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Abstract—In Mobile Crowdsensing (MCS) a mobile crowd-
sensing platform (MCSP) collects sensing data from mobile units
(MUs) in exchange for payment. The MCSP broadcasts a list
of available sensing tasks. Based on this list, each MU solves
a task proposal problem to decide which task it is willing to
perform and sends a proposal to the MCSP. Based on the
MUs’ proposals, the MCSP solves a task assignment problem.
There are two challenges when finding efficient task proposal
strategies for the MUs and an efficient task assignment strategy
for the MCSP (i) The techno-economic perspective of MCS:
From the technical perspective, MCS should maximize the data
quality while minimizing time and energy consumption. From the
economic perspective, there are two sides, the MUs and the MCSP
which act as selfish decision-makers, who aim at maximizing their
own income. (ii) Incomplete information at two sides: Initially,
the MCSP does not know the expected data quality and the MUs
do not know the expected effort required for task completion.
To overcome these challenges, we propose a novel Two-Sided
Learning (TSL) approach. At the MU side, TSL is based on
an innovative gradient-based multi-armed bandit solution to
maximize the MUs’ utility under incomplete information about
the strategies of other MUs. At the MCSP side, a learning strategy
is used to find the task assignment strategy that maximizes its
utility. Simulation results show that TSL achieves near-optimal
social welfare, which is the sum of MUs’ and MCSP’s utilities,
and a near-optimal energy efficiency.

I. INTRODUCTION

Mobile Crowdsensing (MCS) refers to the collection of
sensing data from a group of mobile units (MUs) [1].
MUs, such as smartphones or smartwatches are equipped
with heterogeneous sensors which enable the completion of
a variety of sensing tasks. These tasks may include e.g.
sensing temperature, noise level, taking pictures, or recording
videos [2]. Advantages of MCS compared to wireless sensor
networks are reduced infrastructure and operation cost, higher
coverage and a wider range of applications [3]. MCS allows
the MUs to leverage their sensing capabilities in exchange for
payments [4].

A typical MCS system is composed of a data requester
(DR), a mobile crowdsensing platform (MCSP) and MUs [1].
The DR offers the MCSP a payment in exchange for sensing
data [1]. This payment is agreed upon by a contract and
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depends on the quality of the sensing result. The MCSP
converts the sensing requests from the DR into sensing tasks
which can be performed by the MUs [4]. The MUs signal their
willingness to the MCSP to participate in a task by submitting
a task proposal which includes the required payment. The task
proposal strategy of the MUs depends on their preferences and
the effort required to complete the task. The MCSP performs
the task assignment based on the proposals of the MUs, the
expected quality of their results and their payment proposals.

The success of MCS depends on finding efficient task
proposal strategies for the MUs as well as an efficient task
assignment strategy for the MCSP. This poses two major
challenges: 1) The technical and economic perspectives of
the MCSP and the MUs have to be considered [5]. From the
technical perspective, the goal of MCS is to maximize the
quality of the sensing results while minimizing the effort in
terms of time and energy consumption [6]. From the economic
perspective, the MCSP and the MUs act as individual rational
decision makers which aim to maximize their income in
a selfish manner [5]. 2) Incomplete information has to be
considered. Initially, the MUs do not know the effort required
to perform each task. Therefore, it may occur that more MUs
than required send task proposals for the same task. Such
events are termed collisions and they significantly reduce the
overall performance, as the sensing capabilities of the MUs
in the collision cannot be used for a different task. Note
that the MUs can only obtain information about their efforts
by actually performing the tasks. Moreover, the MCSP has
incomplete information about the expected quality of the task
results of the MUs. This information can only be obtained by
assigning tasks to the MUs.

