 1) :=
1

1 + e−
∆−θ(e,b,X,X̂)

τ

, (10)

with τ as a so called temperature parameter. By reducing τ
to 0, we ensure that after a sufficient number of steps, the
stochastic policy converges to a deterministic policy.

In the remaining part of this section, we describe, how the
parameters θ are learned using Alg. 1. We first initialize the
temperature parameter as τ0 and a corresponding decay factor
ς . To initialize θ̄0, we set all thresholds to 0, such that initially,
the sender will transmit for all battery levels and states of the
monitored process (line 1). Considering the energy constraint,
we then set the thresholds for states where b < Etx to a
value larger than the maximum allowable AoII M . This initial
policy assumes that the sender always attempts to transmit
information if the battery status is sufficiently high. Starting
from the initial parameters θ̄0, Alg. 1 explores the parameter
space by repeatedly generating a random perturbation vector
dn for iterations numbered n ∈ {1, ..., nmax}. dn contains
0 or 1 with equal probability in each position (line 3). The
current parameters θ̄n are perturbed in both directions by
adding ±βn · dn, where βn is a decaying step size parameter
(line 4). This results in parameters θ±n from which we derive
the strategies πθ±

n
according to Eq. (10). Using the strategies

πθ±
n

, we estimate,

J± := lim
T→∞

1

T

T−1∑
t=0

E[c(st, π(st), st+1)], (11)

by running a simulation for T ∈ N time steps (lines 5-9). The
resulting estimates Ĵ±n are then used to compute the gradient
in line 10:

∂Ĵ

∂θ̄n
:= (d⊺

ndn)
−1d⊺

n

Ĵ+ − Ĵ−

2βn
. (12)

Using this gradient, we update the parameters θ̄n+1 in line 11
according to

θ̄n+1 := θ̄n − γn
∂Ĵ

∂θ̄
, (13)

where γn represents a learning rate that converges to zero.
Finally, the temperature τ is updated (line 12). This process
(lines 2-13) is repeated until iteration n = nmax is reached.

VI. NUMERICAL RESULTS

In this section, we present and discuss the numerical sim-
ulations used to evaluate the performance of our proposed
approach in comparison with the reference schemes. We
first establish the simulation setup. The results are generated
and averaged over 600 independent runs of the respective
simulation. In each of these realizations, we consider a time
horizon of 2 × 106 time steps. We set a limit M = 40 for
the maximum allowable AoII. The probability of successful
transmission through the channel is pc = 0.9.

The states of the monitored process are modelled as integers
X = {1, ..., N}. As described in Section I, we consider a



Algorithm 1: FDPG
1: Initialize: τ0, ς, θ̄0
2: for n = {1, 2, ..., nmax} do
3: Generate a random perturbation vector dn

4: Perturb the parameters θ̄n
θ̄+
n = θ̄n + βn · dn, θ̄−

n = θ̄n − βn · dn

5: Estimate Ĵ±
n from simulations of the MDP using policies πθ± :

6: for t ∈ {1, 2, ..., T} do
7: Observe current state st and USE policy πθ±
8: end for
9: Estimate Ĵ±

n as:

Ĵ±
n = 1

T

T∑
t=1

∆t

10: Compute the estimate of the gradient ∂J
∂θ̄n

∂Ĵ
∂θ̄n
← (d⊺

ndn)
−1d⊺

n
Ĵ+−Ĵ−

2βn
11: Update

θ̄n+1 = θ̄n − γn
∂Ĵ
∂θ̄

12: τn+1 ← ςτn
13: end for

realistic scenario in which the current state of the monitored
process transitions to a different state with a certain probabil-
ity. This state transition probability is modelled as,

Pr(X,Y ) =
1

σ
√
2π

e−
(Y −X)2

2σ2 /
∑
Z∈X

1

σ
√
2π

e−
(Z−X)2

2σ2 , (14)

where X,Y ∈ X are the states of the monitored process and
σ is a deviation factor. Using these probabilities, we model
that a small change in the monitored process is more likely
than a larger change. In Eq. 14 a higher difference between
X and Y results in a smaller argument of the exponential in
the numerator and therefore in a smaller transition probability.
For example, when monitoring temperature, if the current
temperature state is Xt = 10◦C, then temperatures around
10◦C are more probable in the next time step t+ 1.

We set the sender’s battery capacity to Bmax = 5 and
Emax = 1. This means that the possible amounts of harvested
energy are E = {0, 1}. We consider a correlated energy har-
vesting process. The conditional probabilities to harvest energy
in the current time step t based on the harvested energy in the
previous time step t − 1 are given by p(1|1) = p(0|0) = 0.7
and p(1|0) = p(0|1) = 0.3.

