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Abstract: Several areas of wireless networking, such as wireless sensor networks or the Internet
of Things, require application data to be distributed to multiple receivers in an area beyond the
transmission range of a single node. This can be achieved by using the wireless medium’s broadcast
property when retransmitting data. Due to the energy constraints of typical wireless devices, a
broadcasting scheme that consumes as little energy as possible is highly desirable. In this article, we
present a novel multi-hop data dissemination protocol called BTP. It uses a game-theoretical model
to construct a spanning tree in a decentralized manner to minimize the total energy consumption
of a network by minimizing the transmission power of each node. Although BTP is based on a
game-theoretical model, it neither requires information exchange between distant nodes nor time
synchronization during its operation, and it inhibits graph cycles effectively. The protocol is evaluated
in Matlab and NS-3 simulations and through real-world implementation on a testbed of 75 Raspberry
Pis. The evaluation conducted shows that our proposed protocol can achieve a total energy reduction
of up to 90% compared to a simple broadcast protocol in real-world experiments.

Keywords: wireless networks; data dissemination; broadcast tree

1. Introduction

In several areas of wireless networking, such as wireless sensor networks (WSN) or
the Internet of Things (IoT), application data need to be disseminated across multiple
devices to reach their destination. In particular, there are applications in which one device
needs to disseminate data to all other nodes in the network, e.g., in tasks such as network
configuration [1], update dissemination [2], or network diagnosis. Other typical examples
are announcements, notifications, and event distribution [3].

To enable these applications, the wireless medium’s broadcast property can be utilized.
This means that multiple devices in the vicinity of the sender can receive a transmitted
packet. Since the possible transmission range of a wireless device is limited by its maximum
transmission power, a multi-hop data dissemination scheme is required, i.e., nodes in dif-
ferent locations retransmit the received packets to distribute the data over an extended area.
Furthermore, since wireless network devices usually have a limited energy budget, only
selected nodes should actively participate in data dissemination through retransmission,
while the other nodes should be passive consumers of the received packets. Thus, the active
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nodes form a spanning tree that connects all nodes of the network to the root node. There
are several combinations of nodes that can form a spanning tree, but the construction of an
energy-minimal spanning tree is NP-hard [4]. Furthermore, to minimize the total energy
consumption of a network in a real setting, the practical applicability of a spanning tree
construction algorithm is important. However, although there are several spanning tree
approaches in the literature, virtually none of them can be implemented in a real-world
environment due to different shortcomings. Many approaches assume global knowledge of
parameters or states of nodes, but such knowledge is not available without additional effort
in practice. Most works do not consider the potential occurrence of graph cycles. Some
studies assume a pre-existing spanning tree and omit the initial spanning tree construction
phase. Others do not optimize the transmission power levels of the individual nodes,
resulting in missed potential. Centralized approaches are generally not suitable for wireless
ad hoc and multi-hop networks.

In this article, we present the Broadcast Tree Protocol (BTP), a novel multi-hop data
dissemination protocol that constructs a spanning tree in a decentralized manner such
that the total energy consumption in a network is minimized. This is achieved by letting
each node connect to the broadcast tree in a way that minimizes its own contribution to
the total energy consumption. To realize this approach, we first model the broadcast
tree using a game-theoretical model (based on the work conducted by Mousavi et al. [5])
that has been proven to converge to a Nash Equilibrium, yielding better results than other
approaches from the literature. However, the original model makes assumptions that
render a practical implementation impossible. First, it assumes that every node is aware of
the transmission power of its neighbors at all times. However, this assumption translates
to complicated and expensive status updates between neighboring nodes. Second, the
original model assumes that all nodes make their decisions at the same time. Achieving this
in practice would require the precise time synchronization of all nodes, which, in itself, is a
challenging task. Third, the potential game proposed by Mousavi et al. [5] uses a weakly
dominant strategy where a node can switch between different parent nodes even if the
energy costs that it incurs stay the same. This strategy can result in a ping-pong effect,
i.e., a node may permanently switch between multiple parent nodes, while the overall
transmission power of the network is not reduced further. Fourth, the original model
assumes that the constructed broadcast tree does not have cycles. However, due to the lack
of time synchronization of all nodes and the lack of global knowledge at each node, graph
cycles cannot be easily avoided in practice. Therefore, we present an approximation of the
original model that retains the convergence properties of the original model and can be
implemented in real-world settings.

In particular, we make the following contributions:

1. We present BTP, a practical protocol that approximates a game-theoretical model for
constructing an energy-minimal broadcast tree while preserving both its convergence
and Nash Equilibrium properties. To the best of our knowledge, BTP is the first
protocol for energy-efficient data dissemination in wireless multi-hop networks based
on a provably optimal game-theoretical model that is implemented on real hardware.

2. We design and implement a discovery mechanism that allows the nodes in a wireless
multi-hop network to construct a broadcast tree in a decentralized fashion using
locally available information from their direct neighbors.

3. We change the decision strategy of the algorithm from a weakly dominant strategy to a
strictly dominant strategy to avoid ping-pong effects, in which a node may potentially
continue changing its decision without further reducing the transmission power.

4. We implement and evaluate three different algorithms for inhibiting graph cycles.
Specifically, (1) the Path-to-Source algorithm avoids cycles by letting each node keep
track of the path from the root to itself so that each node can check the consistency
of the spanning tree when making decisions. (2) The Mutex algorithm avoids cycles
by letting each node lock its sub-tree when connecting to a different parent node,
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ensuring consistency at all times. (3) The Ping-to-Source algorithm allows for cycles
temporarily, but it detects and resolves such cycles immediately.

5. We evaluate BTP using different tools to assess its feasibility under various condi-
tions. First, we use Matlab simulations to compare BTP against approaches from the
literature. Second, we perform NS-3 simulations to investigate the scalability of BTP.
Third, we present a real-world implementation of BTP, that is evaluated on a testbed
of 75 Raspberry Pis deployed in one of our university buildings to explore its practical
feasibility. The evaluations show that BTP can achieve an energy reduction of up to
90% in real-world experiments compared to a simple broadcast protocol.

6. The code of the NS-3 implementation and the real-world implementation has been
released under a permissive open-source license. Furthermore, all code required
to reproduce the experiments as well as the experimental artifacts are also been
made available.

