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Abstract—This paper investigates integrated sensing and com-

munication (ISAC) enabled by a multi-antenna unmanned aerial

vehicle (UAV) for simultaneously serving multiple downlink

communication users and sensing multiple targets during flight.

Unlike previous studies, we consider target sensing in a cluttered

environment where echoes backscattered by the clutter can

interfere and significantly degrade the ISAC performance. To

mitigate the impact of the clutter, we jointly optimize the

UAV’s transmit beamforming, sensing scheduling and trajectory

design for minimizing its total energy consumption while meeting

required data rates for communication and signal-to-clutter-

plus-noise ratio (SCNR) in sensing. The formulated problem

is a nonconvex mixed-integer nonlinear program (MINLP). We

uncover a hidden convexity in the optimization of the continuous

variables with discrete variables fixed. This enables us to propose

a novel low-complexity and high-quality solution by reformu-

lating the original problem as a multi-stage dynamic program-

ming (DP) and solving the discrete and continuous variables

using the one-step lookahead rollout (OSLR) algorithm from

approximate DP and the semidefinite programming from convex

optimization, respectively. Simulation results show that clutter

interference has a non-negligible impact on ISAC and should

be judiciously mitigated. Meanwhile, our proposed optimization

algorithm achieves significant energy savings for UAV-aided ISAC

in cluttered environments, compared with a clutter-aware non-

OSLR-based baseline scheme.

I. INTRODUCTION

Integrated sensing and communication (ISAC) is an ad-
vanced physical layer technology that enables simultaneous
sensing and communication using the same spectrum and
transmitter hardware [1]. Recently, there has been growing
interest in utilizing unmanned aerial vehicles (UAVs) to deploy
on-demand three-dimensional (3D) ISAC functionality within
sixth-generation (6G) wireless networks [2], [3]. UAV-enabled
ISAC is expected to provide reliable communication and
sensing capabilities, even in environments with disrupted or
limited network infrastructure, making it pivotal for both
routine operations and emergency scenarios [4].

However, successfully deploying UAVs as aerial ISAC
platforms in 6G present two fundamental research challenges.
First, unlike terrestrial systems, UAV-aided ISAC is con-
strained by both limited radio resources and restricted on-
board energy supply, due to the size, weight, and power
limitations of UAVs [5]. Second, the performance of practical
ISAC systems is often impaired by undesired clutter scatters,
such as trees, buildings, and vehicles, whose reflected echos
are difficult to distinguish from those of the intended sensing
targets. The clutter can severely degrade the reliability of target
detection and the accuracy of estimation tasks, as the clutter’s
reflected signal power is comparable to or even dominates
the received echoes, presenting a significant challenge for
ISAC [1], [6]. Developing resource- and energy-efficient UAV-
aided ISAC solutions in cluttered environments remains a
critical research challenge.

To address this challenge, joint beamforming optimization
and trajectory design for UAV-aided ISAC has been explored
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in the literature to optimize communication throughput [7],
[8], sensing beamforming gain [3], [9], or energy consump-
tion [10]. For instance, in [7], the authors optimized the UAV’s
flight trajectory and transmit beamforming to maximize the
achievable communication rate while maintaining sufficient
beam pattern gain on sensing targets. In [10], the focus was on
optimizing transmit beamforming, UAV trajectory planning,
and sensing scheduling to minimize the UAV’s total energy
consumption over a given duration, while requiring sensing to
be conducted exclusively at fixed locations. However, these
studies [3], [7]–[10] typically assume ideal radar sensing
environments without considering clutter. Given that clutter is
influenced by the transmit signal, transmit beamforming tech-
niques, both without and with the aid of intelligent reflecting
surfaces (IRSs), have been proposed in [6] to mitigate clutter
effects, assuming prior knowledge of the clutter covariance
matrix. But this study focused on terrestrial ISAC scenarios,
and to the best of our knowledge, the impact of clutter on UAV-
aided ISAC has not yet been investigated in the literature.

This paper fills in the research gap by investigating UAV-
aided ISAC in a cluttered environment. Unlike previous studies
[6], our approach not only integrates transmit beamforming
with sensing scheduling, but also exploits the UAV’s mo-
bility to jointly mitigate the impact of clutter during ISAC.
Considering the UAV’s flight energy consumption, we fur-
ther optimize the UAV’s trajectory, transmit beamforming,
and sensing scheduling to minimize the UAV’s total energy
consumption while guaranteeing quality-of-service (QoS) re-
quirements for both communication and sensing, specifically
in terms of achievable data rates and signal-to-clutter-plus-
noise ratio (SCNR). Our contributions are

• We investigate the joint optimization of trajectory de-
sign, transmit beamforming, and sensing scheduling for
performing UAV-enabled ISAC mission in a cluttered
environment. The aim is to minimize the UAV’s overall
energy consumption during the mission while satisfying
communication, sensing and flight requirements.