A summary of how the aforementioned challenges have
been addressed in the related works [4] and [7]–[13] is pre-
sented in Table I. Although [7] and [8] consider the technical
and economic perspective of MCS, it is assumed that the
MCSP and the MUs have complete information regarding the
quality of the task results and the effort required to perform
the task, which is arguably not realistic in real scenarios.
In [9], the authors only focus on a technical perspective
of MCS, neglecting the individual utilities of the MUs and
the MCSP. Although in [10]–[12] learning approaches for
the MCSP are proposed to handle the uncertainty about the
MUs’ expected quality, it is still assumed that the MUs have
perfect information. This is, the MUs perfectly know the



TABLE I
SUMMARY OF LITERATURE

Available
Information

Economic
perspective

Technical
perspective

Complete Information
at the MCSP and at the MUs [4], [7]–[9] [4], [7]–[9]

Complete Information
at the MCSP [13] [13]

Complete Information
at the MUs [10]–[12] [10]–[12]

Incomplete Information
at the MCSP and at the MUs This work

efforts required to perform each task in advance. The authors
of [13] propose an online learning approach to learn the MUs’
efforts, but assume that the MCSP has complete information
regarding the MUs. Although all these works have greatly
contributed to the understanding of the task proposal and task
assignment problems in MCS systems, they failed to address
the two previously mentioned challenges simultaneously, i.e.,
finding a solution for MCS which overcomes the challenge
of incomplete information at the MUs and MCSP while
considering the technical and economic perspectives.

Having in mind that in real MCS systems both, the MUs and
the MCSP, have incomplete information, we propose a novel
learning approach, termed Two-Sided Learning (TSL). Our
proposed TSL approach considers the technical and economic
perspectives of MCS and solves the task proposal problem
locally at the MUs and the task assignment problem locally at
the MCSP, thus utilizing the learning capabilities of the MUs
as well as of the MCSP. Specifically, TSL consists of two parts,
i) Two-Sided Learning Task Proposal (TSLTP) which learns
the task proposal strategies of the MUs to maximize their
utilities and ii) Two-Sided Learning Task Assignment (TSLTA)
which allows the MCSP to learn the task assignment strategy
to maximize its utility. Furthermore, to reduce the number of
collisions, TSLTP is based on an innovative gradient-based
multi-armed bandit solution. This allows the MUs to adapt
their preferences according to tasks which are popular and thus
prone to collisions. To the best of our knowledge, this is the
first work in MCS that considers decentralized learning on the
MUs and the MCSP simultaneously. Simulation results show
a close to optimal performance in terms of social welfare, i.e.,
the sum of MUs’ and MCSP’s utilities, and a close to optimal
energy efficiency of our proposed approach.

The rest of this paper is organized as follows. In Section II,
we introduce the MCS system model. The problem formula-
tion is explained in Section III and in Section IV, we present
our novel TSL algorithm. The numerical evaluation of the
proposed LT algorithm is presented in Section V and finally,
Section VI concludes the paper.

II. SYSTEM MODEL

We consider an MCS system formed by a DR, an
MCSP, and a crowd of K MUs, denoted by the set K =
{MUk}k=1,...,K . Time is divided into discrete time steps of
equal duration indexed by t = {1, . . . , T}.

MCSPMCSP-side
Information

MU-side
Information

Fig. 1. System Model

Fig. 1 illustrates the sequence of events in every time step t.
Note that these events take place within the time step duration.
At the beginning of t, the MCSP publishes N available tasks.
These tasks are collected in the set At = {an,t}n={1,...,N}.
Each task an,t is classified into a task type z, e.g., sensing
temperature or taking a picture. The different task types are
collected in the set Z = {z}z=1,...,Z . We collect all tasks
of the same type z in the set Az,t ⊆ At. Each task type z
is characterized by the average size sz of the sensing result,
measured in bits. All the tasks of type z have identical charac-
teristics. We assume that each published task an,t requires only
one MU to complete. The MCSP may publish multiple tasks
of the same task type z if the DR requires multiple sensing
samples from that task type.
A. Mobile Units