We consider the following algorithms to compare the per-
formance of our proposed approach:
Value Iteration (VI): This approach determines the optimal
transmission strategy based on perfect knowledge about the
channel quality, the amounts of harvested energy and the
behaviour of the monitored process.
Greedy policy: This is a simple approach in which the sender
always transmits (A = 1) the information, if it has sufficient
energy in the battery, otherwise it stays idle (A = 0). Apart
from the battery level, this policy does not take the current
state into account.
Q-learning: This algorithm uses Q-learning to learn when to
transmit according to the current state at the transmitter. To
this end, this method learns a state-action cost value for each
state-action combination in the MDP.

We visualize the threshold-based structure of the optimal
transmission policy found by Value Iteration in Fig. 2. Value
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Iteration exploits its perfect knowledge about the considered
scenario. We show in which states s = (e, b,∆, X, X̂) it is
optimal to transmit (green triangles) and in which states it is
optimal to idle (purple circles). We set N = 5, keep X = 2 and
X̂ = 1 fixed and show the optimal actions for the battery levels
b = 0, ..., 5, the AoII values ∆ = 0, ..., 6, and harvested energy
e = 0 on the left and e = 1 on the right. Fig. 2 shows that for
low battery levels (b = 0 and b = 1) it is optimal to idle. For
b = 2 and e = 0, the sender should transmit as soon as the
AoII exceeds 4. This threshold gets lower for e = 1 and for
higher battery levels. The illustration confirms the threshold-
based structure of the optimal transmission policy proven in
Section IV. As soon as a specific AoII value depending on
b, e,X and X̂ is reached, transmitting is preferred over idling.
Our proposed approach exploits this threshold-based structure
of the optimal transmission policy to minimize the AoII.

In Fig. 3, we study the evolution of average AoII over time
by evaluating different transmission strategies. We compare
the performance of our proposed approach with the reference
algorithms mentioned above. We set the number of states
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Fig. 4: Effect of number N of states and their transitions in the
monitored process on the average AoII

in the monitored process to N = 5 and choose σ = 1
for the state transition probability distribution. Value Iteration
performs best with an average AoII value of 1.5. Our proposed
approach reaches an average AoII value of 1.6. It outperforms
the greedy policy which reaches an average AoII of 2.2 by
28% and the Q-learning based policy which reaches an average
AoII of 2.0 by 20%. The performance of the Q-learning based
policy improves over time but stays above an average AoII of
2. This results from the fact that the Q-learning based policy
needs to learn the cost, i.e., the AoII for every state-action
pair, which corresponds to |E| · Bmax · (M + 1) ·N ·N · |A|
possible combinations of all states and all actions. Our pro-
posed approach exploits the threshold based structure of the
optimal transmission policy. It therefore only needs to learn
|E|·Bmax ·N ·N thresholds and thus learns significantly faster
than the Q-learning based policy.

To show that the results of our approach are consistently
close to those of Value Iteration, we additionally provide a
comparison for different monitored processes. On the hori-
zontal axis in Fig. 4, the value of the deviation factor σ is
depicted. On the vertical axis, we measure the average AoII of
our proposed policy (red) and the optimal policy obtained via
Value Iteration (green). We further investigate the parameter
N , representing the total number of states in the monitored
process. For higher deviation σ, the average AoII increases.
This is the result of a lower probability to remain in the same
state of the monitored process in processes with high σ. If
N increases, the average AoII also increases. This is again
the result of a lower probability to remain in the same state
of the monitored process and a lower probability to return to
a certain state in the monitored process. In all the considered
cases, on average, our proposed solution achieves an AoII only
9.2% above the Value Iteration policy. For N = 3 states in the
monitored process, this difference is only 4.9% on average.

VII. CONCLUSIONS

In this work, we designed a transmission policy for a sender
with EH capabilities in a SUS. We first proved that the
threshold-based policy, which requires perfect system knowl-
edge at the sender, i.e., knowledge about the state transitions of

the monitored process, the channel quality of the link between
sender and receiver, and the amount of harvested energy, min-
imizes the AoII and this, ensures the freshness of the sensed
information at the receiver. As finding the optimal thresholds
is computationally expensive, we proposed a strategy based
on (FDPG) to minimizes the AoII. Our strategy exploits
the threshold-based structure of the optimal threshold policy
without requiring perfect system knowledge and while being
computationally feasible. Our proposed approach shows near
optimal performance and outperforms the greedy transmission
policy by 28%, the Q-learning based policy by 20%.
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