• The formulated problem is a nonconvex mixed-integer
nonlinear program (MINLP). By reformulating it as a
multi-stage dynamic program (DP), we propose a novel
efficient solution based on the one-step lookahead rollout
(OSLR) technique from approximate DP and semidefinite
programming (SDP) from convex optimization.

• Simulation results show that the proposed OSLR algo-
rithm can effectively exploit the UAV mobility and multi-
antenna beamforming to mitigate the impact of the clutter
interference and ensure the sensing and communication
QoS requirements at a low energy consumption.

Notations: Throughout this paper, matrices and vectors are
denoted by boldface capital and lower-case letters, respec-
tively. AT , AH , Rank(A), and Tr(A) denote the transpose,
Hermitian (or conjugate transpose), rank, and trace of matrix
A, respectively. Finally, | · | and → ·→ denote the absolute value
of a complex scalar and the Euclidean norm of a complex
vector, respectively.

II. SYSTEM MODEL

In this section, we present the channel and signal models for
UAV-aided ISAC in a cluttered environment. We also introduce



Fig. 1. Illustration of UAV-enabled ISAC to simultaneously detect targets
and communicates to multiple users on its trajectory, in presence of undesired
clutter scatters.

the performance metrics for sensing and communication and
assess the UAV’s energy consumption.

A. UAV-aided ISAC in Cluttered Environment
We consider an ISAC system enabled by a rotary-wing UAV.

As illustrated in Fig. 1, the UAV is tasked with serving K

downlink communication users (CU) and sensing M potential
targets (ST) within a cluttered environment containing L

unwanted scatters. The UAV is equipped with a full-duplex
ISAC transceiver containing S transmit antennas and S receive
antennas, both arranged in ULAs. Sensing and communication
signals are sent using the same transmit ULA and time-
frequency resources, while the receive ULA is used to col-
lect echo signals backscattered to the UAV. Following [11],
[12], we assume sufficient separation between the transmit
and receive ULAs (or with the aid of additional advanced
interference cancellation solutions) to effectively suppress self-
interference. The locations of the CUs, STs and the clutter
objects, denoted by u

c
k
↑ R2→1, k = 1, ...,K, u

s
m

↑ R2→1,
m = 1, ...,M , and u

o
l
↑ R2→1, l = 1, ..., L, respectively, are

assumed to be fixed and known to the UAV.
To facilitate trajectory planning, we assume that the UAV

flies at a fixed altitude H . Moreover, the flight area is dis-
cretized into a uniform grid with G grid vertices indexed by
the set V ↭ {v1, . . . ,vG} ↑ R2→1. The UAV’s flight path
consists of N+1 waypoints q[n] ↑ V , n = 0, . . . , N , selected
from V . We assume that the UAV flies at a constant speed for a
duration of ω [n] > 0 on the line-segment connecting waypoints
q[n↓ 1] and q[n]. In this paper, the parameters G and N are
predetermined, while ω [n] is a variable to be optimized. The
length of line-segment n, given as ε[n] = →q[n]↓ q[n↓ 1]→,
does not exceed !max. We assume !max↔H such that the
distances between the UAV and targets remain approximately
constant while the UAV flies on each line-segment.

B. 3D Channel and Signal Models for UAV-aided ISAC
The clutter scatters induce multipath propagation for the

communication signals. However, as the line-of-sight (LoS)
path remains dominant for the elevated UAV, the multipath
components are negligible. Consequently, we model the chan-
nel vector h

tx
k
[n] from the UAV on line-segment n to CU k

as
h
tx
k
[n] =

↗
ϑ√

→uc
k
↓ q[n]→2 +H2

· atx
k
[n], (1)

where ϑ denotes the channel power gain at a unit distance.
The channel vectors htx

m
[n] and h

tx
l
[n] from the UAV to ST m

and clutter l are defined in the same manner as h
tx
k
[n] in (1).