After the MCSP publishes the tasks, each MUk identifies
its preferred task of type z ∈ Az,t, and sends a task proposal
Ok,t to the MCSP. To make this decision, the MUk considers
its task preference and the effort it requires to perform the
task. The efforts are measured in terms of the time and energy
consumed during the task execution. We assume all MUs are
capable of performing every task irrespective of its type z.
However, each MUk can perform only one task per time step.
MUk needs time τ sensek,n,t to sense and produce valid sensing

data of size dz measured in bits. τ sensek,n,t is drawn from a sta-
tionary random distribution with probability density function
(PDF) fz

τsense
k,n,t

(τ sensek,n,t ). The expected value τ̄ sensek,z = E(τ sensek,n,t )

of the sensing time depends on the task type z and the
capabilities of MUk. Each MU is required to process the
sensing data such that a sensing result can be generated [14].
The computation time MUk requires to process the sensing
data of size dz for the task an,t of type z is calculated as,
τ comp
k,n,t = czdz

f local
k

, where cz represents the processing complexity
for task type z and f local

k is the central processing unit fre-
quency of MUk measured in Hz. After the processing, the final
sensing result rk,n,t has a size sz < dz measured in bits. This
sensing result rk,n,t is transmitted to the MCSP as result of
the task execution. The time required by MUk to transmit the
sensing result of task an,t back to the MCSP is termed τ comm

k,n,t .
This time depends on the communication channel between
MUk and the MCSP. The total time required by MUk to
perform task an,t is given by τk,n,t = τ sensek,n,t +τ comm

k,n,t +τ comp
k,n,t .

To perform a task, MUk also spends energy Ek,n,t =
pcomm
k τ comm

k,n,t + pcomp
k τ comp

k,n,t , where pcomm
k is MUk’s transmit



power and pcomp
k is the power required to process task an,t. We

neglect the energy required for sensing because it is assumed
to be small when compared with the communication and
computation energy.

The time and energy efforts every MU requires to perform
task an,t ∈ Az,t are denoted by Jz

k,t. Without loss of general-
ity, we assume a MU-specific linear cost function to evaluate
the efforts, Jz

k,t = ceffortk (τk,n,t, Ek,n,t) = ατk,n,t + βEk,n,t,
measured in monetary units. The variables α and β are
importance factors for the time and energy efforts, respectively.
Note that other cost functions can be easily integrated in our
approach.

The MCSP pays Pk,n,t = P effort(τk,n,t, Ek,n,t) monetary
units to MUk for the execution of task an,t. Like ceffortk , the
payment function P effort considers the time and energy spent
on performing task an,t. The utility of MUk in time step t is

UMU
k,n,t = Pk,n,t − ceffortk (τk,n,t, Ek,n,t). (1)

To calculate UMU
k,n,t, MUk should know the exact time and

energy efforts it requires to perform task an,t. However, given
the random nature of the time and energy required, the MUs
cannot know the exact efforts required before performing the
task. Thus, MUk estimates the utility as

ŪMU
k,z = E{UMU

k,n,t|an,t ∈ Az,t}
= E{Pk,n,t} − E{ceffortk (τk,n,t, Ek,n,t)}, (2)

to make its task proposal decision and to select Pk,n,t. We
define IMU

k = {ŪMU
k,z , ∀z} as the MU-side information. Note

that IMU
k is not available in advance at MUk and has to be

learned over time by performing tasks. Based on its own IMU
k ,

every MUk sends a proposal Ok,t to the MCSP containing
the task type index z of the task it wants to perform and its
payment Pk,n,t.
B. Mobile Crowdsensing Platform

The MCSP receives the task proposals Ok,t from all MUs
for the available tasks in At ∈ Z and decides which MUk

executes each task an,t. The task assignment decision is
denoted by xk,n,t ∈ {0, 1}. xk,n,t = 1 means an,t is assigned
to MUk and xk,n,t = 0 means otherwise.