This article is organized as follows. Section 2 discusses related work. Section 3
introduces our system model. Section 4 presents the game-theoretical model, followed
by design of the formal protocol. Section 5 presents comparisons of BTP against other
algorithms in Matlab simulations, while Section 6 explores the scalability of BTP in NS-3
simulations. Section 7 presents the implementation of BTP on Raspberry Pis and an
evaluation through practical experiments. Section 8 concludes this article and outlines
areas for future work.

2. Related Work

Several approaches have been proposed for designing energy-efficient broadcast trees.
In one approach, the nodes broadcasted beacon packets with increasing transmission power
to iteratively build a set of all their neighbors [6]. In another work, each node was connected
to the node for which the minimal additional energy usage was required [7]. In yet another
work, each node computed its optimal parent under a certain optimization objective, while
the parent was on the path to the source node [8]. Energy accumulation to minimize the
nodes’ transmission power was also used [9], while others attempted to find a spanning
tree that minimizes the number of transmissions and the transmission delay at the same
time [10]. Also, clusters of trees have been built using different methodologies [11–13].
Several approaches use game theory to construct a spanning tree that requires minimal
transmission power [14,15]. Finally, some authors have attempted to minimize the path
lengths from the source to all other nodes to minimize energy consumption [16,17].

Furthermore, several centralized approaches have been proposed. For example, there
are approaches in which sensor nodes send a beacon packet to a central controller that
constructs the tree [18] or minimizes the path lengths of the tree [19].

Several approaches do not rely on a tree structure to disseminate data in wireless ad hoc
networks but still attempt to minimize total energy consumption by, for example, proposing
an energy-efficient sensor placement algorithm [20] or by letting a controller decide which
nodes should transmit the data [21,22]. Other approaches involve the formulation of a
linear programming problem that finds the most energy-efficient unicast path to reach
all nodes [23], the proposal of a data-forwarding scheme that utilizes nodes’ contextual
information [24], or the use of a k-coverage algorithm to distribute data energy-efficiently
in wireless underwater sensor networks [25].

Additionally, some approaches do not minimize energy consumption but optimize
throughput [26], delivery probability [27], end-to-end latency [28–30], or fairness [31].

Furthermore, practical approaches with an implementation were either aiming not to
minimize energy consumption but other metrics such as path length or latency [32,33] or
were not based on a proven theoretical model [34–36].

Finally, apart from approaches that rely on topology control or spatial placement, energy
efficiency can also be optimized through techniques like satellite communication [37,38],
beamforming [39–41], or MU-MIMO [41]. However, these approaches are beyond the scope
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of our work since devices used in multi-hop wireless sensor networks are typically not
equipped with hardware capable of using such techniques.

Compared to BTP, the aforementioned decentralized approaches suffer from various
problems. Many approaches require global knowledge of parameters or the states of
neighboring nodes and do not explicitly address the inhibition of graph cycles. Some works
do not consider the initial tree construction phase but assume that an already-constructed
tree exists, where, afterwards, only the transmission power is adjusted. Other approaches
also squander their potential by not leveraging the possibility of adjusting the transmission
power of each node. Furthermore, centralized approaches are usually not suitable in the
area of wireless ad hoc and multi-hop networks. Spanning trees offer the possibility to
reach all nodes in a network with a minimum amount of energy, making approaches that
do not rely on a tree structure questionable in terms of minimizing the energy consumption.
Finally, the presented approaches either do not provide an implementation or a real-world
evaluation using off-the-shelf Wi-Fi devices or are not based on a proven theoretical model.
In fact, most of the presented works only propose a theoretical model without considering
its applicability. Some of these models cannot be implemented under real-world constraints.

3. System Model

Our system model is based on the assumption that a given source node contains data
to send to all other nodes in a network. The nodes are spatially distributed, and each
node has a single antenna and a maximum transmission power of pmax. Due to the path
loss properties of wireless transmissions, the source node may not be able to reach all
other nodes, even if transmitting with pmax. Therefore, a multi-hop transmission scheme is
required. Table 1 lists the mathematical notations of our system model described below.

Table 1. Mathematical notations.

Notation Description Notation Description

T Broadcast tree consisting of
nodes V and edges E v ∈ V A node of the broadcast tree T

S ∈ V Source node of the broadcast tree e ∈ E An edge of the broadcast tree T
pmax Maximum possible Tx power pi Tx power of node i ∈ V
|hi,j|2 Channel gain of (i, j) ∈ E σ2 Noise power
γj SNR at node j γmin Minimum required SNR
Ci All children of node i ∈ V Nk All neighbours of node k ∈ V

pi,j
Tx power that node i ∈ V must
use to reach node j ∈ V pi(Ci)

Tx power that node i ∈ V must
use to reach all its children Ci

p Sum of Tx powers of all nodes in V

G Potential game P Set of rational players V \ {S}

a(t)j
Selected parent of destination
node j at iteration t a(t) Action profile at iteration t

ϕj

(
a(t)j

) Cost function of destination node j
for action a(t)j at iteration t

A(t)
j

Set of possible actions (parents) for
node j at iteration t

3.1. Graph Representation

A rooted spanning tree is an appropriate graph for a multi-hop broadcast scheme.
In the remainder of this article, we call such a tree a broadcast tree. A broadcast tree is
defined as a graph T = (V, E), where the vertices V correspond to all nodes of the network,
the source node S ∈ V is the root of the broadcast tree, and the edges E are the connections
between the nodes. Each edge e ∈ E has a weight pi,j corresponding to the transmission
power required to successfully establish a wireless communication link between the two
nodes {i, j} ∈ Ve connected via e. Furthermore, a broadcast tree must not contain any
cycles, i.e., for a given broadcast tree T = (V, E), there is no path of edges (e1, e2, . . . , en)
with a vertex sequence (v1, v2, . . . , vn, v1).
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In a broadcast tree, each node j ∈ V \ {S} has exactly one parent i, whereas each
parent may have multiple children. The set of children of a parent i is denoted as Ci, as
indicated by the blue box in Figure 1. Further, we assume that all communication links are
bi-directional. Due to the broadcast property of wireless communications, a parent node i
has to send data only once, while all its children Ci should be able to receive it.

S

i

j

k
p S,i

pS(CS)

Ci

Nk

Figure 1. Broadcast tree overview.