Moreover, atx
k
[n] is the steering vector of the transmit ULA

on line-segment n toward CU k, defined as

a
tx
k
[n]↭[1, ej

2ωd
ε cos(ωtx

k [n])
, . . . , e

j
2ω(S→1)d

ε cos(ωtx
k [n])]T. (2)

Assume that the axes of the UAV’s ULAs are vertically
deployed [3], [9]. Then the angle of departures (AoDs) of
the CUs, STs, and clutter scatters coincide with their elevation
angles from the UAV. Hence, in (2), the AoD for CU k is given
as ϖtx

k
[n]=arctan (→uc

k
↓ q[n]→/H). Note that, as !max↔H ,

the steering vectors and the channels between the UAV and
each CU/ST also remain unchanged when the UAV flies on
each line-segment.

Let si ↑ C be the information bearing symbol intended for
CU i. We assume that si is a zero-mean complex Gaussian
random variable with unit variance. Moreover, let wi ↑ CS→1

be the UAV’s beamforming vector used for sending si. To fully
exploit the spatial degrees of freedom (DoFs) provided by the
transmit ULA, a dedicated sensing signal s0[n] is superim-
posed with the communication symbols. The resulting ISAC
signal transmitted by the UAV on line-segment n is given as
x[n] =

∑
K

i=1 wi[n] si[n] + s0[n], where s0[n] is a zero-mean
random vector with covariance matrix Rs[n]=E{s0[n]sH0 [n]}.
The sensing signal s0[n] is generated independent of the
communication symbols, ensuring that the sensing and com-
munication symbols are mutually uncorrelated. The covariance
matrix Rx[n] of the transmit signal x[n] is then

Rx[n] = E{x[n]xH [n]} =
∑K

k=1
wk[n]w

H

k
[n]+Rs[n]. (3)

The received signal at CU k on line-segment n is given as

yk[n]=
∑K

i=1
(htx

k
[n])Hwi[n]si[n]+(htx

k
[n])Hs0[n]+zk[n],

(4)
where zk[n] is the additive white Gaussian noise (AWGN) at
CU k and is modeled as a zero-mean Gaussian random vari-
able with variance ϱ

2
k
. Based on (4), the signal-to-interference-

plus-noise ratio (SINR) ςk[n] of CU k is given as

ςk[n]=
|(htx

k
[n])Hwk[n]|2

K∑
i=1,i ↑=k

|(htx
k
[n])Hwi[n]|2+(htx

k
[n])HRs[n]htx

k
[n]+ϱ

2
k

.

(5)
Meanwhile, the UAV utilizes the transmit signal x[n] as a

probing signal for radar sensing. The sensing of the multiple
targets is scheduled onto different line-segments. Particularly,
we define a binary variable φm[n]↑{0, 1} as the indicator for
sensing ST m when the UAV flies on line-segment n. The UAV
collects echoes of the probing signal that are backscattered
by the scheduled ST for tasks such as activity detection and
area monitoring based on parameters like AoAs and round-trip
times of the echoes [1].

However, the clutter scatters will generate interference for
sensing the targets, as their backscattered signals are difficult
to distinguish at the ISAC receiver. Note that the clutter
scatters do not emit signals of their own. Let ym[n] and yl[n]
be the signals delivered to ST m and clutter l, respectively,
which can be modeled similar to (4). The received signal at
the UAV on line-segment n is a collection of echos reflected
from the both STs and clutters, i.e.,

y[n]=
∑M

m=1
↼mh

rx
m
[n]ym[n]+

∑L

l=1
↼lh

rx
l
[n]yl[n]+z[n], (6)

where ↼m and ↼l are the reflection coefficients. h
rx
m
[n] and

h
rx
l
[n] are the backscattering channel vectors from ST m and



clutter l to the UAV, respectively, defined in the same manner
as h

tx
k
[n] in (1). z[n] is the AWGN with variance ϱ

2
/S at the

UAV’s receive ULA.
Given the influence of clutter on sensing, the SCNR is

a key metric for assessing the accuracy of target detection
and localization, as it quantifies the radar’s capability to
distinguish the target from the clutter interference [1]. Let
Hm[n] ↭ h

tx
m
[n](hrx

m
[n])H and Hl[n] ↭ h

tx
l
[n](hrx

l
[n])H be

the round-trip channel matrices of ST m and clutter l on line-
segment n, respectively. When φm[n] = 1, the SCNR ”m[n]
of sensing ST m at the UAV on line-segment n is given as [1]

”m[n]=
↼mtr(H2

m
[n]Rx[n])

M∑
i=1,i ↑=m

↼itr(H2
i
[n]Rx[n])+

L∑
l=1

↼ltr(H2
l
[n]Rx[n])+ϱ2

.