The DR pays the MCSP for every executed task. The
earning wz,t which the MCSP gets when task an,t is performed
by MUk depends on the task type z and the quality factor
qk,n,t ∈ [0, 1] of the sensing result rk,n,t. The quality factor
qk,n,t is calculated using a quality function Qz as

qk,n,t = Qz(rk,n,t), ∀an,t ∈ Az,t. (3)

The MCSP defines a quality function Qz for every task type
z. These quality functions could be, e.g., Peak Signal-to-
Noise Ratio (PSNR) for images or accuracy of the temperature
sensing. We assume that the MCSP and the DR make a
contractual agreement on the calculation of wz,t as

wz,t = (1 + qk,n,t)wz. (4)

wz is the minimum payment in monetary units the MCSP
charges the DR for performing a task of type z. As the quality

qk,n,t of the sensing result rk,n,t is not known to the MCSP
in advance, wz,t is also not known. The utility UMCSP

k,n,t of the
MCSP when assigning MUk to task an,t ∈ Az,t is defined as

UMCSP
k,n,t = (wz,t − Pk,n,t). (5)

The MCSP can maximize its utility UMCSP
k,n,t by balancing

the quality of the sensing result of MUk and its payment.
However, as the MCSP does not know the quality factor qk,n,t
of the MU performing task an,t, it estimates its utility when
assigning MUk to a task of type z, as

ŪMCSP
k,z = E{UMCSP

k,n,t |an,t ∈ Az,t}
= E{wz,t} − E{Pk,n,t}. (6)

We define IMCSP
z = {ŪMCSP

k,z , ∀k} as the MCSP-side in-
formation about the MUs. IMCSP

z contains information about
the earnings and the required payment for all MUs. IMCSP

z is
not available at the MCSP in advance and has to be learned
over time from experience gained from selecting MUs.

The combination of MU-side and MCSP-side information,
denoted by I = {IMU

k , IMCSP
z , ∀k, z}, is called the complete

information and is unknown to the MUs and the MCSP. Our
goal is to optimize the task proposals and the task assignments
without knowledge of I. For this purpose, the MUs learn
the efforts of each task type and find their most preferred
tasks. The MCSP learns the MUs’ characteristics and selects
a suitable MU for each task type z.

III. TASK PROPOSAL AND TASK ASSIGNMENT GAME

In this work, we assume that the MCSP and the MUs
are rational and independent entities which make their own
decisions based on their preferences. Since their preferences
influence their respective utilities, we use game theory, specif-
ically matching theory [15], to analyze and solve the joint
task proposal and task assignment problem. Matching theory
aims to obtain a stable matching, i.e., to find task assignments
where the MUs and the MCSP cannot improve their individual
utilities by changing the assignment. This corresponds to MUs
and MCSP that selfishly and individually try to obtain their
best task proposals and task assignments respectively. A stable
matching is relevant for the MCS system because it allows the
maximization of both, the MUs’ and MCSP’s utilities, with
regard to their individual preferences.

The considered MCS scenario is modelled as a matching
game G, i.e., a two-sided market in which the MCSP requires
sensing resources to execute tasks and the MUs offer their
sensing resources in exchange for a payment [16]. The MUs’
payment function P effort, the cost function ceffortk , and the
MCSP’s quality function Qz are given functions which depend
on the task assignment [17]. The MUs’ preference ordering
⪰MU

k ranks the task types z ∈ Z w.r.t. the expected utility
associated with them, i.e.,

z ⪰MU
k z′ ⇐⇒ ŪMU

k,z ≥ ŪMU
k,z′ . (7)

This means, the MUk prefers task type z over z′ if the
expected utility ŪMU

k,z of performing tasks of type z is higher



than of tasks of type z′. Similarly, the MCSP prefers MUs
which yield the highest expected utility ŪMCSP

k,z for each task
type z, i.e.,

MUk ⪰MCSP
z MUl ⇐⇒ ŪMCSP

k,z ≥ ŪMCSP
l,z . (8)

This means that for the assignment of a task of type z,
the MCSP prefers MUk over MUl if MUk provides higher
utility compared to MUl. This preference ranking can only be
correctly determined with the MCSP-side information IMCSP.