3.2. Transmission Power Model

To establish a connection between a parent i and all its children Ci, node i has to
transmit data with enough transmission power to ensure that the received signal strength
exceeds a certain level at all of its children Ci. The signal-to-noise-ratio (SNR) γj at receiver
j ∈ Ci is:

γj =
pi|hi,j|2

σ2 (1)

Here, pi is the transmission power that parent i uses to send the data, |hi,j|2 is the channel
gain, and σ2 is the noise power. Furthermore, based on the minimally required SNR γmin,
the minimum transmission power that i must use to reach j is as follows:

pi,j =
γminσ2

|hi,j|2
(2)

In Figure 1, this is visualized as pS,i on the connection between S and i. Furthermore, a
node j that receives a signal from node i can calculate the required transmission power
as follows:

pi,j =
piγ

min

γj
(3)

The transmission power that a parent node i must use to reach all its children Ci
depends on its most distant child and is generally bound by pmax:

pi(Ci) = max
j∈Ci

(pi,j) ≤ pmax (4)

Note that both connections of S are marked with pS(CS) in Figure 1 due to the broadcast
property. The neighborhood of a parent k is defined in the following manner:

Nk = {l|l ∈ V, pk,l ≤ pmax}, (5)

i.e., it contains all nodes that can be reached by parent k with the transmission power pmax

or less, as represented by the green box in Figure 1.
Our goal is to minimize the total transmission power in the network.

p = ∑
i∈V

pi(Ci) (6)

The total transmission power is defined as the sum of the transmission powers pi(Ci) of all
nodes i ∈ V for transmitting to their respective child nodes Ci.
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4. Broadcast Tree Protocol

This section presents the design of our Broadcast Tree Protocol (BTP) that is based on
a game-theoretical model.

4.1. Potential Game

Our approach is based on a potential game [42], i.e., all nodes cooperate to minimize
the total transmission power (Equation (6)) required to disseminate data over an entire
broadcast tree T. The use of potential games to calculate energy-efficient broadcast trees in
a decentralized manner has been proposed by Mousavi et al. [5].

4.1.1. Design of the Potential Game

Our potential game is designed as a child-driven game, meaning that the receiving
nodes (children) decide which transmitting node they select (parents). The construction of
the broadcast tree T is executed in iterations, and the current iteration number is denoted
by the index t. The potential game G is described by a set of rational players P containing
all destination nodes j ∈ V \ {S}, a set Aj of possible actions for each player j, and a
player-specific local cost function ϕj for each player j.

Each node j individually decides from which parent node it should receive data.
Therefore, the set A(t)

j of possible actions for each player j is the set A(t)
j = V \ {j} with

its potential parents. In each iteration t, each node j ∈ P selects a parent node, which is
denoted by the action a(t)j ∈ A

(t)
j . The action profile of the game a(t) = (a(t)1 , . . . , a(t)n ) is

a vector containing the actions of all nodes in iteration t, and a(t)−j represents the actions
of all nodes except the j-th node. Each node j has a player-specific local cost function
ϕj(a(t)j , a(t)−j), which depends on the node’s action a(t)j and the actions a(t)−j of all other nodes
in the network.

This cost function, ϕj, is designed to be the marginal contribution of the transmission
power required by its parent i to reach the considered node j:

ϕj

(
i, a∗−j

)
= pi(Ci)− pi(Ci \ j) (7)

To describe the solutions of G, we introduce the concept of a Nash Equilibrium (NE).
An action profile a∗ is an NE of G if

ϕj

(
a∗j , a∗−j

)
≤ ϕj

(
aj, a∗−j

)
, ∀j ∈ P , aj ∈ A

(t)
j (8)

holds, i.e., no node in P can reduce its local cost ϕj any further by changing its action aj.
We consider the best response of node j in iteration t to the other nodes’ actions as follows:

a(t)j = argmin
a(t)j ∈A

(t)
j

ϕj

(
a(t)j , a(t)−j

)
. (9)

Mousavi et al. [5] proved that if all players select their actions according to their best
response (Equation (9)), the strategy profile will converge to an NE, which minimizes the
transmission power over all nodes (Equation (6)).

Although the presented potential game contributes to the decentralized construction
of energy-efficient broadcast trees, its practical implementation poses several challenges.
First, in the potential game, it is assumed that every node j knows all potential parents in
V at any given iteration t as well as the actions of all other players k ∈ P . However, this
information is not easily available in a real-world system; therefore, it must be exchanged
and maintained. Second, the potential game assumes iterations with discrete time steps,
while every node makes a decision at each time step. This is not feasible for a distributed
algorithm in the real world since there is no mechanism to precisely synchronize all nodes.
Therefore, each node must make a decision whenever it obtains information asynchronously
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from its neighborhood. Third, the potential game follows a weakly dominant strategy,
where a child node j changes parents if the total transmission power p remains, at most,
the same. An alternative is a strictly dominant strategy, where a child node j only switches
to another parent node if the total transmission power p is strictly reduced. In a real-world
implementation, a problem may arise wherein no stable broadcast tree T is found when
a child node can reach two potential parent nodes with the same transmission power,
causing the child node to repeatedly switch between the two parent nodes. Fourth, while
the potential game assumes that there are no graph cycles, a real-world implementation
needs a mechanism to ensure this property. Thus, we modify the potential game as follows.

4.1.2. Approximation of the Potential Game

In contrast to the original approach, (t) now denotes the iteration of a node j that is
not synchronized with other nodes. Therefore, in any given iteration (t), a node j possesses
the information about the transmission power pQj ,j that j’s current parent Qj needs to reach
node j. Furthermore, for a given potential parent i at iteration (t), j knows the transmission
power required by i to reach all of its children Ci, i.e., pi(Ci), since node i shares this
information through broadcast messages. Therefore, in iteration (t), j has two possible
actions A′(t)j = {Qj, i}: either stay with the current parent Qj or switch to i. Furthermore, j
can also derive the transmission power pi,j that i needs to reach j, as shown in Equation (3).
With the information received from Qj and i, j can also derive how much Qj can potentially
reduce its transmission power if j is no longer a child of Qj as well as how much i would
need to increase its transmission power to reach all its children if j was a child of i. With
this information in hand, j has two cost functions that express its marginal contribution to i
and Qj, respectively:

ϕ
(t)
j (i) = pi(Ci ∪ j)− pi(Ci) (10)

ϕ
(t)
j (Qj) = pQj(CQj)− pQj(CQj \ j) (11)

Using this information, and changing the weakly dominant strategy to a strictly
dominant strategy, a node j switches to the potential parent i if the marginal contribution
to i is lower than the marginal contribution to the current parent Qj:

a(t)j = argmin
a(t)j ∈A′

(t)
j

ϕj

(
a(t)j

)
(12)

This modification enables the child node to make decisions whenever a new potential
parent node is discovered instead of having to exchange information with all other nodes.
To solve the problem with our approximation in which a child node j does not know all the
potential parents in V, each node needs more than one turn in the game to find the optimal
parent. Therefore, our last modification is the introduction of a counter that tracks how
often a potential parent has been discovered without j switching parents. Once a threshold
is reached, we consider all parents of a node to be discovered and the node to be finished.
With this last change, child j might not find the optimal parent in the first iteration, but,
over time, it will switch parents until the best parent is found.