(7)
The first and the second term in the denominator of (7) capture
the interference from echo signals backscattered from other
STs and the clutters, respectively.

C. Energy Consumption of the UAV
During the ISAC mission, the UAV consumes energy in

both signal transmission and flight propulsion. The UAV’s
energy consumption for signal transmission on line-segment n,
denoted by E

c[n], is given as

E
c[n] = (tr(Rx[n]) + Pconst) · ω [n], (8)

where tr(Rx[n]) gives the transmit power and Pconst is
the constant power consumed in the circuitry and signal
processing. Meanwhile, the UAV’s propulsion consumption
between waypoints q[n ↓ 1] and q[n] is a function of line-
segment length ε[n] and flight duration ω [n] given as E

f [n]=
E

f
1[n] + E

f
2[n] [5], where

E
f
1[n] =P0

(
1+

3ε2[n]

U
2
tipω [n]

)
+
1

2
d0↽sA

ε
3[n]

ω2[n]
,

E
f
2[n] =Pi

(√

ω4[n]+
ε4[n]

4V 4
0

↓ ε
2[n]

2V 2
0

)1/2

. (9)

In (9), the parameters are defined as follows: rotor disc area A,
tip speed of the rotor blade Utip, rotor solidity s, air density ↽,
fuselage drag ratio d0, mean rotor velocity induced in forward
flight V0, blade profile power during hovering P0, and induced
power during hovering Pi, cf. [5].

Note that the second term in (9) is a nonconvex function
of ω [n], rendering its optimization difficult. To overcome this
challenge, we employ the first-order Taylor approximation↗
1 + x↘1+ 1

2x for |x|↔1 and approximate E
f
2[n] as

E
f
2[n] ↘

PiV0ω
2[n]

ε[n]
. (10)

In (10), Ef [n] is a jointly convex function of ω [n] and ε[n],
but not jointly convex with respect to ω [n] and q[n].

III. PROBLEM FORMULATION

To efficiently utilize the UAV’s mobility and available radio
resources for performing ISAC in the clutter environment,
in this section, we jointly optimize the transmit beamform-
ing vectors {wk[n]}, sensing covariance matrices {Rs[n]},
sensing schedule {φm[n]}, and the UAV’s flight trajectory
{q[n], ω [n]} for minimizing the UAV’s energy consumption,

while satisfying the QoS requirements for both communication
and sensing. The optimization problem is formulated as

P1 : min
q[n],wk[n],Rs[n],

εm[n],ϑ [n]

∑N

n=1

(
E

c[n] + E
f [n]

)
(11)

s.t. C1: ”m[n] ≃ φm[n]”min, ⇐m, ⇐n

C2:
∑N

n=1
φm[n] ω [n] ≃ φmin, ⇐m

C3: φm[n] ↑ {0, 1}, ⇐m, ⇐n
C4: ςk[n] ≃ ςmin,k, ⇐k, ⇐n

C5:
∑K

k=1
w

H

k
[n]wk[n] + tr(Rs[n]) ⇒ Pmax, ⇐n

C6: →q[n]↓ q[n↓ 1]→/ω [n] ⇒ Vmax, ω [n] ≃ 0, ⇐n
C7: q[0]=qI , q[N ]=qF , q[n]↑V , ⇐n
C8: →q[n]↓ q[n↓ 1]→ ⇒ !max, ⇐n.

In problem P1, constraint C1 ensures that the echoes backscat-
tered from the STs meets a minimum SCNR requirement,
even in the presence of clutter. C2 guarantees that each ST
is allocated at least φmin amount of sensing time in total, in
order to collect a sufficient number of samples for the sensing
task. C3 is the binary constraint on sensing scheduling. C4
ensures that the instantaneous SINR of the CUs remains above
the threshold ςmin,k, thereby achieving a minimum data rate
of log2(1+ςmin,k) in bps/Hz during communication. C5 limits
the maximum transmit power of the transmit ULA to Pmax. C6
limits the UAV’s flight velocity. Finally, C7 and C8 specify the
UAV’s initial, final, and other waypoints on its flight trajectory,
subject to a maximal length of line-segments.