The task proposal and task assignment game Gt in time
slot t is a tuple Gt = (K,At,⪰MU

k ,⪰MCSP
z ). MUk signals its

willingness to participate in any task of type z by sending a
task proposal Ok,t to the MCSP. Based on the proposals, the
MCSP performs the task assignment according to ⪰MCSP

z .
The task assignment decisions x

k,n,t
for all MUs and tasks in

At in time step t are collected in the matrix Xt.

Definition 1. A task assignment Xt is unstable if there are
two MUs, MUk and MUl, and two tasks, an,t and am,t, such
that: (i) xk,n,t = 1, i.e. MUk is assigned to task an,t ∈ Az,t.
(ii) xl,m,t = 1, i.e. MUl is assigned to task am,t ∈ Az′,t.
(iii) z′ ≻MU

k z and MUk ⪰MCSP
z′ MUl, i.e., MUk strictly

prefers the task with type z′ over its current matched task of
type z, and the MCSP would profit more if the task of type z′

is performed by MUk instead of its current matched MUl.

The pair (MUk, z
′) is called a blocking pair [18]. Here,

both, the MUk and the MCSP, are unsatisfied with the current
assignment. The existence of the blocking pair (MUk, z

′)
causes the matching Xt to be unstable because MUk could
switch to am,t ∈ Az′,t and both, the MUk and the task am,t

would obtain a more efficient matching and therefore a higher
expected utility. The assignment Xt is said to be stable if no
blocking pairs exist [18]. In such cases, no MU or task could
change the assignment and improve their expected utilities.
In MCS, this means that each MU is assigned to its most
preferred task while the MCSP selects its most preferred MU
for each task. Note that the stable matching may not be unique.
There are, in fact, potentially multiple solutions.

IV. THE TWO-SIDED LEARNING (TSL) ALGORITHM

To optimally solve the game Gt formulated in Sec. III,
complete information I is required, which is unrealistic to
assume. Considering every MUk can only learn its own MU-
side information IMU

k and the MCSP only learns the MCSP-
side information IMCSP

z , in this section, we present the Two-
Sided Learning (TSL) algorithm which aims to maximize the
MUs’ and MCSP’s utilities. TSL consists of two parts, 1) Two-
Sided Learning: Task Proposal (TSLTP), executed by each
MU, and 2) Two-Sided Learning: Task Assignment (TSLTA),
run by the MCSP.

A. Two-Sided Learning: Task Proposal (TSLTP)

TSLTP is a gradient-based multi-armed bandit solution im-
plemented at each MUk to find the task proposal strategy that
reduces collisions. Using TSLTP, each MUk independently
learns the effort Jz

k,t required to perform task an,t of type z

Algorithm 1 Two-Sided Learning: Task Proposal (TSLTP)
1: Initialize: Ûk,0(z), Ĵ

z
k,0, Ht(z) ∀k ∈ K, z ∈ Z

2: for t = 1, . . . , T do
3: Select task an,t ∈ Az,t out of published tasks At based on Softmax

distribution πt(z) over task preferences Ht(z).
4: Select payment P̂k,z ←− P effort(Ĵz

k,t−1)

5: Send task proposal Ok,t = [z, P̂k,z ].
6: Wait for the MCSP’s decision xk,n,t from Algorithm 2.
7: if xk,n,t = 1, i.e., Ōk,t = an,t then
8: Perform the task an,t and transmit the result rk,n,t to MCSP.
9: Receive payment P̂k,z and observe UMU

k,n,t, τk,n,t and Ek,n,t.
10: Update estimates Ûk,t(z) and Ĵz

k,t.
11: else
12: Ûk,t(z)←− Ûk,t−1(z), Ĵz

k,t ←− Ĵz
k,t−1.