In the following, we show that the modified game still converges to an NE in finite time.
We make the following assumptions: (1) nodes use discovery packets to identify potential
parents, no discovery packets are lost, and all nodes receive discovery packets from their
entire neighborhood Nk; (2) the obtained values pi(Ci ∪ j), pi(Ci), pQj(CQj), and pQj(CQj \ j)
are undisturbed. The first assumption requires the counter mentioned above to be set to
a reasonably high value, which is carried out empirically in the evaluation in Section 7.3.
The second assumption might seem impractical, but our evaluation shows that noise only
affects the obtained values marginally and does not cause frequent decision changes.
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Mousavi et al. [5] have shown that an NE exists for the original game. We show that
BTP converges to an NE of the modified game. For this purpose, we use the concept of an
improvement path [43], which is defined as a sequence of action profiles {a(0), a(1), . . . },
where in a(t+1), every node j that changes its action a(t+1)

j 6= a(t)j has a lower cost function

ϕj

(
a(t+1)

j

)
< ϕj

(
a(t)j

)
. Furthermore, at least one node needs to choose the same action

in a(t) and a(t+1). Using BTP, the action profile a(t)j of the nodes follows an improvement
path. This can be directly seen by referring to the best response strategy (12), in which
nodes only change their actions if their cost function decreases. For potential games, the
finite improvement path property holds, leading to an NE in a finite amount of time [43].
Therefore, BTP converges to an NE in a finite number of steps.

4.2. BTP

BTP is based on the game-theoretical model presented in Section 4.1. BTP consists
of two phases: (1) the broadcast tree construction phase, where the source node S, i.e.,
the node intending to disseminate data to all other nodes, initiates the construction of
the broadcast tree T (this phase ends with a tree topology, where the source node S is the
root), and (2) the data dissemination phase, where the actual data are sent from S to all
other nodes.

The broadcast tree T consists of the source node S, which is the root of the broadcast
tree, and parent and child nodes. Here, all parents except S are also children, and all
children except the leaves are also parents. Since this approach is child-driven, parents only
broadcast their own state information periodically, and children use this information to
decide which node they will choose to be their parent. Furthermore, a child may choose
a node as its parent, but a chosen parent node may or may not accept parenthood for the
given child. In the latter case, the child must find another parent.

4.2.1. Broadcast Tree Construction Phase

To initialize the decentralized broadcast tree construction phase, the source node S
sends a Neighbor Discovery packet using the maximum transmission power pmax. Every
node i ∈ V that is already part of the broadcast tree T also periodically broadcasts Neighbor
Discovery packets with maximum transmission power pmax. Every receiver j ∈ Ni of a
Neighbor Discovery packet checks whether the sender i of the received packet is a suitable
parent Q. Two cases may occur. In the first case, j is not connected to any parent, e.g.,
during the initial construction of the broadcast tree. In this case, j requests i to become i’s
child by sending it a Child Request packet, which it, in turn, may or may not accept, as
described later. Second, j is already a child and is connected to parent Qj, which is different
from i. In this case, j checks if switching from Qj to i would decrease p (see Equation (6)), as
shown in Section 4.1.2. To this end, j must check whether switching to having node i as its
parent would reduce the transmission power of Qj to a greater extent than i would have to
increase its transmission power to reach all its children. To do so, j needs four transmission
power values (see Section 4.1.2):

1. pQj(CQj), i.e., the transmission power of Qj needed to reach all its children;
2. pQj(CQj \ {j}), i.e., the transmission power of Qj if j is no longer Qj’s child;
3. pi(Ci), i.e., the transmission power of i needed to reach all its current children;
4. pi(Ci ∪ j), i.e., the transmission power of i if j becomes i’s child.

To provide these values to all potential children of a node i, every BTP packet includes
the transmission power pi(Ci), as well as the transmission power that would be required to
reach the second-farthest child of i, along with its respective address. When node j receives
a BTP packet from node i, it can additionally calculate the transmission power pi,j that i
would need to reach j by means of Equation (3). Thus, j can also calculate pi(Ci ∪ j). When
j knows the four values, it switches to i if the following condition holds:



Sensors 2023, 23, 7419 9 of 25

pi(Ci ∪ j)− pi(Ci) < pQj(CQj)− pQj(CQj \ {j}) (13)

i.e., if the current parent Qj can reduce its transmission power to a greater extent than the
new parent i must increase its own transmission power.

When node j decides to choose node i as its new parent, it sends a Child Request
packet to i in order to become its child. Node i verifies that j is not i’s parent, j is not already
a child of i, and j is reachable from i, i.e., pi,j ≤ pmax. If all these checks are successful,
i accepts j as a child using a Child Confirmation packet or rejects it otherwise using a Child
Rejection packet. When i accepts j, it adjusts its transmission power to pi(Ci ∪ j), resulting
in an increase if pi,j is greater than pi(Ci); otherwise, the value stays the same as before.
Even if i must increase its transmission power, the total transmission power p is still lower
because j only connects to i if the condition of Equation (13) holds. When i accepts j as its
child, j disconnects from its old parent Qj using a Child Revocation packet. Qj, in turn,
removes j from its child list CQj and adjusts its transmission power accordingly to reach
the farthest child k ∈ CQj \ {j}. However, when i rejects j, j places i on a blocklist to avoid
repetitive connection attempts and repeats the above processes to find a new parent.

Finally, since S does not know the global state of the network, it cannot know when
the broadcast tree has reached its optimal state. Therefore, each node maintains a counter
that tracks the iterations without any changes, i.e., without connecting to or disconnecting
from parents or adding or removing children. As soon as this counter reaches a threshold,
j considers itself finished and notifies its parent Qj using an End of Construction packet.
When Qj has received such a packet from all its children k ∈ CQj and when it is itself
finished, it notifies its own parent that it has finished its game. This procedure continues
until S has received End of Construction packets from all its children l ∈ CS. The broadcast
tree construction phase is then finished, and the data dissemination phase starts. Once the
broadcast tree is constructed, each node i sets its transmission power to pi(Ci) so that i just
barely reaches all its children Ci. Thus, the total transmission power is minimized.

