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ABSTRACT Synchronous federated learning (FL) over wireless networks often suffers from the straggler
effect, when the time required for training local models and uploading trained parameters varies significantly
across heterogeneous wireless devices. This disparity prolongs the duration needed for model aggregation
at the data center and slows down the convergence of synchronous FL, posing a significant challenge for FL
over wireless networks. In this paper, we propose a novel buffer-aided FL scheme to mitigate the straggler
effect. A buffer with sufficiently large storage is deployed at each wireless device to temporarily store
the collected training data and adaptively outputs it during local training, according to the computational
capabilities and communication data rates of the wireless devices. Consequently, all local models can be
synchronously aggregated at the data center to reduce the number of rounds required for model aggregation
in FL. To ensure timely information update, a staleness function is further introduced to characterize the
freshness of the data used to train local models. Additionally, the entropic value-at-risk (EVaR) of the data
queues is introduced to eliminate the impact of discarded data at the buffers and improve the accuracy
of trained local models. We formulate a delay-aware online stochastic optimization problem to minimize
the long-term average staleness of all wireless devices for buffer-aided FL. Our problem formulation
simultaneously guarantees stability of data queues at the wireless devices and reduces the risk of data loss. By
employing the Lyapunov optimization technique, we transform the problem into instantaneous deterministic
optimization subproblems and further solve each subproblem online via utilizing its hidden convexity.
Simulation results demonstrate that the proposed buffer-aided synchronous FL scheme can effectively
improve the convergence rate of FL and, at the same time, ensure timely synchronization of heterogeneous
wireless devices.

INDEX TERMS Federated learning, straggler effect, delay, Lyapunov optimization.

I. INTRODUCTION

FEDERATED learning (FL) has emerged as a promising
distributed learning method [2]. Unlike traditional ma-

chine learning (ML) approaches, FL enables multiple wire-
less devices to collaboratively train a global model, together
with a centralized server, while maintaining the privacy of in-
dividual data sources. Data privacy is preserved by exchang-
ing only model parameters, rather than raw data, between
wireless nodes and the server. Additionally, the bandwidth

required for data transmission is significantly reduced, as the
size ofmodel parameters is much smaller than that of the local
raw data. As a result, FL can greatly benefit from the massive
data generated by mobile devices to enable a wide range of
personalized and context-aware services, such as learning the
activities of smartphone users and predicting health events via
wearable devices in distributed wireless Internal-of-Things
(IoT) systems [3], [4].
However, despite the advantages of FL, effectively deploy-
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ing FL over wireless networks is hindered by several unsolved
issues. On the one hand, wireless devices often have distinct
computing capabilities and communication capacities. As
such, synchronizing FL tasks among these devices, including
distributing the global model to and aggregating local updates
from the devices, would suffer from the straggler effect. That
is, the completion time of synchronous FL jobs is limited by
the slowest wireless device, defining a severe performance
bottleneck in practical heterogeneous wireless networks and
mobile environments. On the other hand, due to the limited
communication capacity and computation power of wireless
nodes, local model training may suffer from severe latency
and link failures, causing significant delays in transmission
of trained local models. This in turn fundamentally limit the
performance of FL over wireless networks.

To address both challenges, many works have investigated
novel FL methods combined with edge computing resource
allocation. Here we review the existing methods in two
categories, namely asynchronous/semi-asynchronous FL and
buffer-aided FL.

A. ASYNCHRONOUS/ SEMI-ASYNCHRONOUS FL
Asynchronous and semi-asynchronous FL typically select
only a fraction of participating devices in each synchroniza-
tion round to upload their local models for aggregation [5].
For instance, the semi-asynchronous FL framework FeDiSa,
introduced in [6] addressed cyberattack discrimination while
considering the impact of communication latency and strag-
glers. In [7], a joint communication resource allocation and
client selection scheme was proposed for asynchronous FL.
This selection process leveraged the convergence condition
of the learning model, allowing each selected client to upload
its model parameters to the server immediately after training,
without waiting for other clients. Tominimize training latency
caused by the straggler effect, [8] formulated a multi-armed
bandit problem for client selection problem and solved in
an online manner. To reduce the bias and variance of pe-
riodic model aggregation in FL systems, a channel-aware
data importance-based scheduling policy was proposed in [9].
In [10], the authors proposed a triple-step asynchronous FL
mechanism, TrisaFed, which efficiently and securely trains
the intelligent core of IoT by activating clients with rich
information, optimizing communication costs, and enhancing
model aggregation using temporal and informative attributes.
Due to only part of edge devices take part in synchronization
in each round, asynchronous and semi-asynchronous FL eas-
ily achieve node synchronization, which relieve the straggler
effect of FL. However, for all wireless edge nodes, only a
subset of all locally trained models is used to aggregate the
global model in each round and thus, the convergence rate of
asynchronous and semi-asynchronous FL may be slower than
traditional FL.

B. BUFFER-AIDED FL
While asynchronous and semi-asynchronous FL aim to re-
duce the number of edge nodes required for global model

aggregation, another approach employs buffer in nodes and
servers to mitigate the straggler effect in FL. For example,
federated reinforcement learning (FRL) has been proposed
to reduce the time consumption for training local model by
effectively adjusting the content stored in the buffer. By utiliz-
ing the reward scheme of reinforcement learning, edge nodes
and serve can enhance the similarity between input and stored
data, thereby accelerating the timeliness of all edge nodes.
In [11], a device assignment algorithm based on a dueling
double deep Q-Network (D3QN) is introduced, which uses
a replay buffer to store network weight values. This method
balances workloads across edge servers to minimize latency.
Additionally, buffers can be deployed at nodes to store crucial
information during data collection. To manage large amounts
of unlabeled data collected at nodes with limited storage, the
authors of [12] introduced a self-supervised on-device FL
framework that automatically selects the most representative
samples for storage in the replay buffer on each device. To
accelerate learning in cloud-edge-terminal Internet of Things
(IoT) networks, [13] proposed a collaborative policy learning
framework using an edge-agnostic policy structure to aggre-
gate local policies from different edge nodes. In [14], a three-
layer end-edge-cloud FRL framework was designed to opti-
mize client node selection and global aggregation frequency
in a digital twin (DT) system.
In general, FRL can address the straggler effect over multi-

ple rounds when rewards are appropriately designed to mini-
mize model training delay. However, the effectiveness of FRL
in overcoming this effect heavily depends on the similarity
between input and stored data. If the collected data differs sig-
nificantly from the stored content in unknown environment,
the reward scheme of FRL may lead to slow convergence.
Unlike FRL, which relies on stored content to mitigate

the straggler effect, buffer-aided synchronous FL solves the
problem by adjusting the amount of data used for local model
training. Data stored in the buffer can be output with amounts
adjusted according to available resource at the nodes be-
fore being used for training. Therefore, the buffer-aided syn-
chronous FL provides a novel approach to effectively solve
the straggler effect of FL. However, implementing the buffer-
ing mechanism in IoT devices to minimize latency in FL tasks
over wireless networks still faces twomain challenges. First, a
replay buffer configured in IoT nodes can introduce queueing
delays, potentially prolonging the time required for training
local FL models and uploading trained models, compared
with the traditional FL. Another challenge with using a re-
play buffer is the increased complexity of resource allocation
needed to ensure simultaneous model uploads from all nodes,
compared to traditional FL.While the replay buffer allows for
dynamic adjustment of the data used for local model train-
ing based on each node’s computation and communication
capabilities, the flexibility can lead to a mismatch between
the amount of collected data and the data used for training.
Such a mismatch can result in the discarding of raw data that
could have been useful for training, potentially degrading the
accuracy of trained local models.
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To address these challenges, in this paper, we propose a
novel mechanism that integrates buffer-aided model updating
for FL in IoT applications. The collected data is stored in a
replay buffer before being used to train the local model on
each device for FL. The replay buffer enables to dynamically
adjust the amount of data used for local model training based
on each node’s computation and communication capabilities.
Therefore, all nodes can upload their trained local models to
the data server simultaneously, preventing any single node
from delaying the overall process. However, when the amount
of data required for training the local model is less than the
amount of raw data, part of the raw data will be discarded.
To minimize the delay of data stored in the queue, the first
in first-output (FIFO) policy is adopted. We introduce a stal-
eness function to evaluate the timeliness of model updates,
which characterizes the delay from data collection to transfer
of trained models to the server. By minimizing the average
staleness of all wireless devices in each round, we aim to
reduce the overall latency of FL tasks.