13: end if
14: Update the task preference Ht(z), ∀z ∈ Z
15: Update the task proposal probabilities πt(z)← Ht(z),∀z ∈ Z .
16: end for

and builds a preference Ht(z) for each task type z ∈ Z . Using
Ht(z), MUk monitors the likelihood of getting assigned to any
task of type z.

TSLTP is summarized in Alg. 1. Every MUk initializes
ŪMU
k,0 , Ĵk,0(z), Ht(z) for all task types (line 1). In every time

step, MUk observes the tasks an,t ∈ At published by the
MSCP. Based on its task type preferences Ht(z), ∀z ∈ Z ,
MUk uses a Softmax distribution πt(z) = eHt(z)∑Z

z=1 eHt(z)
to

determine the probability of selecting a task type for task
proposal (line 3). A task of type z is selected for task proposal
according to this probability distribution. After this, MUk

selects the payment P̂k,z based on its payment function and
estimated efforts Ĵz

k,t (line 4). After sending the task proposal,
MUk waits for the MCSP’s response (line 5-6). If the task
is assigned to MUk, i.e., xk,n,t = 1, MUk performs the
sensing task an,t, generates the sensing result rk,n,t, and
transmits it back to the MCSP (line 8). Afterwards, it receives
the payment P̂k,z from the platform and observes the exact
efforts Jz

k,t it required to complete the task. Jz
k,t is used to

evaluate the exact task utility UMU
k,n,t and update ŪMU

k,n,t as

ŪMU
k,n,t = ŪMU

k,n,t−1 +
(UMU

k,n,t−ŪMU
k,n,t−1(z))

Nz
k

, where Nz
k represents

the number of times MUk was assigned to a task of type z
(line 9). The effort estimate Ĵz

k,t is updated similarly (line
10). If MUk is rejected, it maintains its old effort and utility
estimates since it received no new information (line 12). At
the end of time step t, MUk updates its preferences for all the
task types including the proposed task type z as,

Ht+1(z) = Ht(z) + αlr(Rt − R̄t)(1− πt(z)),

Ht+1(z
′) = Ht(z

′)− αlr(Rt − R̄t)πt(z
′),∀z′ ̸= z, (9)

where αlr > 0 is a step-size parameter, and R̄t is the average
of the MUk payments up to t−1 (line 14). Using the updated
preferences Ht+1, MUk updates the probability distribution
πt(z) for all task types z ∈ Z (line 15). Using (9), MUk

learns to estimate its likelihood of getting assigned to a task
of certain task type.
B. Two-Sided Learning: Task Assignment (TSLTA)

At the MCSP, the task assignment decisions Xt are made
in every time step t based on the proposals Ok,t received from



Algorithm 2 Two-Sided Learning: Task Assignment (TSLTA)
Require: Ok,t, Qz , wz , ϵt ∈ [0, 1), η ∀k ∈ K, z ∈ Z, t ∈ T

1: Initialize: ŪMCSP
k,z ∀k ∈ K, z ∈ Z .

2: for t = 1, . . . , T do
3: Publish available sensing tasks At.
4: Wait for all task proposals Ok,t from Algorithm 1.
5: for z = 1, . . . , Z do
6: for n = 1, . . . , N do
7: From Ok,t, ∀k ∈ K:
8: if η < ϵt then
9: Randomly assign MUk to task an,t.

10: else
11: Assign MUk to task an,t which maximizes ŪMCSP

k,z .
12: end if
13: end for
14: Send acceptance xk,n,t = 1 to the selected MUs, i.e., Ōk,t =

an,t ∀an,t ∈ Az,t

15: Send rejection xk,n,t = 0 to all other MUs, i.e., Ōl,t = ∅.
16: Receive the task result rk,n,t from the selected MUs and observe

qk,n,t and UMCSP
k,n,t .