During the broadcast tree construction phase, graph cycles may potentially occur,
which must either be avoided or detected and broken up. Graph cycles can occur in
three cases. In the first case, the source node S may try to connect to another node as
its parent. Since S is defined as the root of the broadcast tree, this eventuality must be
avoided, which can easily be accomplished. In the second case, a parent node i may try
to connect to one of its children j ∈ Ci. To circumvent this eventuality, i must check if
j ∈ Ci and refrain from connecting to children. In the third case, a parent node i may try
to connect to a node k that is not its direct child but that includes i on the path from k to S
(S, . . . , i, . . . , Qk, k). To handle this case, we propose two cycle avoidance algorithms and
one cycle detection algorithm.

Path-to-Source

In the Path-to-Source cycle avoidance algorithm, every node j that successfully con-
nects to a parent Qj adds its own address to a list of addresses (S, . . . , Qj, j) that represents
the entire path from source S to node j. This list is included in each Neighbour Discovery
packet. When a node k tries to connect to j, it first has to check if k ∈ (S, . . . , Qj, j). If it is
part of the path, the node must not try to connect to j in order to avoid a cycle.

Mutex

The Mutex cycle avoidance algorithm essentially ensures that the entire broadcast tree
is in a consistent state at any point in time. To this end, a node j that decides to connect
to a node i first locks its own sub-tree by notifying all its children Cj. In this process, all
nodes in Cj also lock their respective sub-trees until all nodes below j are locked. The nodes
that are included in a locked sub-tree are not allowed to change their parents or to accept
new children until j unlocks them again. When j tries to connect to i and i is locked by j,
j detects this situation and refrains from connecting to i to avoid giving rise to a cycle.
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Ping-to-Source

The Ping-to-Source algorithm is a cycle detection algorithm. After connecting to parent
i, node j sends a unicast Ping-to-Source packet to i, which, in turn, forwards the packet
to its own parent Qi. This process, in which nodes forward the Ping-to-Source packet to
their parents, continues until one of three cases occurs. In the first case, the source node S
receives the message. This occurs when there is no cycle, so S can drop the Ping-to-Source
packet. In the second case, the Ping-to-Source packet arrives at an intermediate node that
has no parent, in which case the packet is also dropped. In the third case, the Ping-to-Source
packet eventually arrives at node j, which occurs if the broadcast tree has a cycle. In this
case, j disconnects from i. Furthermore, if j was connected to a parent Qj before trying
to connect to i, it would attempt to reconnect to Qj, which triggers the entire connection
process discussed above.

4.2.2. Data Dissemination Phase

During the data dissemination phase, the source node S starts sending the data to its
children l ∈ CS with a transmission power of pS(CS) (see Equation (4)) using Application
Data packets. All nodes l, in turn, relay the data to their respective children with a
transmission power of pl(Cl). The Application Data packets contain a sequence number.
Since the data size may exceed the size of a frame, e.g., 2304 bytes for Wi-Fi, the source node
splits the data into chunks and increases the sequence number for every frame accordingly.
Since node i transmits with a power of pi(Ci), other nodes j 6∈ Ci may still receive the data
because they may be reached by i when pi,j ≤ pi(Ci). In this case, j can still process and
utilize such receptions as the packets are unambiguous due to their sequence number.

4.3. Protocol Packets

BTP uses several packet types for different purposes. Each BTP packet is sent with a
transmission power of pmax during the broadcast tree construction phase, while Application
Data packets are sent with a transmission power of pi(Ci) by each node i ∈ V during the
data dissemination phase. The following packet types exist in BTP:

Neighbor Discovery

Each node periodically broadcasts Neighbor Discovery packets to inform its neighbors
of its presence. When a node receives a Neighbor Discovery packet, it checks whether
the sender is a possible new parent node, as presented in Section 4.2.1. In particular, each
Neighbor Discovery packet contains information about the transmission power levels
required by its sender, as described in Section 4.2.1, allowing each receiver to decide
whether to switch parents according to Equation (13).

Child Request

Once a node has identified a possible parent node, it requests a connection by sending
a Child Request packet as a unicast message to that parent node.

Child Confirmation

A potential parent node that is able to accept a child request from another node sends
a Child Confirmation packet in response as a unicast packet. When the child node receives
the Child Confirmation packet, the child node and the parent node are considered to
be connected.

Child Rejection

A potential parent that cannot accept a child request from another node sends a Child
Rejection packet. A requesting child node that receives such a packet blocks this potential
parent and tries to connect to another potential parent.
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Child Revocation

Child nodes must inform their parent nodes when they want to disconnect, which is
executed by sending a Child Revocation packet as a unicast message to the parent node.
This packet type is used after successfully switching to a new parent or when detecting
a cycle.

End of Construction

When a node ends the broadcast tree construction phase, it notifies its parent node
by sending an End of Construction packet. This information is important for the parent
node because the parent must wait for all its child nodes before it is allowed to finish
the broadcast tree construction phase itself. As soon as a node finishes the broadcast tree
construction phase, it sets a corresponding flag F in all its sent packets.

Application Data

In the data dissemination phase, application data are transmitted using the Application
Data packet type. A node i ∈ V sends all data packets with pi(Ci), i.e., with the transmission
power that is required to reach its most distant child.

5. Matlab Simulation

This section presents Matlab simulations of BTP and other algorithms from the litera-
ture, allowing us to compare BTP with other algorithms. However, while simulations allow
for control over various parameters, e.g., distances between nodes, transmission power,
and channel gain, they do not always reflect the real world accurately.

5.1. Experimental Setup for the Matlab Simulation

Table 2 shows the parameters of our Matlab simulation. The nodes are randomly
placed in a 500 m × 500 m square area, which allows us to assess BTP under various
conditions while not taking advantage of an optimized node placement strategy in order
to reflect practical constraints. Still, we require each node to have at least one neighbor
according to Equation (5), while the maximum transmission power of a node is set to
pmax = 20 dBm. Further, the number of nodes varies between 10 and 90. The source node
is chosen randomly for each simulation run. The channel is based on a path-loss model for
which |hi,j|2 = 1

dα , where d is the distance between the nodes i and j and α is the attenuation
exponent, which is set to α = 3. The SNR must exceed γmin = 10 dB for correct reception,
while the noise power σ2 is set to −90 dBm. The finishing threshold is set to 10 unchanged
iterations (see Section 4.2.1) since the broadcast tree did not improve further with a larger
threshold in trial experiments. For each parameter combination, 1000 simulation runs were
executed, i.e., a total of 63,000 simulations runs. We implemented the following algorithms
for comparison with BTP:

Dijkstra

Dijkstra’s algorithm [44] maintains a set of nodes whose shortest distance from the
source is known and gradually expands this set until all nodes are included. It iteratively
selects the node with the shortest distance, updates the distances to its neighbors, and
continues this process until the shortest paths to all nodes have been established. It
is important to note that Dijkstra’s algorithm is used in our comparison to construct a
spanning tree rather than to route packets to individual nodes.