Problem P1 is a nonconvex MINLP due to the discrete
variables q[n] and φm[n], cf. constraints C7 and C3, the
nonconvex objective function, and the nonconvex constraints
C1, C2, and C4. Moreover, the UAV’s trajectory q[n] is tightly
coupled with the transmit beamforming vector wk[n] and the
sensing covariance matrix Rs[n], cf. (5) and (7). Similar tight
couplings also exist between flight duration ω [n] and other
optimization variables, cf. (8)–(9) and C2. These obstacles
render problem P1 generally intractable. To overcome these
challenges, in Sec. IV we reformulate P1 as a multi-stage
DP, whose optimal solution is given by the Bellman opti-
mality equation. However, solving this equation exactly using
standard DP algorithms requires prohibitive computational
complexity. Inspired by the success of approximate DP and
reinforcement learning, we propose a low-complexity, high-
quality suboptimal algorithm based on the rollout method [13]
to obtain an approximate solution to the Bellman equation.

IV. PROPOSED SOLUTION

A. Optimization of Transmit Beamforming, Sensing Covari-
ance Matrix, and Flight Duration

We start with optimizing the continuous-valued beamform-
ing vectors wk, sensing covariance matrices Rs, and flight du-
ration ω [n], while assuming that the discrete-valued waypoints
q[n] and sensing schedule φm[n] are given. The optimization
problem is given as,

P2 : min
wk[n],Rs[n],ϑ [n]

∑N

n=1

(
E

c[n] + E
f [n]

)
(12)

s.t. C1, C2, C4, C5, C6, C8.

Problem P2 is nonconvex due to its nonconvex objective
function and nonconvex constraints C1, C2, and C4. However,
using appropriate transformation techniques, we uncover an



underlying convexity within P2. Consequently, the globally
optimal solution of P2 can be obtained within polynomial-
time computational complexity. This property further enables
us to tackle the remaining optimization of discrete variables
using DP-based approaches in Secs. IV-B and IV-C.

1) Problem Transformation: Let us define new variables
Wk[n] ↭ ω [n]wk[n]wH

k
[n] and Rs[n] ↭ Rs[n]ω [n], where

Wk[n]⇑ 0 and Rank(Wk[n])⇒ 1. Using Wk[n] and Rs to
eliminate wk and Rs, we can rewrite C4 as

|(htx
k
[n])Hwk[n]|2

K∑
i ↑=k

|(htx
k
[n])Hwi[n]|2+(htx

k
[n])HRs[n]htx

k
[n]+ϱ

2
k

≃ ςmin,k

⇓⇔ C4: (1 + ς
↓1
min,k)tr(Wk[n]Hk[n])

↓ tr(Rx[n]Hk[n]) ≃ ϱ
2
k
ω [n], (13)

where Rx[n] ↭ Rx[n]ω [n] =
∑

K

k=1 Wk[n] +Rs[n], and
Hk[n]↭h

tx
k
[n](htx

k
[n])H . Similarly, we reformulate C1 as

C1 ⇓⇔ C1: ”m[n] ≃ ω [n]φm[n]”min, with

”m[n]=
↼mtr(H2

m
[n]Rx[n])

M∑
i ↑=m

↼itr(H2
i
[n]Rx[n]))+

L∑
l=1

↼ltr(H2
l
[n]Rx[n]))+ϱ2

.

Therefore, given the waypoints q[n] and sensing schedule
φm[n], problem P2 can be equivalently reformulated as:

P3 : min
Wk[n],Rx[n],ϑ [n]

∑N

n=1

(
E

c(Rx[n]) + E
f(ω [n])

)
(14)

s.t. C1, C2, C4, C5, C6, C8
C9: Wk[n] ⇑ 0, ⇐n, ⇐k
C10: Rank(Wk[n]) ⇒ 1, ⇐n, ⇐k.

2) Hidden Convexity and Optimal Solution: If constraint
C10 is eliminated from P3, it results in a relaxed problem that
is a convex SDP and can be optimally solved using off-the-
shelf solvers such as CVX [14]. In general, this relaxation
provides a lower bound for the optimal objective value of
problem P3, as the relaxed solution may not satisfy constraint
C10. However, for problem P3 at hand, we can show that
the relaxed solution of Wk always has rank one, that is, the
relaxed objective value is as tight as the optimal value. This
finding has also been validated offline by simulations.

Lemma 1: Assume that problem P3 is strictly feasible, i.e., it
has at least a feasible solution satisfying one of its constraints
with strict inequality. Then, the optimal solution of Wk[n]
obtained by SDP relaxation always has rank one. Moreover,
the optimal beamforming solution of problem P3 is given by
the principal eigenvector of Wk[n]/ω [n].