To ensure the accuracy of local model training using col-
lected data, we utilize the entropic value-at-risk (EVaR) to
assess the risk of discarded data on FL. The EVaR also ensures
stability in data queues, lowering the likelihood of significant
queue lengths and data loss. By limiting the EVaR of dis-
carded data, the accuracy of local models can be improved,
which can reduce the require training rounds. We further
formulate an optimization problem to evaluate the tradeoff
between the latency for training local FL models and the re-
quired rounds for FL tasks, while considering both the risk of
discarded data. An effective algorithm is developed to allocate
the resources of buffer-aided edge nodes. Simulation results
show that our proposed algorithm can reduce the completion
latency of FL over the distributed IoT networks equippedwith
buffers. The contributions of this work are summarized as
follows.

• We propose a delay-aware buffer-aided FL scheme,
which utilizes a staleness function to evaluate the timeli-
ness of local updates and alleviate model inconsistencies
among wireless devices.

• To minimize the average delay for the FL system while
guaranteeing the EVaR of the data queue, we design
a resource allocation and wireless device scheduling
policy for training local model in each round to mitigate
the risk of data loss for local FL model training.

• Our experiments demonstrate that buffer-aided syn-
chronous FL scheme can improve the convergence rate
and reduce the completion time required by FL tasks,
while also ensuring the freshness of training data.

In the remainder of this paper, the system model is defined
in Section II. We formulate the delay minimization problem
and propose an iterative resource allocation algorithm based
on Lyapunov optimization technique in Sections III and IV,
respectively. We present numerical and simulation results,
along with a discussion, in Section V, followed by the con-
clusion in Section VI.

Local FL model 1

Data Center

Global FL model

Local FL model n Local FL model N

……

Buffer 1

……

Buffer n Buffer N

Wireless device 1 Wireless device n Wireless device N

Global model

Local model

Training data

Figure 1. Illustration of a buffer-aided FL system with N wireless devices.

II. SYSTEM MODEL
A. QUEUE MODEL OF BUFFER-AIDED WIRELESS DEVICES
As illustrated in Fig. 1, we consider an FL system consist-
ing of a data center and N IoT wireless devices that are
interconnected over wireless links. The wireless devices may
include smartphones, sensors, and smart meters in a smart
home, which are responsible for e.g. real-time monitoring of
the home environment and collecting data for collaboratively
implementing ML with the data center. To guarantee privacy
during data collection and processing in ML, local FL mod-
els are deployed at the wireless devices [15]. Each wireless
device needs to train a local FL model adopting its collected
data, neither sharing the data with the data center nor other
wireless devices. Subsequently, the locally trained FL models
are wirelessly sent to the data center, where they are aggre-
gated into a global FLmodel. The data center then broadcasts
the renewed global FLmodel to the wireless devices to enable
another round of local training.
We consider synchronous FL, which has been widely

adopted thanks to its fast average convergence performance
of wireless devices [16]. To overcome the straggler effect of
synchronous FL, we deploy a buffer at each wireless device.
Exploiting the buffer, the wireless devices can store their
collected data and dynamically adjust the amounts of data
output from their buffers for local training, in adaption to
the local computing capacity and communication resources.
This enables to accelerate the local model aggregation and
communication and ultimately reduce the required rounds for
FL convergence. We refer to the resulting scheme as buffer-
aided FL. We note that buffering has also been widely applied
in communication applications, such as buffer-aided relaying
[17], [18], to overcome channel fading while at the cost of
increased communication latency. In contrast, in our paper,
buffer-aided FL aims to overcome the straggler effect for
synchronous FL systems by aligning the local training and
communication processes at the wireless devices.
The system time is divided into multiple communication

rounds indexed by set I = {1, 2, · · · , i, · · ·}. Data inputs
into and outputs from the buffer at each wireless device
following a FIFO policy [19]–[21]. In communication round
i, wireless device n, n ∈ {1, ...,N}, collects a local dataset
with An (i) bytes of data samples from the environment.
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Figure 2. Illustration of a buffer-aided FL system with N wireless devices.

For convenience, we assume throughout this paper that each
buffer has a sufficiently large size, such that the data collected
from environment in each communication round can be stored
without overflow; otherwise, for buffers with limited size, this
assumption can be lifted by treating An (i) as the effective
volume of data that can be stored into the buffer at each
wireless device. Moreover, we define Rn(i) as the amount of
data in bytes output from the buffer and adopted by wireless
device n to train its local FL model in communication round
i. If An(i) > Rn(i), the remaining Dn(i) = An(i) − Rn(i)
amount of unused data will be discarded. We note that in
reinforcement learning with experience replay, data can be
stored in a finite replay buffer and exploited for future training
[22], [23]. However, as outdated data and/or model may
degrade the performance of FL, the unused training data in
FL is usually instantly removed at the local computing nodes
[24].

B. DATA PROCESSING FOR BUFFER-AIDED FL
As shown in Fig. 2, in communication round i ∈ I, the
following steps are executed by the buffer-aided FL:
Step 1 (Global model broadcast): The data center broad-

casts the current global model parameter, denoted byw∗(i−
1), to the N wireless devices.
Step 2 (Local model training and update): Wireless device

n executes In steps of stochastic gradient descent (SGD) to
train its local model, by adopting the received global model
parameter w∗(i − 1) and outputing Rn(i) bytes of buffered
data. The local training at wireless device n aims to minimize
the loss function defined as fn (w | w∗(i− 1),Rn(i)), i.e., to
solve the following optimization problem

w∗
n (i) := argmin

w∈Rn
fn (wn | w∗(i− 1),Rn(i)) , (1)

where w ∈ Rn is an n-dimensional real vector parameter to
be learned. The local modelw∗

n (i) is then uploaded to the data
center once it is obtained.

Step 3 (Global model aggregation): The data center ag-
gregates all local models uploaded from all wireless devices
to update the global model. As such, the global FL aims to
minimize the overall loss function defined as

F(w) =
1

N

N∑

n=1

fn (w | wn(i),Rn(i)). (2)

The optimal model obtained in communication round i is
denoted as

w∗(i) := argmin
w∈Rn

F (w) . (3)

Step 4 (Resource allocation): The data center allocates
bandwidth and power to all wireless devices and schedules
training data to be output from each buffer for the next com-
munication round.
Steps 1-4 are repeated in each communication round until

convergence or termination conditions are satisfied. To ensure
convergence of the global model, the loss function f (w)
should satisfy the following assumptions [25]:

• Assumption 1 (Smoothness): f (w) is L-smooth with
L > 0, i.e., ∀w1,w2, f (w2) − f (w1) ≤
⟨∇f (w1),w2 −w1⟩+ L

2∥w2 −w1∥2.
• Assumption 2 (Strong Convexity): f (w) is µ-strongly

convex with µ ≥ 0, i.e., ∀w1,w2, f (w2) − f (w1) ≥
⟨∇f (w1),w2 −w1⟩+ µ

2 ∥w2 −w1∥2.
As illustrated in Fig. 2, let δn(i) denote the time instant

of collecting data samples periodically at wireless device
n from the environment in the i-th communication round.
The collected data is buffered for ηn(i) amount of time, till
wireless device n starts the local FL training at time instant
δn(i) + ηn(i). The queueing time ηn(i), also referred to as the
elapsed delay in this paper, can be caused by various factors,
e.g. the ongoing data processing and model transmission in
the previous communication round, cf. Fig. 3.
To exploit buffers for accelerated FL in the considered

wireless networks, scheduling of data output from the buffer
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Figure 3. Illustration of time instances of data sampling and transmission.

for local training is crucial. In particular, by knowing the com-
puting and communication times required for local FL and
model uploading at all wireless devices, we can optimize the
amount of data used for local model training at each wireless
device such that the trained local models of all devices can be
received at the data center in a timely synchronized manner,
to significantly accelerate the global learning process.