BIP

Broadcast Incremental Power (BIP) [7] is an iterative algorithm that exploits the
broadcast characteristics of wireless channels through centralized control. Starting from the
source node, each iteration establishes a connection between the source and another node
in the network either by using a direct single-hop connection or a multi-hop connection,
thereby extending the sub-tree.
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BIPSW

Broadcast Incremental Power with Sweep (BIPSW) [7] is a variation of the BIP algo-
rithm. The efficiency of BIP is enhanced using a so-called sweep operation, which eliminates
redundant transmissions in cases where a node can be served by multiple transmitters.
This operation transforms the tree constructed using BIP into a spanning tree.

PCP

The Power Control Protocol (PCP) [14] employs an energy rank for each node in the
network, which is defined as the energy that a node adds to a given path to the source.
Nodes connect to a parent whose path to the source requires the least energy.

BPG

Broadcast trees with Potential Game (BGP) [5] is the original game-theoretical protocol
from which BTP is derived. Section 4.1 provides a detailed description of BPG.

SBP

The Simple Broadcast Protocol (SBP) is a variant of BTP that always uses pmax to dis-
seminate data. SBP is also employed for comparisons in the testbed experiments presented
in Section 7 and provides an upper bound of the required transmission power.

Table 2. Parameters used for the Matlab simulation.

Parameter Values

Protocols BTP, BPG, BIP, BIPSW, PCP, SBP, Dijkstra
Nodes 10, 20, 30, 40, 50, 60, 70, 80, 90
Simulation Area 500 m × 500 m
pmax 20 dBm
|hi,j|2 1

dα

α 3
γmin 10
σ2 −90 dBm
Finishing Threshold 10

5.2. Results of the Matlab Simulation

Figures 2 and 3 show the total transmission power as a function of the number of
nodes in the network as introduced in Equation (6): p = ∑

|V|
i=1 pi(Ci).

The x-axes show the number of nodes, while the y-axes show the total required
transmission power (given in Watts on a logarithmic scale) for all nodes to disseminate
data. The different colors denote different algorithms. Both Figures 2 and 3 show the
same results, but Figure 3 does not include SBP to better distinguish between the other
algorithms. The key indication of the results is that there are four performance categories.
First, SBP shows the worst performance, and the more nodes that are added, the worse this
performance becomes. While SBP constructs a spanning tree, it always uses the maximum
transmission power pmax, resulting in this poor performance. Second, Dijkstra clearly uses
less power than SBP but still more than the other algorithms since it does not consider the
broadcast nature of the wireless channel. Instead, Dijkstra builds a spanning tree for unicast
connections, resulting in suboptimal node connections in our broadcast scenario. Third,
BIP and PCP are better than Dijkstra, but they still perform worse than BTP. On the one
hand, BIP still has unnecessary and redundant connections between nodes. On the other
hand, PCP builds a fixed action set at startup, which is not further optimized. In contrast,
BTP allows each node to update its action in multiple iterations to respond to the actions of
other nodes. Fourth, BTP, BPG, and BIPSW show the best performance. The performance
of BIPSW is slightly better with fewer nodes, while that of BTP and BPG is slightly better
with more nodes. BIPSW essentially outperforms BIP since it removes the redundant
connections from BIP’s solution. Furthermore, BIPSW is a centralized algorithm with
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global knowledge about the links and connections of a network, allowing it to potentially
provide better decisions than BTP, which only uses local information. Besides BIPSW, all
the algorithms except BTP and SBP also require global knowledge about the entire network.
This is not realistic in a real-world scenario.
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Figure 2. Total required transmission power for various algorithms.
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Figure 3. Total required transmission power for various algorithms (without SBP).

In summary, the results of the Matlab simulation show that BTP is on par with or better
than the other algorithms. BTP is the only algorithm operating under realistic assumptions,
using only local information from direct neighbors.

6. NS-3 Simulation

In this section, our NS-3 simulation of BTP and the corresponding results are pre-
sented. We investigate three aspects. First, while the original potential game has already
been compared to alternative approaches in Section 5, in this section, we show that our
approximation can minimize the total energy consumption. Second, using the NS-3 simula-
tion, we can evaluate all three cycle avoidance and detection algorithms. Finally, the NS-3
simulation allows us to validate the scalability of BTP.

Although BTP is agnostic with respect to the underlying physical and link layer
implementations, we selected Wi-Fi as the underlying wireless technology to allow for
the comparison of the results of the NS-3 simulation with a real-world implementation
evaluated using real hardware, namely, a Wi-Fi-based testbed (see Section 7). We assume
that a data link layer ensures the reliable delivery of packets directly to other nodes. Access
to the wireless transmission medium is coordinated through a Carrier Sense Multiple
Access (CSMA) mechanism.

NS-3 is an open-source and event-driven simulator with several protocols ready to
use, e.g., IP, TCP, or UDP. The individual components of the NS-3 simulator are divided
into modules that can be used or extended to set up a self-defined environment.

By exploiting NS-3’s energy framework, it is possible to simulate different energy
sources. Based on the datasheets of the MAX28282 (https://datasheets.maximintegrated.
com/en/ds/MAX2828-MAX2829.pdf (accessed on 4 July 2023)) and MAX28313 (https:

https://datasheets.maximintegrated.com/en/ds/MAX2828-MAX2829.pdf
https://datasheets.maximintegrated.com/en/ds/MAX2828-MAX2829.pdf
https://datasheets.maximintegrated.com/en/ds/MAX2831-MAX2832.pdf
https://datasheets.maximintegrated.com/en/ds/MAX2831-MAX2832.pdf
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//datasheets.maximintegrated.com/en/ds/MAX2831-MAX2832.pdf (accessed on 4 July
2023)) Wi-Fi chips, we approximate the power consumption of a Wi-Fi chip as a function of
the transmission power through a polynomial regression:

pmA(pdBm) =− 0.000009708995023p5 − 0.00089877372p4 − 0.03112035853p3

− 0.4798606017p2 − 2.427503769p + 124.4196777

This function is essentially used to calculate the energy consumed over a period of time.
The energy model of NS-3 tracks state-changes of the Wi-Fi module. If the state changes,
for example, from receiving to transmitting, the energy consumed over the duration of the
transmitting state is calculated and subtracted from the energy source. Switching losses,
additional electronic components, or fluctuations due to heat are not simulated.