17: Update estimate ŪMCSP
k,z

18: end for
19: end for

the MUs. For this purpose, we present Two-Sided Learning:
Task Assignment (TSLTA) which is based on a multi-armed
bandit formulation of the task assignment problem. TSLTA
is summarized in Alg. 2. The platform initializes the ŪMCSP

k,z

for all MUs and all task types (line 1). In every time step,
the MCSP publishes the available tasks At and waits for the
proposals from the MUs (line 3-4). The MCSP may assign the
task to a random MU proposing for a task an,t ∈ Az,t to im-
prove the estimate ŪMCSP

k,z (line 9). Otherwise, it may exploit
the available knowledge to assign the task to MUs which max-
imize its utility ŪMCSP

k,z (line 11). To balance the exploration-
exploitation, the MCSP uses ϵ-greedy action selection. The
assignment decisions are sent back individually to each MU
(line 14-15). After this, the assigned MUs perform the task
and transmit the sensing result rk,n,t back to the MCSP. Using
rk,n,t, the MCSP evaluates the quality of the result qk,n,t as
in (3) and observes the UMCSP

k,n,t (line 16). Finally, the MCSP

updates the estimate ŪMCSP
k,z,t = ŪMCSP

k,z,t−1 +
(UMCSP

k,n,t −ŪMCSP
k,n,t−1)

Nz
k

,
where Nz

k is the number of times MUk is assigned to task
type z (line 17).

With the help of TSLTP and TSLTA, we jointly optimize
the MUs’ task proposals to maximize their utilities as well as
MCSP’s task assignments to maximize the MCSP’s utility.

V. NUMERICAL EVALUATION

In this section we present and discuss the numerical eval-
uation of the performance of our proposed TSL algorithm in
comparison with the reference schemes. The results are gen-
erated by averaging over I = 500 independent Monte Carlo
iterations. In each iteration we consider T = 20000 time steps.
The total number K of MU is set to 100. We consider Z = 10
different types of tasks. For each task type z ∈ Z , the number
of published tasks in time step t is randomly chosen from the
interval [0, 10] with equal probability. The number of tasks
published N is selected from the range [0, 100]. The size of
the sensing data is drawn from a uniform random distribution
in the interval [50, 100]Mbit. The size of the task result after

processing the sensing data lies in the range [10, 20]Mbit.
The sensing time varies for every MUk in every time step t
with a mean value of τ̄ sensek,z ∈ [60, 180] s. The communication
rate between the MU and the MCSP is also randomly drawn
from the interval [40, 80]Mbit/s for every MUk. Due to this,
τ̄ comm
k,z falls in the range [0.125, 0.5] s. The computation time
τ comp
k,n,t depends on the local CPU frequency f local

k ∈ [1, 2]GHz
and the task processing complexity cz ∈ [200, 300].

For comparison, we consider following reference schemes:
Learning MCSP: In this approach, only the MCSP learns
about the quality of task results sent by the MUs to obtain a
task assignment strategy. The MUs propose randomly to any
available task from the set At.
Learning MUs: In this approach, the MUs learn about the task
efforts to obtain a task proposal strategy. The MCSP randomly
assigns available tasks to the MUs which proposed.
Epsilon Greedy algorithm: Here, the MUs and the MCSP
both independently learn their own utilities based on a simple
online ϵ-greedy algorithm. To ensure balance between explo-
ration and exploitation, a decaying ϵ parameter is used.
Gale-Shapley algorithm: This approach requires the com-
plete information I. It provides stable solution to the task
proposal and task assignment problem formulated in Sec. III
to maximize the utilities of the MUs and the MCSP.
Optimal algorithm: This approach aims to maximize the
achieved social welfare, i.e., the sum of MUs’ and MCSP’s
utilities, without considering the MU preferences. The task
proposal and task assignment decisions are centrally optimized
at the MCSP by utilizing the complete information I.
Note that Gale-Shapley and the optimal algorithm cannot be
implemented in real-world applications due to their strict and
unrealistic requirement of complete information I. Neverthe-
less, they are used as theoretical baselines for comparison.