C. DELAY FOR TRAINING LOCAL MODELS
Let an(i) be the delay of collected data at wireles device n
in the i-th communication round, which includes the time
elapsed since the data is collected at the wireless device until
the local FL training completes and the trained model is sent
to the data center. Moreover, let Tn(i) be the duration for
computing and transmitting the local model at wireless device
n. Consequently, the delay of completing local model training
at wireless device n in the i-th round is given as

an(i) = ηn(i) + Tn(i). (4)

Based on the definition of ηn(i), we have

ηn(i) = [δn(i− 1) + an(i− 1)− δn(i)]
+
, (5)

with [x]+ = max{x, 0}. Note that if δn(i− 1) + an(i− 1) ≤
δn(i), i.e., the (i − 1)-th communication round completes
before collecting data from the environment in the i-th com-
munication round, we have ηn(i) = 0. Otherwise, a positive
ηn(i) > 0 is incurred. For example, we have ηn(i) = 0 and
ηn(i + 1) > 0 in Fig. 3. By substituting ηn(i) in (5) into (4),
we can rewrite the delay in a recursive manner as

an (i) = [δn(i− 1) + an(i− 1)− δn(i)]
+
+ Tn(i). (6)

In (6), it remains to analyze Tn(i), which includes the
required computation time τn(i) and transmission time tn(i).
Without loss of generality, let φn(i) be the frequencies of
the central processing unit (CPU) at wireless devices n for
processing per unit of data used in the local training tasks.
The required computation time τn(i) at wireless device n for
processing data Rn(i) in communication round i is given by
[26]

τn (i) =
InCnRn (i)
φn(i)

, (7)

whereCn is the number of CPU cycles required for processing
each byte of input data sample per iteration. Meanwhile,
according to the analysis in [25, Lemma 1], the number
of iterations In required for training the local model wn in
wireless device n using the SGD method satisfies

In ≥ vlog2(1/ρ), (8)

where v ≥ 0 is a positive constant. The value of v depends
on the data size and the local model training task [27], and is
related to the assumptions of the adopted loss function in Sec.
II-B. Moreover, ρ > 0 is the required accuracy.
We assume that the trained model parameter wn(i) at de-

vice n has a fixed size of dn, whose value is specified a priori
according to the adopted local neural network architecture.
Moreover, the multiple nodes upload their local models si-
multaneously adopting orthogonal frequency-division multi-
ple access (OFDMA) [28]–[30]. Let Pn(i) and Bn(i) be the
transmit power and allocated bandwidth for wireless device
n in communication round i, respectively. The time required
for transmitting the locally trained FL model wn(i), can be
calculated as [31]

tn (i) =
dn

Bn (i) log2
(
1 + hn(i)Pn(i)

N0Bn(i)

) , (9)

where hn(i) is the channel gain between wireless device n
and the data center. We consider a block fading channel such
that hn(i) keeps unchanged during each communication round
and is known via existing channel estimation techniques [32].
But the channel condition hn(i) can change among different
communication rounds. N0 is the power spectral density of
the received additive white Gaussian noise.
According to (7) and (9), the transmission time Tn(i) of

wireless device n in communication round i can be calculated
as

Tn(i) =
InCnRn (i)
φn(i)

+
dn

Bn (i) log2
(
1 + hn(i)Pn(i)

N0Bn(i)

) . (10)

Substituting (8) into (10), we can establish a lower bound on
the required transmission time as

Tn(i)≥
vCnRn (i) log2 (1/ρ)

φn(i)
+

dn

Bn (i) log2
(
1+ hn(i)Pn(i)

N0Bn(i)

) .

(11)

D. EVAR ASSOCIATED WITH FINITE BUFFER AND DATA
DISCARDING
When the amount of collected data exceeds that used in
local model training, the collected but unused data will be
discarded, introducing risk of data loss. In this subsection,
we consider the EVaR metric to quantify and mitigate the
potential risk of data discarding at the buffers [33].
To apply the EVaR, let us first consider the value-at-risk

(VaR), which is a well-known risk measure in finance [34].
We denote Qn ≜ 1

i

∑i
j=1Dn(j) as the time average of dis-

carded data from the beginning to the i-th communication

VOLUME XX, XXXX 5



J. Liu et al.: Delay-aware Online Resource Allocation for Buffer-aided Synchronous Federated Learning over Wireless Networks

round. Let FQn(·) be a well-defined cumulative distribution
function (CDF) of Qn. The pre-determined quantity 1 − Γ
denotes the confidence level of this potential risk about dis-
carded data and Γ is the risk/tail level. For given Γ ∈ (0, 1],
the VaR quantifies the expected value of queue length in the
Γ-tail of FQn(·), i.e.,

VaR1−Γ (Qn) = min
a∈R

{a : FQn(a) ≥ 1− Γ} ,∀n ∈ N , (12)

where R is the field of real numbers. By maintaining the VaR
below a specific threshold, the probability of data losses is
constrained by Γ to ensure reliable data transmission.

However, the VaR lacks subadditivity and is not a coherent
measure, for which it fails to perfectly capture the notion of
risk [35]. As an alternative, the notion of EVaR has been
proposed as an effective risk measurement for stochastic
optimization problem due to its tractability. As such, we
consider EVaR in the sequel. Specifically, EVaR resolves
risk measurement by characterizing the best upper bound
of VaR obtained with the Chernoff inequality [36], where
VaR1−Γ (Qn) ≤ EVaR1−Γ (Qn) ,∀n ∈ N . Thus, the EVaR
is formally defined as

EVaR1−Γ (Qn) = min
z>0

{
z ln

[
1

Γ
EQn

[
exp

(
Qn

z

)]]}
,∀n.
(13)

Note that the expression in (13) is the perspective function
of the log-sum-exp function of Qn, which is known to be
jointly convex with respect toQn and z. As a result, the EVaR,
being the minimum of a convex function over z, is also a
convex function of Qn. In order to mitigate data loss and
guarantee reliable data transmission, the following constraint
should be satisfied

EVaR1−Γ (Qn) ≤ ϵ,∀n, (14)

where ϵ is the threshold of EVaR. We will show in Sec. IV-A
that the EVaR constraint in (14) can guarantee the stability of
data queues at the wireless devices (but the converse may not
be true) [37].

III. PROBLEM FORMULATION
A. DEFINITION OF STALENESS FUNCTION
In this section, we define a staleness function to characterize
the freshness of collected/buffered data on any device during
synchronization of all wireless devices. In particular, the
staleness function, denoted by g[an(i)], represents the level of
dissatisfaction about data staleness characterized by the delay
an(i) of each wireless device or the need for new information
updates [35]. We assume that g[an(i)] fulfills the following
properties.