Proof: Due to the limited page space, we only provide
a sketch of the proof. When problem P3 is strictly feasible,
the convex SDP obtained by relaxing constraint C10 fulfills
the Slater’s condition and thus has strong duality. As a result,
the Karush–Kuhn–Tucker (KKT) conditions are both sufficient
and necessary for the optimal relaxed solutions. Following
similar arguments in [15, Theorem 2], we can show that the
optimal solution of Wk[n] derived from the KKT conditions
always has rank one. Thus, the optimal transmit covariance
matrix of problem P3 is given by Wk[n]/ω [n], which com-
pletes the proof.

B. DP based Optimal Solution of Problem P1
We further show below that problem P1 can be reformulated

as an equivalent N -stage DP problem and thereby optimally
solved via DP algorithms.

1) DP Reformulation: With a slight abuse of notation, let n
also be the index of stages. Let φM[n] be the sensing schedule
for all STs, indexed by set M ↭ {1, ...,M}, at stage n.
The system state on ↭ [Qn, An] consists of the sequence of
waypoints Qn↭{q[0], . . . ,q[n]} visited by the UAV and the
sensing schedules An = {φM[1], . . . ,φM[n]} up to stage n.
The action zn=(q[n+1],φM[n+1]) includes the next waypoint
q[n+1] and sensing schedule φM[n+1] for the next waypoint.
The action zn must lie in a subset Z(on) determined by the
current state on and the constraints specified in P1.

By applying action zn at stage n, the system state evolves
to the next state on+1 according to on+1=fn(on, zn), where
fn(·) is essentially the union operator. A cost gn(on, zn) is
generated for the transition from on to on+1 under action zn.
The cost gn(on, zn)↭En+1↓En represents the increase in
the UAV’s energy consumption, where En denotes the total
energy consumed up to stage n. To compute En, we solve the
convex decoupled problem P3 with on as the fixed discrete
variables, as described in IV-A.

For the entire ISAC mission, the actions zn, n=0, . . . , N↓1,
are determined by a policy ⇀ = {µ0, . . . , µN↓1}, where µn

maps states on into actions zn=µn(on). Given an initial state
o0 = [Q0 = {qI}, An = ↖] and policy ⇀, the total cost of the
ISAC mission is Jϖ(o0)=gN (oN )+

∑
N↓1
n=0 gn(on, zn), which

corresponds to energy consumed by the UAV for flight and
ISAC. Thus, problem P1 is equivalent to finding the optimal
policy denoted by ⇀

↔, that minimizes Jϖ(o0) [16].
2) Bellman Optimality Equation: Let J

↔
n,ϖ↑(on) be the

optimal value function of state on, which evaluates the optimal
cost to reach state oN from state on. Then, the optimal policy
⇀
↔ is given by the solution of the Bellman optimality equation

at each stage n=0, . . . , N↓1 [16]:

J
↔
n,ϖ↑(on)= min

zn↗Zn(on)
[gn(on, zn)+J

↔
n+1,ϖ↑(f(on, zn))]. (15)

The exact solution to (15) can be obtained using the
DP algorithm. It starts with solving problem J

↔
N,ϖ↑(oN )

at the terminal stage and then moves backwards to solve
J
↔
N↓1,ϖ↑(oN↓1), . . . , J↔

0 (o0) stage-wise. The optimal policy
is then reconstructed based on the optimal value functions.

However, the DP algorithm is prohibitively time-consuming,
due to the exponential growth in state-space with the number
of stages, N [16]. This motivates the use of low-complexity
approximation methods, such as the rollout algorithm [13], to
address (15).
C. Proposed One-Step Lookahead Rollout (OSLR) Algorithm

In the DP algorithm, calculating the optimal value func-
tion J

↔
n+1,ϖ↑ is computationally intensive. To lower the

computational complexity, the OSLR algorithm approximates
J
↔
n+1,ϖ↑ with the value function J̃n+1,ϖ̃ of a base policy

⇀̃= {µ̃0, . . . , µ̃N↓1}. The base policy ⇀̃ can be any heuristic
algorithm with an easy-to-compute cost function g̃n such that