In our implementation, we used properties that model IEEE 802.11 characteristics,
as follows. In wireless networks, preambles are used to announce the arrival of a packet
and allow the receiver to synchronize with a received frame. During preamble detection,
the signal-to-noise ratio (SNR) is determined. If the SNR is too low, the packet can be
discarded because it may not be possible to decode it without an error. To reproduce the
characteristics of Wi-Fi, the noise power of the channel can be modeled as follows:

σ2 = kB ∗ 290 ∗ w + σ2
int. (14)

where kB is the Boltzmann constant, w is the channel width in Hz, and σ2
int. is the noise of

interfering transmissions [45]. Furthermore, γmin, i.e., the minimal SNR that still allows
for the decoding of a packet, was set to 4 dB. For path loss |hi,j|2, we used the YANS
model (https://www.nsnam.org/docs/release/3.24/doxygen/classns3_1_1_yans_wifi_
channel.html#details (accessed on 4 July 2023)). Further, we set the maximum possible
transmission power to pmax = 23 dBm.

6.1. Experimental Setup for the NS-3 Simulation

Table 3 summarizes the parameters used for the evaluation of the NS-3 simulation.
We simulated six different node numbers from 50 to 300 in steps of 50 in five areas

of different sizes, ranging from 100 m × 100 m to 500 m × 500 m, which we refer to
as area configurations (1) to (5) in the remainder of this article. All nodes were placed
randomly within the plane, while a pseudo-random number generator was initialized
with a fixed seed and increased with every iteration of an experimental configuration.
This allowed us to evaluate the protocols under various conditions, without relying on an
optimized node placement strategy. Furthermore, we evaluated all three cycle-handling
algorithms presented in Section 4.2.1. The finishing threshold for unchanged game rounds
(see Section 4.2.1) was set to 10. Besides BTP, we also evaluated the SBP protocol. A data
size of 1 KiB was used, i.e., the payload occupying a single Wi-Fi frame. Finally, each
experimental run was executed until the payload was transmitted to all nodes or aborted
after 20 s, and each configuration was repeated 30 times. In total, 5400 experimental runs
were executed.

Table 3. Parameters used for the NS-3 simulation’s evaluation.

Parameter Values

Protocols BTP, SBP
Cycle Handling Ping-to-Source, Path-to-Source, Mutex
Nodes 50, 100, 150, 200, 250, 300

Simulation Area (1) 100 m × 100 m, (2) 200 m × 200 m, (3) 300 m × 300 m,
(4) 400 m × 400 m, (5) 500 m × 500 m

Data Size 1 KiB
Finishing Threshold 10
Runs 30

https://datasheets.maximintegrated.com/en/ds/MAX2831-MAX2832.pdf
https://datasheets.maximintegrated.com/en/ds/MAX2831-MAX2832.pdf
https://www.nsnam.org/docs/release/3.24/doxygen/classns3_1_1_yans_wifi_channel.html#details
https://www.nsnam.org/docs/release/3.24/doxygen/classns3_1_1_yans_wifi_channel.html#details
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6.2. Results of the NS-3 Simulation
6.2.1. Total Energy Consumption

We first compare the total energy consumption values of BTP and SBP throughout the
entirety of their experiments, i.e., incorporating both the broadcast tree construction phase
and the data dissemination phase. The results are shown in Figure 4.
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Figure 4. Total energy consumption values of BTP and SBP.

The x-axes denote the simulation area, and the y-axes show the total energy in Joules.
The colors denote the different quantities of nodes, while the left and right sub-plots show
the results regarding BTP and SBP, respectively. It is evident that BTP requires significantly
less energy than SBP. In fact, depending on the experimental configuration, an energy
reduction of between 83% and 92% can be achieved when using BTP. Moreover, in the
worst case (i.e., 300 nodes, area configuration (1)), BTP requires only about 150 J, and even
in the best case (50 nodes, area configuration (1)), with 203 J, it requires less energy, than
SBP. This energy reduction primarily results from two effects. First, using a broadcast tree
based approach reduced the total number of packets sent in the network. In fact, BTP
required about 70% fewer data packets than SBP, resulting in 70% less energy consumption.
Second, the remaining 13% to 22% reduction in energy consumption is a result of the
optimal broadcast tree. It is also noticeable that the number of nodes is positively correlated
with energy consumption, which is reasonable since more nodes need more energy, even if
they send with minimal transmission power. The simulation area, however, is negatively
correlated with energy consumption, i.e., the larger the area, the lower the total amount
of energy consumed. This is due to the fact that an increasing area leads to the greater
distances between nodes, thus not becoming part of the broadcast tree, which leads to their
inability to disseminate data, thereby reducing overall energy consumption. This means it
is likely that not all nodes are part of the network in these larger area configurations. This
is further analyzed in Section 6.2.5.

6.2.2. Protocol Overhead

Figure 5 depicts the average energy overhead per node required to construct the
broadcast tree in comparison to disseminating data.
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Figure 5. Energy usage of broadcast tree construction phase and data dissemination phase.
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On the x-axes, the number of nodes is shown, while the y-axes denote the used average
energy per node in Joules. The sub-plots depict the three cycle-handling algorithms,
the colors denote different simulation areas, and the line style denotes the energy for
broadcast tree construction (dotted) and data dissemination (solid). This plot shows that
the energy used is only dependent on the number of nodes and the simulation area, while
the energy per node is not significantly influenced by the cycle-handling algorithms. The
key takeaway, however, is that disseminating data requires about three times more energy
than constructing the broadcast tree in the configuration with many nodes. The fewer nodes
that are involved, the greater the energy requirement for disseminating data compared to
constructing the broadcast tree. For example, configurations with 50 nodes require up to
17 times more energy for data dissemination. The energy required for disseminating data
grows linearly with the number of nodes, whereas the energy required for constructing the
broadcast tree grows faster since the coordination and the resulting number of packets do
not increase linearly. In summary, the experiments show the feasibility of BTP since the
construction of the broadcast tree is only performed once, while the dissemination of data
via the ready-to-use broadcast tree can be performed repeatedly afterwards.