• Assumption 3: The function g[an(i)] is non-negative and
non-decreasing [38], implying that stale data is usually
less desired than fresh data [39], [40]. Also, the staleness
function is monotonic with respect to delay for improv-
ing the freshness of collected data.

• Assumption 4: The function g[an(i)] is convex with re-
spect to an(i), although the delay of collected data an(i)
can be a nonconvex function of the bandwidth allocation.

In this paper, we define the staleness function for each
wireless nodes in each round as the fairness utility function

g [(an(i))] =
a(1−β)
n (i)
1− β

,∀n, i, (15)

for β ≤ 0 which is a non-negative and convex function of
an(i). Here, it can verified that (15) satisfy both Assumption 3
and 4. The adoption of a nonlinear convex staleness function
can better capture the trend of delay variations, whereas con-
ventional delay shows a simple linear growth trend that may
be inaccurate in representing these variations. Moreover, by
adjusting β, one can effectively tradeoff between efficiency
and fairness for different wireless devices in (15). For ex-
ample, maximum efficiency is achieved by setting β = 0
whereas proportional and max-min fairness are achieved by
setting β = 1 and β → ∞, respectively.

B. LONG-TERM STALENESS FUNCTION MINIMIZATION
PROBLEM
To overcome the straggler effect in FL system, the delay of
data computation and transmission for all wireless devices
should be synchronized in each communication round. To
this end, we formulate the following optimization problem
as to minimize the average staleness function of delay for all
wireless devices over a long duration:

P1 : min
Pn(i),Rn(i),Bn(i)

lim
T→∞

1
T

T∑
i=1

N∑
n=1

g [an(i)]

s.t.C1 : 0 ≤ Pn(i) ≤ Pmax,∀i,∀n ∈ N ,

C2 : Bn(i)log2

(
1 +

hn(i)Pn(i)
N0Bn(i)

)
≥ Rmin,∀n ∈ N ,

C3 : Tn(i)≥
vCnRn(i)log2(1/ρ)

φn(i)
+

dn

Bn(i) log2
(
1 + hn(i)Pn(i)

N0Bn(i)

) ,

C4 : lim
T→∞

1

T

T∑

i=1

Eg[an(i)][g [an(i)]− g0] ≤ em,∀n ∈ N ,

C5 : EVaR1−Γ (Qn) ≤ ϵ,∀n ∈ N ,

C6 : 0 ≤ Rn(i) ≤ An(i),∀n ∈ N ,

C7 : Bn(i) ≥ 0,∀i,∀n ∈ N ,

C8 :

N∑

n=1

Bn(i) ≤ B,∀i. (16)

In problem P1, C1 constrains the maximal transmit power
of each wireless device. C2 guarantees a minimum data rate
of Rmin for each wireless device during data transmission.
C3 requires a minimum amount of time to be allocated for
computing and transmitting at each wireless device, in order
to achieve the desired accuracy ρ and complete the trans-
mission of the locally trained model. C4 limits the staleness
function by setting the thresholds g0 and em on the desired
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staleness function value and the long-term average of devi-
ations, respectively, in order to mitigate the straggler effect.
C5 mitigates the risk of discarding data in the buffer at the
wireless devices and guarantees the collected data can be fully
exploited for local training.C6 ensures that the amount of data
fetched by each wireless device for training the local model,
Rn(i), does not exceed the amount of data stored in its buffer,
namely An(i), in each communication round i.C7 ensures that
the bandwidth of each wireless device is nonnegative. Fur-
thermore, C8 ensures that the total bandwidth of all wireless
device transmitting their local models synchronously does not
exceed B.

Problem P1 is a nonconvex stochastic optimization prob-
lem with nonconvex constraint C3 [41]. Besides, the resource
allocation decisions over different communication rounds are
coupled in the objective function and constraint C5, posing
major obstacles in online optimization. In Section IV, we will
utilize the Lyapunov optimization and convex optimization
techniques [35] to solve problem P1.

IV. PROPOSED PROBLEM SOLUTION
In this section, we first decompose P1 over different com-
munication rounds by leveraging the Lyapunov optimization
technique, which facilitates convenient decoupled online op-
timization in each communication round. Then, we tackle the
remaining nonconvex objective function and constraints via
problem transformation, and further solve the resulting prob-
lem by convex optimization techniques. Lastly, we analyze
the complexity of the proposed iterative algorithm.

A. PROBLEM REFORMULATION USING LYAPUNOV
OPTIMIZATION
1) EVaR Versus Queue Stability
Coping with the rapidly changing channel and queue con-
ditions necessitates real-time decision-making at each time
slot. However, the randomness of channel variations and data
arrivals presents significant challenges for making optimal
decisions while adhering to the long-term constraints. To
address this, we apply the Lyapunov optimization method in
this paper, which excels in online optimization by transform-
ing a long-term averaged problem into a sequence of single
time slot problems [35], [42]. Despite its effectiveness, con-
ventional Lyapunov optimization based resource allocation
approaches often impose additional stability requirements on
data queues to ensure the method’s applicability. In contrast,
this paper departs from that tradition to maintain a more
meaningful problem formulation. Nevertheless, we can show
that the EVaR constraint C5 in problem P1 inherently guaran-
tees the stability of data queues.
Lemma 1: LetX = {X(i), i ≤ T} be a finite ergodic random
process. The constraint on EVaR, i.e., EVaR1−Γ(X(i)) <
ϵ < ∞, implies that the queue with queue lengths given by
X(i) is both rate stable, i.e., lim

T→∞
X(i)
T = 0, and mean rate

stable, i.e., lim
T→∞

E{X(i)}
T = 0.

Proof: Please refer to Appendix A.

Lemma 1 reveals that the EVaR constraint C5 imposes
a more stringent requirement than the conventional queue
stability conditions. On the other hand, we will further show
below that the EVaR constraint C5 can also be interpreted
as a stability condition for a virtual queue, imlpying that
risk-awareness can be incorporated by applying conventional
stability condition to appropriately defined queues. To this
end, we reformulate C5 as

C5 : EVaR1−Γ (Qn)

= min
z>0



z ln


 1

Γ
EQn


exp


1

z
1

i

i∑

j=1

Dn(j)









 ≤ ϵ,∀n,

(a)⇔ z ln


 1

ΓT

T∑

i=1

exp


1

z
1

i

i∑

j=1

Dn(j)




 ≤ ϵ, z > 0,∀n,

⇔ 1

T

T∑

i=1

z exp
1

z


1

i

i∑

j=1

Dn(j)− ϵ


 ≤ zΓ, z > 0,∀n,

(17)

where (a) is due to the ergodicity of the random process
{Dn(i), i ∈ T} such that we haveE

[
exp

(
1
z
1
T

∑T
i=1 Dn(i)

)]
=

1
T

∑T
i=1exp

(
1
z
1
i

∑i
j=1 Dn(j)

)
. By applying Jensen’s inequal-

ity, it can be shown that the following result holds for all i > 0:

1

T

T∑

i=1

1

i

i∑

j=1

z exp
1

z
(Dn(j)− ϵ)

≤ 1

T

T∑

i=1

z exp
1

z


1

i

i∑

j=1

Dn(j)− ϵ


. (18)

Therefore, we can relax C5 as

C̃5 :
1

T

T∑

i=1

1

i

i∑

j=1

z exp
1

z
(Dn(j)− ϵ) ≤ zΓ, z > 0,∀n.