J̃n+1,ϖ̃(on+1)↭ g̃N (oN ) +
∑N↓1

i=n+1
g̃i(oi, z̃i) (16)

for z̃i = µ̃i(oi), i= n+1, . . . , N↓1. Substituting J
↔
n+1,ϖ↑ in

(15) by J̃n+1,ϖ̃ , the action z
+
n

is selected using OSLR as

z
+
n
↑ argmin

zn↗Z(on)

[
gn(on, zn) + J̃n+1,ϖ̃(f(on, zn)

]
. (17)



TABLE I
PARAMETER SETTINGS FOR SIMULATION

Parameter Notation/Value

UAV path discretization N = 50,!max = 17 m
UAV’s flight altitude H = 100 m
UAV’s max flight speed Vmax = 20 m/s
Number of ULA elements S = 8
Reference channel gain ω = →30 dB
Noise power ε

2
k = →110 dBm

Maximum transmit power Pmax = 30 dBm
Circuitry power consumption Pconst = 5 W

Flight power parameters [5]
A=0.503 m2,P0=80W,Pi=88.6W,

Utip=120m/s, ϑ=1.225kg/m,
s=0.05m3, d0=0.6, V0=4.03

Communication SINR ϖmin,k = 16 dB
Sensing SCNR ”min,m = →4 dB
Sensing duration ϱmin = 3 s

That is, instead of directly taking actions specified by base
policy ⇀̃, the OSLR approach optimizes the action by consid-
ering both the immediate cost gn(on, zn) and an approximate
long-term cost J̃n+1 in each iteration. The solution obtained
by (17) is guaranteed with an improved performance over the
original base policy while keeping computational costs low
[13].

Algorithm 1 presents the proposed OSLR algorithm. At each
stage n, the action subset Z(on) is first determined based on
the current state on and the constraints specified in P1. Next,
J̃n+1,ϖ̃(on, zn) is computed using the base policy ⇀̃ for all
zn ↑Z(on). Then, the improved action z

+
n

is determined by
solving the convex problem P3 and comparing the resulting
energy costs of actions. Finally, the state is updated with the
action z

+
n

that minimizes the energy cost. This process iterates
through N stages, yielding a sequence of trajectory waypoints
and sensing schedules to minimize the UAV’s energy cost for
the ISAC mission.

Algorithm 1 Joint Trajectory, Beamforming, and Scheduling
Optimization with OSLR

1: Input:N, ω̃, Vmax, Pmax,qI ,qF , {uc
k, εmin,k}Kk=1,

{us
m,!min,k,ϑmin}Mm=1

2: for n = 0 : N → 1 do ϖ For each stage n
3: Initialize Z(on) ϖ Constraints P1
4: Calculate J̃n+1,ω̃(f(on, zn)), ↑zn↓Z(on)
5: z+n = argmin

zn→Z(on)
[gn(on, zn) + J̃n+1,ω̃(on, zn)]

6: Update system: on+1 = fn(on, z
+
n ) ϖ Solve P3

7: end for

8: Output: [z+0 , . . . , z
+
N↑1], J

+
0 (o0).

V. SIMULATION RESULTS

We evaluate the performance of the proposed algorithm via
simulations. The UAV performs ISAC within a cluttered area
of 500m↙500m in size. The area is divided into a uniform
grid with 41↙41 nodes. We consider K=2 CUs located at
[126m, 151m] and [374m, 376m], and M =2 STs located at
[151m, 374m] and [401m, 126m]. Additionally, L=8 clutter
elements are placed around the STs at various distances. The
UAV’s initial and final waypoints are set as qI=[25m, 250m]
and qF=[500m, 225m], respectively. Unless otherwise stated,
the simulation parameters are set as in Table I.

To validate the effectiveness of Algorithm 1, Fig. 2 illus-
trates the evolution of the estimated energy cost, given by the
sum of accumulated and future energy costs

∑
n↓1
i=0 gi(oi, z

+
i
)+

J̃n,ϖ̃(on), at each stage n=1, . . . , N , where the action z
+
i

is
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Fig. 2. Iterative performance of proposed OSLR algorithm over N stages.
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Fig. 3. UAV energy consumption versus the required sensing SCNR per ST.

defined in (17). The OSLR step in Algorithm 1 employs the
fly-hover-and-sense protocol in [10] as base policy, where the
UAV only performs sensing while hovering above the STs,
for minimizing clutter effects and improving sensing quality.
For comparison, the estimated energy costs of the base policy,
i.e.,