In Fig. 2 we show the achieved social welfare of the con-
sidered approaches. The performances of the Optimal and the
Gale-Shapley algorithm define the upper bound by exploiting
the complete information I. Our TSL algorithm outperforms
the reference schemes and achieves 99.7% social welfare as
compared to the Gale-Shapley algorithm. To achieve this, TSL
algorithm maximizes the individual utilities of the MUs and
the MCSP. The MUs also take into account the task type
preferences to propose to different task types. This greatly
reduces the collisions resulting in a near-optimal performance.
The results show that learning only at the MU-side or at
the MCSP-side is not sufficient and results in a sub-optimal
social welfare. The ϵ-greedy algorithm learns the task proposal
strategies for every MU and a task assignment strategy for the
MCSP. However, it falls short as it does not take collisions into
account. This deteriorates its performance as multiple MUs are
deferred from task assignment as a result of collision.

The TSL algorithm maximizes the social welfare and it is
also energy efficient. To show this, in Fig. 3, we compare the
energy consumption of the MUs, measured in Joule per bit.
To retain the fairness in the comparison, we weight the energy
consumed by the MUs with their corresponding task comple-
tion ratios. If an algorithm performs a less tasks, only a small
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Fig. 4. Collision ratio vs. time step t

amount of energy will be consumed. However, by normalizing
with the task completion ratio, we maintain fairness in this
comparison. Results show that TSL outperforms the Learning-
MU algorithm by approx. 20.4%, the ϵ-greedy algorithm by
approx. 12.5%, and the Learning-MCSP algorithm by approx.
3.8% and achieves 99.7% close-to optimal performance.

In Fig. 4, we compare the number of collisions per total
number of task proposals. Note that the Gale-Shapley and
optimal algorithms are excluded from this comparison since
collisions do not occur in them. They both exploit the complete
information I to identify the optimal task proposal strategy
which avoids collisions altogether. For this analysis, we change
the simulation setup slightly. The total number of tasks avail-
able N in every time step t is always equal to the total number
of MUs K = 100. With this setup, every MU can propose to
at least one task without any collision. We observe that TSL
outperforms the Learning-MU algorithm by 20%, the ϵ-greedy
algorithm by 10%, and the Learning-MCSP algorithm by 3%.
This is because our algorithm iteratively updates the task type
preferences based on the acceptance mechanism of the MCSP.
This helps the MUs to defer from proposing to some task types
if the MCSP always prefers some other MU. Thus reducing
the collisions and improving the system performance.

VI. CONCLUSION

In this work, we investigated an MCS scenario from a
techno-economic perspective. From the MUs side, we solved
the task proposal problem and from the MCSP side, we
solved the task assignment problem. The MUs and the MCSP
are selfish and rational decision makers aiming to maximize
their own individual utility. The challenge in finding the
task proposal and task assignment strategies resided in the
lack of complete information on both sides, which demanded
a two-sided learning solution. To solve this problem, we
proposed the novel TSL algorithm, which consists of a task
proposal algorithm, TSLTP, at every MU and a task assignment
algorithm, TSLTA, at the MCSP. Using TSLTP, every MU
learns the task preferences and the expected task efforts to
develop its own task proposal strategy, which improves its
utility. TSLTA allows the MCSP to learn the expected data
quality of MUs to design a task assignment strategy, which

improves its own utility. Simulation results showed that our
TSL algorithm achieved a social welfare of 99.7% of the
stable optimal solution, which requires complete information
of both sides. Moreover, the TSL algorithm outperformed all
the reference schemes by at least 18.9%.
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