(19)

Note that C̃5 is a convex constraint.
Let us define virtual queues Y(i) = {Yn(i), n ∈ N} and

Z(i) = {Zn(i), n ∈ N} with the following dynamics:

Yn(i+ 1) = {Yn(i)− zΓ}+ +
1

i

i∑

j=1

z exp
1

z
(Dn [j]− ϵ) ,

z > 0, n ∈ N , (20)

Zn(i+ 1) = {Zn(i)− em}+ + g [an(i)]− g0, n ∈ N . (21)

ConstraintsC4 and C̃5 are satisfied ifZ(i) andY(i) are mean-
rate stable, i.e., limi→∞

E{|Y(i)|}
i = 0 and limi→∞

E{|Z(i)|}
i =

0 [35]. Consequently, problem P1 can be conveniently han-
dled adopting the Lyapunov optimization technique with vir-
tual queuesY(i) and Z(i), which is detailed in the following
subsection.
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2) Problem Reformulation via Lyapunov Optimization
Let Θ(i) = {D(i),Y(i),Z(i)} denote the vector of all vir-
tual and buffer queues. We consider the following quadratic
Lyapunov function

L(i) =
1

2

∑N

n=1
Y 2
n (i) +

1

2

∑N

n=1
Z2
n (i). (22)

A large value of (22) implies a heavy loading in the virtual
queuesY(i) and Z(i). To prevent from abrupt increase in the
load, we introduce the following Lyapunov drift

∆L(i) = E [L(i+ 1)− L(i)|Θ(i)] , (23)

where the expectation is taken with respect to the random
channel states and the optimization variables that are func-
tions of the channel states. The Lyapunov optimization aims
to strike a balance between staleness function and load by
minimizing the following drift-plus-penalty metric in every
communication round

∆L(i) + VE

[
lim
T→∞

1

T

T∑

t=1

N∑

n=1

g [an(i)]|Θ(i)

]
, (24)

where V ≥ 0 is a predefined load control parameter that rep-
resents the tradeoff between the drift ∆L(i) and the penalty

E
[
lim
T→∞

1
T

T∑
i=1

N∑
n=1
g[an(i)]|Θ(i)

]
. Specifically, a larger value of

V is required to achieve a smaller long-term staleness in
the objective value of the original optimization problem P1,
whereas a smaller value of V is preferable to reduce the queue
backlog and move towards a lower congestion state.

However, the Lyapunov drift-plus-penalty function in (24)
is still nonlinear and intractable to optimize directly due to the
expection. Instead of directly minimizing (24), based on the
opportunistic expectation minimization theory [35, Chapter
1.8], we seek to minimize an upper bound of (24). For the
virtual queue Y(i), we have

Yn(i+ 1) = {Yn(i)− zΓ}+ +
1

i

i∑

j=1

z exp
1

z
(Dn [j]− ϵ) ,

z > 0, n ∈ N . (25)

Note that, for any x, we have (max {x, 0})2 ≤ x2. Applying
the inequality to the virtual queuesY(i), we can obtain from
(25) that

Y 2
n (i+ 1)− Y 2

n (i)≤z2Γ2 +
z2

i2





i∑

j=1

exp
1

z
(Dn [j]− ϵ)





2

+ 2zYn(i)


1

i

i∑

j=1

exp
1

z
(Dn [j]− ϵ)− Γ


 . (26)

Similarly, we have

Z2
n (i+ 1)− Z2

n (i)

≤ e2m + (g [an(i)]− g0)
2
+ 2Zn(i) (g [an(i)]− g0 − em) , n ∈ N

≤ (g [an(i)])2 + 2g [an(i)] (Zn(i)− g0) + e2m + g20

− 2Zn(i) (g0 + em) , n ∈ N . (27)

Based on (26) and (27), an upper bound of (24) can be
obtained as (28) given at the top of the next page, where

ftotal =
N∑

n=1

fn =
N∑

n=1


 z2

2i2




i∑

j=1

exp
1

z
(Dn [j]− ϵ)




2

+zYn(i)


1

i

i∑

j=1

exp
1

z
(Dn [j]− ϵ)


+

1

2
(g [an(i)])2

+g [an(i)] (Zn(i)− g0 + V )− zYn(i)Γ− Zn(i) (g0 + em)] .
(29)

According to the principle of the Lyapunov optimization,
we have converted the original problem P1 to minimize the
upper bound (28), or (29) since the first two terms of (28)
are constants, subject to the constraints in each communica-
tion round, i.e., C1,C2,C3,C6,C7, and C8. Then, P1 can be
reformulated as

P2 : min
Pn(i),Rn(i),Bn(i)

ftotal

s.t. C1,C2,C3,C6,C7,C8. (30)

Although constraint C3 is still nonconvex, problem P2 is
readily solvable, as elaborated below.

3) Transformation of Nonconvex Constraint C3

To solve problem P2, we rewrite the nonconvex constraint C3

as

dn

Bn(i)log2
(
1+ hn(i)Pn(i)

N0Bn(i)

)≤Tn(i)−
vCnRn(i)log2 (1/ρ)

φn(i)
,∀n∈N .

⇔ C̃3 : Bn(i)log2

(
1 +

hn(i)Pn(i)
N0Bn(i)

)

− dnφn(i)
Tn(i)fn − vCnRn (i) log2 (1/ρ)

≥ 0,∀n ∈ N . (31)

Note that constraint C̃3 is jointly convex with respect to
Rn(i), Bn(i), and Pn(i), as proved in Appendix B. Problem P2
can be reformulated as

P3 : min
Pn(i),Rn(i),Bn(i)

ftotal

s.t. C1,C2, C̃3,C6,C7,C8. (32)

P3 is a convex optimization problem and fulfills the Slater’s
condition. Thus, strong duality holds for problem P3. This
motivates us to solve P3 below by investigating its dual
problem.

B. PROPOSED ITERATIVE ALGORITHM AND
COMPUTATIONAL COMPLEXITY
Let P̃n(i) = {Pn(i)|0 ≤ Pn(i) ≤ Pmax}, R̃n(i) =

{Rn(i)|0 ≤ Rn(i) ≤ An(i)}, and B̃n(i) = {Bn(i)|Bn(i) ≥ 0},
which are independent feasible sets. Now, we de-
fine the Lagrangian associated with problem P3 as
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∆L(t) + VE

[
lim
T→∞

1

T

T∑

i=1

N∑

n=1

g [an(i)]|Θ(i)

]

= E

[
1

2

∑N

n=1

[
Y 2
n (i+ 1)− Y 2

n (i) + Z2
n (i+ 1)− Z2

n (i)
]
+ V lim

T→∞
1

T

T∑

i=1

N∑

n=1

g [an(i)]|Θ(i)

]

≤ E


1

2

∑N

n=1


z2Γ2 +

z2

i2





i∑

j=1

exp
1

z
(Dn [j]− ϵ)





2

+ 2zYn(i)


1

i

i∑

j=1

exp
1

z
(Dn [j]− ϵ)− Γ





 |Θ(i)




+ E
[
1

2

∑N

n=1

[
(g [an(i)])2+2g [an(i)] (Zn(i)−g0)+e2m+g20−2Zn(i) (g0+em)

]
| Θ(i)

]
+VE

[
lim
T→∞

1

T

T∑

i=1

N∑

n=1

g [an(i)] | Θ(i)

]

=
1

2
Nz2Γ2 +

1

2
N
(
e2m + g20

)
+ E [ftotal|Θ(i)] ,

(28)

L (Pn(i),Rn(i),Bn(i);µ), where µ is the dual variable or
Lagrangian multiplier corresponding to constraint C8. The
Lagrange problem can be defined as follows

min
Pn(i),Rn(i),Bn(i)

L (Pn(i),Rn(i),Bn(i);µ)

= ftotal + µ(

N∑

n=1

Bn(i)− B)

s.t. C1,C2, C̃3,C6,C7. (33)

Note that, given a fixed µ, each wireless device can calcu-
late their own optimum considering their own local dynamics
and constraints. The decomposed problem for bandwidth al-
location Bn(i) is

min
Pn(i),Rn(i),Bn(i)

ftotal +
∑N

n=1
µBn(i)

s.t. Bn(i) ∈ B̃n(i). (34)

Similarly, the decomposed problem of power allocation Pn(i)
and data size Rn(i) is denoted as

min
Pn(i),Rn(i)

fn

s.t. Pn(i) ∈ P̃n(i),Rn(i) ∈ R̃n(i). (35)

(34) can turn into

max
µ

G(µ)= ftotal(P∗
n(i),R

∗
n(i),B

∗
n(i))+µ(

∑N

n=1
B∗
n(i)−B).