∑
n↓1
i=0 gi(oi, z̃i)+ J̃n,ϖ̃(on), are also evaluated, where the

action z̃i is specified by the base policy. As expected, the
estimated energy costs of the base policy do not change over
stages, since all actions are predetermined. In contrast, by op-
timizing its actions at each stage based on both the immediate
and potential long-term costs in (17), the OSLR method can
successively improve the performance over the base policy.
Additionally, Figure 2 compares the “Approximate” and “Ex-
act” energy consumption curves, calculated using (10) and (9),
respectively, for the same solution obtained by Algorithm 1
or its base policy. The close alignment of these two curves
validates that the approximation in (10) is practically tight.
However, as the actual energy consumption function in (9) is
nonconvex, it is difficult to evaluate the loss associated with
optimizing the approximate energy consumption model (10)
rather than (9).

Fig. 3 depicts the UAV’s energy consumption versus the
sensing SCNR requirement per ST, ”min,m for the proposed
“Clutter-aware OSLR” scheme, the base policy ⇀̃, and a
“Clutter-oblivious OSLR” scheme, which uses the OSLR
algorithm for joint beamforming, sensing scheduling, and
trajectory design but ignores the clutter effect in (7). We
observe that, unlike the base policy, the energy consumption
of both the proposed and “Clutter-oblivious OSLR” schemes
increase monotonically with ”min,m. Moreover, the proposed
scheme significantly outperforms the base policy, particularly
for small ”min,ms, by sensing farther from STs and shortening
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the flight path according to SCNR requirements. However, as
”min,m increases, the proposed scheme consumes significantly
more energy than the “Clutter-oblivious OSLR” scheme. This
is because, with the proposed scheme, the UAV needs to fly
closer to the ST locations to mitigate the clutter interference
and meet the more stringent requirements on sensing SCNR.
However, sensing QoS cannot be ensured with the “Clutter-
oblivious OSLR” scheme. Additionally, as the allowed sensing
duration φmin increases from 1s to 3s, the UAV can schedule
the sensing on multiple waypoints during flight with more
flexibility. This translates into only a small increase in energy
consumption for the proposed scheme.

For further insights, Fig. 4 shows the optimized UAV
trajectories and sensing locations (namely those line-segments
where φm[n] = 1), when the required minimum sensing
SCNR is ”min = 0.5. As expected, the base policy follows
a path from the UAV’s initial to final waypoints via the ST
locations. This ensures reliable sensing but increases energy
consumption, due to a longer trajectory and extended hovering
time. In contrast, the proposed scheme adapts its trajectory,
sensing schedule, and beamforming to meet sensing require-
ments efficiently during flight. The “Clutter-oblivious OSLR”
scheme senses from waypoints further away from the ST
positions, reducing energy consumption with a shorter flight
path. However, Fig. 4 shows that ignoring clutter interference
significantly diminishes the achievable SCNR during sensing.

Finally, Fig. 5 evaluates the UAV’s energy consumption ver-
sus the number of antennas elements in the UAV’s ULAs. We

observe that increasing the number of antennas enhances the
performance of the proposed and “Clutter-oblivious OSLR”
schemes. Because, with more antennas, the signal energy can
be focused towards the STs and CUs using narrower beams, re-
sulting in reduced clutter interference. The base policy remains
constant for different antenna settings because it uses the same
trajectory in all simulations. In contrast, our proposed scheme
jointly optimizes the trajectory design, sensing scheduling,
flight times, and ISAC beamforming, which shortens the flight
trajectory and saves energy while still meeting the sensing
requirements. Thus, the proposed scheme allows the UAV
to better utilize the antenna array to increase sensing power
towards the STs while mitigating clutter interference.

VI. CONCLUSION

In this paper, we studied the joint optimization of transmit
beamforming, sensing scheduling, and trajectory design for
UAV-enabled ISAC in cluttered environments. We formulated
a highly nonconvex optimization problem aimed at mini-
mizing the UAV’s energy consumption while meeting the
QoS requirements for communication and sensing, as well as
adhering to flight constraints. By reformulating the problem
as a multi-stage DP, we proposed a computationally efficient
OSLR algorithm to obtain a high-quality suboptimal solution.
Simulation results demonstrated that the proposed scheme can
jointly optimize the UAV trajectory and leverage the spatial
DoFs of the transmit ULA to significantly reduce UAV’s
energy consumption required for ensuring communication and
sensing QoS. Motivated by its high performance and low
complexity, future work will explore extending the proposed
OSLR algorithm to other base policies and multi-UAV enabled
ISAC systems.
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