(36)

To solve this dual problem of the original optimization P3,
the system can update the global dual variable by the gradient
method such as

µ(j+1) = µ(j) + ςµ,j(
∑N

n=1
B∗
n(µ

(j))− B), (37)

where j is the iteration step, ςµ,j is the iteration step size of the
dual variable µ(j).

The proposed resource allocation procedure for buffer-
aided FL is outlined in Algorithm 1. Therein, the buffer-aided

FL system optimizes the allocated data size, transmit power,
and bandwidth in each communication round for training lo-
cal models. Different from centralized manner that the power
and data will be centralized, the distributed manner enables
to allocate the bandwidth to each wireless node firstly, and
then allocate data size and transmit power according to the re-
source of each wireless node. The overall computational com-
plexity of Algorithm 1 is dominated by the iterative search
for the optimal transmit power and bandwidth. The compu-
tational complexity for solving problem P3 with Lagrange
dual method is given by O(N 3.5 ∗ log2(1/ϵ1) log2(1/ϵ2)),
with N wireless devices, where ϵ1 and ϵ2 > 0 are the
solution accuracy for transmit power and data size required
in Algorithm 1. The number of iterations required for ob-
taining the optimal allocated data size is given by O(1/ϵ0),
where ϵ0 specifies the required accuracy of the allocated
bandwidth. Therefore, the overall computational complexity
of the proposed optimal resource allocation scheme is given
by O(1/ϵ0 ∗ N 3.5 ∗ log2(1/ϵ1) log2(1/ϵ2)), which increases
polynomially with N . The outer loop, described in Algorithm
1, has a bandwidth allocation forN nodes in I communication
rounds. The computational complexity for total iteration is
O(I ∗ 1/ϵ0 ∗N 3.5 ∗ log2(1/ϵ1) log2(1/ϵ2)). It is important to
note that the overall computation complexity is significantly
reduced in two key aspects. First, the algorithm employs
Lyapunov optimization, which approximates the optimization
of a long-term average function by iteratively optimizing a
sequence of instantaneous drift-plus-penalty functions. Sec-
ond, the dual problem formulation is benefited to compute the
optimal solution parallel and reduce the overhead of required
side info among independent subproblems.

V. SIMULATION RESULTS

A. EXPERIMENTAL SETTINGS

The loss function is used to evaluate training performance of
the data fetched from the buffer. We assume that Sn(i) is the
data size of input data xn(i), the local loss function is defined
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Algorithm 1 FL Based on Lyapunov Optimization
1: Initialization : Set the communication round i = 1,

total communication rounds for global FL model T , the
maximum tolerance 0 < ξ0 ≤ 1. Initialize queue lengths
Yn(1), and Zn(1) to be zeros.

2: while i ≤ T and Convergence = false do
3: for n = {1, ...,N} do
4: Update Yn(i), Zn(i) according to equations (20) and

(21), respectively.
5: Update the local models of wireless devices with

parameter wn(i) = w∗(i− 1).
6: Solve problemP3 with with Lagrange dual method

for given initialization and obtain resource allo-
cation {Pn (i) ,Rn (i) ,Bn (i)} according to Algo-
rithm 2.

7: return {Pn (i) ,Rn (i) ,Bn (i),Y (i) ,Z (i)}
8: Perform local model training on data Rn(i) with the

loss function fn (wn | w∗(i),Rn(i)).
9: Obtain the trained model parameterswn(i) of wire-

less device n ∈ {1, · · · ,N}.
10: end for
11: Aggregate global model w∗(i) according to equation

(1).
12: Obtain the loss function F(w∗(i)) of global model.
13: if |F(w∗(i))− F(w∗(i− 1))| < ξ0 then
14: Convergence = true
15: else
16: return w∗(i) and Convergence = false
17: end if
18: i = i+ 1
19: end while

Algorithm 2 Lagrange Dual Method for Solving Problem P3
1: Set the iteration step size ςµ,j, and initialize
Pn(i),Rn(i),Bn(i).

2: repeat
3: Set j = 0.
4: repeat
5: Update the Lagrange multiplier µ according to (37),

and allocate Bn(i) according to (34).
6: until Convergence
7: Update the intermediate values Pn(i),Rn(i) according

to (35). j = j+ 1.
8: until Convergence

as follows [25]:

fn (wn | w∗(i− 1), Sn (i)) =
∥∥xTn (i)wn − yn (i)

∥∥
2
, (38)

where xTn (i)wn and yn(i) denote the estimated value and the
true value associated with the local training of wireless device
n in round i, respectively. ∥·∥2 denotes the Euclidean distance.
The global loss function is defined as (2).

In this section, we evaluate the performance of the pro-
posed algorithm via hardware-in-the-loop simulation. To this

BER meter

Optical module

Figure 4. Data acquisition equipment.

end, two different datasets are selected for training the local
models. The first dataset, namely fixed total samples, ob-
tained from [43], contains 5 × 103 measurement data sam-
ples about the received signal strength indicator (RSSI) of
user equipments (UEs) in different locations in a multi-floor
indoor environment. The RSSI is measured by access points
(APs) deployed on different floors. The second dataset, non-
fixed total samples, collects 5× 105 data samples of bit error
rate (BER) from optical modules, including temperature, volt-
age, bias current, input power, and output power of the optical
modules from a measured testbed. The hardware testbed for
measurement is shown in Fig. 4, including a BER meter and
an optical module. Each dataset is divided into a training set
and a test set, and the proportions of training and test data will
be set during simulation.
For the hardware-in-the-loop simulation, we adopt nine

laptops installed with developed machine learning software
to simulate the wireless FL, where N = 8 laptops with
different computation capacities emulate wireless devices and
the ninth emulates the data center, respectively. The machine
learning software includes projects of input data, queuing
data in the buffer, processing data by machine learning, and
transmitting data to other laptops. The data is collected to
the laptops and each laptop trains the local model. When all
the local models have been trained, they will be uploaded to
a separate laptop serving as the data center for aggregation
in FL. Then the data center returns the global model to the
laptops simulating wireless devices. All time durations are
recorded to calculate the delay. It should be noted that the
hardware-in-the-loop FL system can receive the collected
dataset from other hardware testbeds. The CPU frequency of
each laptop is fixed in the simulation. Moreover, the CPU
frequency is fixed as φn(i) ≡ φ∗

n ,∀i in each local training,
whereφ∗

n is the CPU frequency the laptop simulating wireless
device n.
For comparison, we also evaluate the performance of sev-

eral baseline schemes.
• Baseline Scheme 1: Baseline scheme 1 employs syn-

chronous FL with no buffers deployed at the wireless
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Table 1. Simulation parameter settings. [44]

Parameter Description Default Value
ρ Accuracy of local training 1/2
ξ0 Convergence threshold of the

global loss function
0.005

Rmin Minimum data rate for each
wireless device

0.5Mbits

Pmax Maximum transmit power of
wireless device

1W

Γ Risk level 0.05
ϵ Threshold of EVaR 3
In Number of iterations 200
N0 Noise power spectral density −170 dBm/Hz
em Threshold of delay exceedance 10−4

Cn Number of CPU cycles [1×104, 3×104] cycle/sample
φn Computation capacity of wire-

less devices
[1× 109, 4× 109] cycle/s

devices [45]. As such, unlike the proposed scheme, the
available data are equally allocated to different wireless
devices. And all available data is utilized to train the
local models, ignoring the heterogeneity of data. After
all local models have been trained and uploaded, the data
center aggregates the global model synchronously.

• Baseline Scheme 2: Baseline scheme 2 employs the
asynchronous FL scheme in [46] with a buffer available
at each wireless device. The available data are allocated
to the wireless devices according to their computing and
communication capabilities. Unlike synchronous FL, as
long as two wireless devices have finished training their
local FL models, they can upload their local models
to the data center for aggregation. Upon receiving the
partially aggregated local FL model, data center will use
it to update the global FL model.

• Baseline Scheme 3: Baseline scheme 3 employs the
synchronous FL scheme in [47], in which the edge node
is equipped with a buffer. Unlike our proposed method,
all available data is firstly stored in the buffer before
chosen for training model with probability pn(i) =

Rn(i)
An(i)

.

Unless otherwise specified, the simulation parameters are
set according to Table I. The computation and communication
processes repeat in each communication round until either the
number of communication rounds exceeds a preset threshold
or the global model converges. The latter means that the
values of the loss function in consecutive iterations differ by
no more than a specified threshold ξ0.

The performance metrics to be evaluated include the loss
function for FL model, cf. (38), the staleness function of
proposed buffer-aided FL, cf. (15), and the computation time
of training local models.

Based on (7), the average time of wireless device n required
for training its local FL model can be calculated as

τ =
1

N

T∑

i=1

N∑

n=1

InCnRn (i)
φn(i)

. (39)

Figure 5. Value of the global loss function vs. the number of
communication rounds.

B. COMPARISON OF LOSS FUNCTION VALUES

Fig. 5 shows the value of the global loss function of pro-
posed scheme and baseline scheme 1 over multiple commu-
nication rounds for different sets of data samples with and
without buffer. It can be seen from Fig. 5 that the buffer-
aided synchronous FL model can achieve the same loss func-
tion threshold with fewer number of communication rounds
than the synchronous FL model without buffer. This is be-
cause all wireless devices can adapt data sizes fetched from
their buffers to accelerate the aggregation of the global FL
model and therefore improve the convergence rate of buffer-
aided synchronous FL. Fig. 5 also shows that with more
data samples available, the loss function can approach the
thresholdmuch faster. This result implies that exploitingmore
data samples, the global FL model can achieve convergence
rapidly.
In Fig. 6, we evaluate the accuracy of the resulting FL

model, namely the accuracy of the trained model on the test
dataset for different amounts of training time. The second
dataset from 4 optical modules is used to train global model.
The trained global model is used to evaluate the sample data
of test set from different optical modules. The accuracy is
the ratio of correct sample data to the total sample data. In
this simulation, the input data for the FL model system is
assumed to be of unlimited size. We observe that the accuracy
of FL increases with the total training time. Meanwhile, a
higher accuracy can be achieved as the number of wireless
devices increases from N = 6 to N = 10, for a given
total training time. This is because more wireless devices can
compute more data and upload more trained parameters of
local models. Consequently, the global FL model can obtain
less loss function by aggregating more number of local FL
models. On the other hand, the training time is also influenced
by the number of epochs in each communication round. In FL,
an ‘‘epoch’’ refers to one complete pass through the entire
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N = 6

N = 10

5 Epochs 10 Epochs

Figure 6. The accuracy of the FL training vs. total time of training using
proposed scheme.

training dataset during the training process of a local model.
When the number of epochs to training local FL model is
set as 5 and 10, the accuracy of the FL training for different
total training time is also evaluated. We observe that when the
number of epochs is smaller, the accuracy of the FL training is
higher due to more number of communication rounds within
the same total amount of training time. This result shows that
to achieve high evaluation accuracy of the FL model, we can
appropriately reduce the number of epochs for the local FL
model training and increase the number of communication
rounds for aggregating global FL model.

C. COMPARISON OF AVERAGE DELAYS
Fig. 7 shows how the average delay of all wireless devices
varies with the interval time of wireless devices in collecting
data from environment, where the total data size is identical
for all wireless devices. Note that the computation time of
the FL also depends on the number of epochs for the local
FL training in each communication round. To facilitate the
comparison, in this subsection, the number of epoch is fixed
as 5 for the training local FL models without further spec-
ified.For baseline scheme 1, all the availble data is equally
allocated to each wireless device. While in the proposed
scheme, the amount of data is allocated based on the compu-
tation capacity of wireless devices. Unlike proposed scheme,
the asynchronous FL in baseline scheme 2 aggregates the
global FL model if two local models are uploaded. It can
explain that asynchronous FL scheme needs to aggregate the
local model many communication round while the buffer-
aided synchronous FL scheme aggregates the local FL model
per communication round. As shown in Fig. 7, the compu-
tation time of the asynchronous FL scheme is longer than
that of synchronous FL scheme because the asynchronous FL
scheme needs more communication rounds and number of
aggregations to ensure given performance of the FL model.

Figure 7. Average delay vs. interval time of data collection.

Fig. 7 reveals that the delay depends tightly on the time
interval between consecutive data collections from the envi-
ronment. Due to the completion time for each communication
round is almost equal, the waiting time for data in the buffer
significantly increases when the interval time is small, which
greatly affects the average delay. In all schemes, the average
delay decreases with the interval time for data collection. We
also observe that due to the straggler effect, the synchronous
FL model without buffer is larger than two other methods.
Therefore, the delay for synchronous FL without buffer is
much longer than other schemes. This result also shows
the advantage of computation efficiency of the buffer-aided
synchronous FL scheme. We observe from Fig. 7 that as the
interval time of data collection is small, baseline scheme 3
results in larger average delays than our proposed scheme.
When the interval time of data collection increases, the gap of
average delay between the two schemes reduces. Unlike our
proposed scheme, baseline scheme 3 probabilistically choose
data for training. When the interval time for data collection is
small, the time for data chosen increases the average delay of
baseline scheme 3.
Fig. 8 shows under different gaps of the loss function in

the adjacent communication round, the required training time
for different accuracies of the FL training. We evaluate the
computation time to alter the number of wireless devices,
where the total data size is identical for all wireless devices.
Since the accuracy is for a range of training time, we represent
in Fig. 8 the intermediate values for the time periods. We
can observe that to achieve the required FL training accuracy,
more wireless devices require less training time. This result
is reasonable that more wireless devices can obtain more
accurate global FL model due to more local FL models are
aggregated at the data center. It can also be observed that if
the gap of the loss function in the adjacent communication
round is smaller, the FL system require more training time. It
is interesting that even the consumed training time with gap
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Figure 8. The required global training time vs. accuracy of the FL training.

of the loss function ξ0 = 0.001 is more than with ξ0 = 0.005,
the accuracy of the FL training with ξ0 = 0.001 is not good
than that with ξ0 = 0.005. This result means that the setting
of the gap of the loss function impacts on the training time but
not necessarily affect accuracy. However, the accuracy more
depends on the result calculated by the trained model.

Fig. 9 shows the total computation time changes with the
number of wireless devices under 4 FL schemes, our proposed
buffer-aided synchronous model, synchronous model without
buffer, and asynchronous model. We consider the loss func-
tion for two adjacent rounds of communication to be less than
ξ0 = 0.005 as converged, and discuss two cases of limited
dataset and unlimited dataset. It can be observed that the
computation time of our proposed buffer-aided synchronous
model use shorter computation time than synchronous with-
out buffer under all number of wireless devices, but it is
less than asynchronous method only the number of wireless
devices is more than 6. The reason is that the asynchronous
model should use more time to aggregate global model when
the number of wireless devices is larger. However, the time
consumption of buffer-aided synchronous model for aggre-
gating global FL model is independent of the number of
wireless devices. Due to the straggler effect, the time con-
sumption of synchronous model without buffer is more than
other two FL schemes. Additionally, the computation time of
baseline 3 is larger than that of our proposed scheme when the
number of wireless devices is small. This result is because the
computation time in each round is short when the number of
wireless devices is small. The time consumption for choosing
data with probability in baseline 3 occupies a very large part
of the computation time in each round, which leads to the
computation time being larger than our proposed scheme.
On the other hand, the computation time for the unlimited
data set is more than limited data set. This result is due to
unlimited data set introduce more randomness and data size
increases with the number of wireless devices.We can find

Fixed total samples

Non-fixed total samples

Proposed Scheme

Baseline Scheme1

Baseline Scheme2

Baseline Scheme3

Figure 9. Computation time vs. number of wireless devices.

3

4

Fixed total samples

Non-fixed total samples

Proposed Scheme

Baseline Scheme3

Proposed Scheme

Baseline Scheme34

3

Figure 10. Average staleness function vs. number of wireless devices.

that the time consumption of the synchronous model without
buffer increases with the number of wireless devices. This is
due to the wireless devices have almost same data size for
unlimited data set, the total data size increase with the number
of wireless devices. The increase of the data size introduces
more randomness for training FL model and hence, the total
consumption time increases.

D. COMPARISON OF STALENESS FUNCTION VALUES
Fig. 10 illustrates the effect of the number of wireless devices
on long-term average g[a(n)] for different EVaR upper bound
ϵ for limited and unlimited data set. For limited data set,
we can find that g[a(n)] decreases as the number of wire-
less devices increases due to the data is distributed to more
wireless devices. For unlimited data set, with the number of
wireless devices increasing, the amount of data will increase
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Figure 11. Average staleness function g[a(n)] vs. EVaR threshold ϵ.

exponentially, which will increase the amount of data on
the wireless devices. However, with buffer on the wireless
devices, data can be allocated to the wireless devices with
large computational capability, which may lead to g[a(n)]
decreases. The average staleness function of baseline scheme
3 is larger than that of our proposed algorithm. In baseline 3,
the data used to train the local model must wait for the edge
node to discard previously collected data with probability and
hence, the average delay of data is larger than our proposed
method. According to the fairness function described in (15),
the staleness function of baseline 3 is larger than that of our
proposed method.

In Fig. 11, we evaluate the relationship between the stale-
ness function and the EVaR threshold ϵ for the limited data
set. Our findings indicate that the EVaR threshold of the data
collection queue significantly impacts the average staleness
function in the FL system. Notably, as ϵ increases, the average
staleness function initially rises and then decreases across all
four FL schemes. This behavior occurs because the average
staleness function is influenced by both the buffer size and
the amount of data required for training the local model.
When ϵ is small, the buffer can only store a limited amount of
collected data, resulting in a low average staleness function
due to the discarding of some data. Conversely, with a large
ϵ, more data is used for local FL model training, leading
to increased queue delays. Consequently, the average stale-
ness function first increases with ϵ and then decreases. It is
important to note that there is an optimal EVaR threshold
where the average staleness is maximized. This threshold
balances the amount of data discarded with the data used
to train the local FL model at a fixed learning rate. Among
the four transmission schemes, the buffer-aided synchronous
FL model achieves the lowest average staleness function,
indicating that data experiences minimal waiting time in the
buffer.

VI. CONCLUSION
This paper proposed a novel buffer-aided synchronous FL
framework for improving the convergence rate and overall
loss function. To facilitate the performance improvement of
the FL system deployed in data collection applications, we
introduced the delay to represent the freshness of collected
data and utilized the EVaR of the queue length to guarantee
the risk of data loss at the buffer. We formulated a nonconvex
optimization problem for minimizing the average staleness
function of global FL system within a given tolerable risk
of data loss at the buffer equipped at the wireless device for
local FL model. We transformed the non-convex constraints
of the EVaR limitation and time consumption for data pro-
cessing to the convex counterpart. Meanwhile, exploiting the
Lyapunov optimization technique, we decomposed the non-
convex problem into convenient online optimizations in each
frame, which were further solved by convex optimization.
Simulation results unveiled that our proposed algorithm can
effectively mitigate the risk of data loss in queues and mini-
mizing the staleness function for the FL system, compared to
the counterpart synchronous FL framework without a buffer.
These results demonstrated the huge potential of employing
buffer in wireless devices to enhance the performance of
synchronous FL systems.

APPENDIX A
PROOF OF LEMMA 1
Due to the ergodicity of random process X, we have
E[exp (X(i)/z)] = lim

T→∞
1
T

∑T
i=1exp (X(i)/z). According to

the definition in (13), the EVaR of X is given as

EVaR1−Γ(X(i)) = min
z>0

{
z ln

[
1

ΓT

T∑

t=1

exp

(
X(i)
z

)]}
.

(40)

Meanwhile, following the properties of the log-sum-exp
function, we have

max {X(0), ...,X(T )}

≤ z ln (ΓT ) + z ln

[
1

ΓT

T∑

i=1

exp

(
X(i)
z

)]
, z > 0,

≤ z ln (ΓT ) + ϵ, z > 0. (41)

Since for any i, we have X(i) ≤ max {X(i), ...,X(T )} and
E{X(i)} ≤ max {X(0), ...,X(T )}. Meanwhile, for any finite
z > 0, we have lim

T→∞
z ln(ΓT )+ϵ

T = 0. Therefore, the limits

lim
T→∞

X(i)
T and lim

T→∞
E{X(i)}

T exist and satisfy lim
T→∞

X(i)
T =

lim
T→∞

E{X(i)}
T = 0, which completes the proof.

APPENDIX B
PROOF OF CONVEXITY OF ~C3

We first show that the first term in (31) is a jointly con-
cave function of Bn(i) and Pn(i). Define x ∆

= Bn(i),
y ∆

= hn(i)Pn(i)
N0

, and f1(x, y) = −xlog2
(
1 + y

x

) ∆
=
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−Bn(i)log2
(
1 + hn(i)Pn(i)

N0Bn(i)

)
, then the first term in (31) is equal

to −f1(x, y). The Hessian matrix of f1(x, y) is

H =

[
y2/x

(x+y)2
− y

(x+y)2

− y
(x+y)2

x
(x+y)2

]
, (42)

which is positive semidefine with nonnegative eigenvalues

σ1 = 0,

σ2 = x2+y2

x3+2x2y+xy2 ≥ 0.
(43)

Therefore, −f1(x, y) is a concave function.
Now define the second term in (31) as f2(Rn(i)) =

− dnφn(i)
Tn(i)fn−vCnRn(i)log2(1/ρ)

. We have

∂2f2(Rn(i))
∂2Rn(i)

= − 2dnφn(i)[vCnlog2 (1/ρ)]
2

[Tn(i)fn − vCnRn(i)log2 (1/ρ)]
3 < 0.

(44)

Thus, f2(Rn(i)) is a concave function of Rn(i).
Therefore, C̃3 can be transformed into −f1(x, y) +

f2(Rn(i)) ≥ 0, which is jointly convex with respect to Rn(i),
Bn(i), and Pn(i). This ends the proof.
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