6.2.3. Time for Broadcast Tree Construction Phase

Another important metric for the practical use of broadcast trees is the time required
to construct a broadcast tree, i.e., the amount of time required until the data can be sent to
the nodes. This is shown in Figure 6.
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Figure 6. Time taken to construct the broadcast tree.

The x-axes show the number of nodes, while the y-axes denote the time taken to
construct the broadcast tree in seconds. The simulation area is denoted in the sub-figures,
and the cycle-handling algorithms are represented with different colors. The three main
properties that significantly influence the time required to construct a broadcast tree are
the number of nodes, the simulation area, and the cycle-handling algorithm employed.
The more nodes that are in the network and the larger the area, the longer it takes to
construct the broadcast tree. Regarding the cycle-handling algorithms, it is noticeable
that Ping-to-Source and Path-to-Source show no significant differences. Mutex, however,
can take up to 65% longer to construct a broadcast tree. This is because locking an entire
sub-tree, switching the parent, and unlocking it again takes time that is not required using
the other two algorithms. Due to this behavior exhibited by Mutex, we did not consider it
in our real-world implementation.

6.2.4. Cycle Handling

Under certain circumstances, cycles may be either not avoided or detected or are not
broken up before the experiment is finished. Figure 7 depicts how many cycles were still
present when ending the experiment.
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Figure 7. Number of cycles lasting until the end of an experiment.

The y-axes show the number of runs in which at least one cycle lasted until the end,
while the x-axes show the different numbers of nodes. The sub-plots illustrate the results in
the different areas, and the colors denote the three cycle-handling algorithms. It is evident
that the number of nodes in the network does not significantly influence the number of
cycles lasting until the end of the experiment. Area size, on the other hand, does have
a significant influence, especially for the Mutex cycle avoidance algorithm, but also for
Path-to-Source. Ping-to-Source is also affected by the area size but significantly less so
since cycles could not be detected or broken up in only three out of 1800 Ping-to-Source
experimental runs.The Mutex’s behavior can be explained by the problem wherein locking
an entire sub-tree leads to an almost complete halt in construction. Suppose the broadcast
tree is in a somewhat advanced stage. When one node in the middle of the broadcast
tree decides to change its parent, the entire sub-tree will be locked and stops any further
optimization until the lock is eventually released. Finally, both cycle avoidance algorithms
do not seem to avoid all cycles. This is because they both rely on transmitting information
required for the respective algorithm. For Mutex, this transmission entails broadcasting the
packet that locks and unlocks sub-trees. When the area is large, it may simply occur that
lock or unlock packets are lost or not received by the children, leaving the entire broadcast
tree in an unfinished state. The same applies to the Path-to-Source algorithm. This makes
Mutex and Path-to-Source effectively unusable in any scenario; therefore, both were not
considered in our real-world implementation.

6.2.5. Unconnected Nodes

Figure 8 shows the number of nodes that are not part of the broadcast tree at the end
of the experiment.
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Figure 8. Percentage of nodes not part of the broadcast tree.

On the x-axes, the number of nodes is shown, while the three sub-plots depict the three
different cycle-handling algorithms. The colors denote different area configurations. The
overall ratio of unconnected nodes across all experiments is relatively small, amounting
to about 6% in the worst case. However, the cycle-handling algorithms show quite large
differences. Ping-to-Source shows good results when only a few nodes are spread out in the
area, about 1%, i.e., one node not connected to the broadcast tree (on average). With more
nodes in the network, the rate of unconnected nodes decreases to 0.1%. Mutex encounters
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difficulty when used in large areas, presenting 5% unconnected nodes in area configuration
(5) and few nodes. However, while Ping-to-Source and Mutex show reasonable results,
Path-to-Source behaves quite erratically. When using the Path-to-Source algorithm, while
a node j connects to a parent i, another node k might attempt to connect to j, which is
the parent of i. Since j and i are not connected yet, the Path-to-Source algorithm fails to
detect and avoid this cycle. Therefore, Path-to-Source was not considered in our real-world
implementation.

7. Real-World Implementation

Since the Matlab and NS-3 simulations in Sections 5 and 6 provided encouraging
results, we also assessed the performance of BTP using real hardware to evaluate its
practicability under real-world conditions.

We implemented BTP in userland C for Linux using standard libraries. Thus, we
relied on Wi-Fi as the wireless technology since it is widely available on Linux systems.
However, as shown in Section 4.1, BTP is not limited to Wi-Fi; it can be used with any
radio technology. The SNR calculation of Equation (1) requires information about the
wireless transmission characteristics of a received frame. This information, contained in
the RadioTap header, is not available to userland C programs or even the Linux kernel
since it becomes stripped off by the Wi-Fi chip’s firmware. To bypass this limitation, we
used the Nexmon framework [46] (https://nexmon.org (accessed on 4 July 2023)). We
created a Nexmon patch that preserves the RadioTap header for MAC frames with our BTP
EtherType. All other frames were handled normally to avoid interference with any other
programs. Furthermore, we utilized Linux raw sockets for two reasons. First, their use
further increases performance since the kernel’s TCP/IP stack is bypassed and a packet is
more or less directly passed to the Wi-Fi chip. Second, since BTP is located on the network
layer of the ISO/OSI stack, we were able to define a custom EtherType (0x88DF) and enable
the reception of BTP packets in userland. Addressing was handled on the Link Layer, with
each node identified according to its Wi-Fi MAC address. Neighbour Discovery packets and
Application Data packets were sent as MAC-broadcasts; all other packets were unicasts.

In Section 4.2, we discussed the tree construction phase in detail but left the data dis-
semination phase open to a specific implementation. To reduce the likelihood of collisions,
we used an MTU of 1200 bytes, where 37 bytes were used for Ethernet and BTP headers and
the remaining 1163 bytes were available for the payload. Furthermore, we added a delay
between individual data frames to avoid sending all data frames at once, and the relaying
nodes were given a rate limit per sequence number to further reduce the likelihood of
collisions and increase the chance of successful data delivery. Additionally, the protocol did
not specify what action to take if a node received the entire dataset. In our implementation,
leaf nodes do not relay data frames. As soon as a leaf node has received the entire dataset,
it disconnects from the parent. This leads to intermediate nodes eventually becoming leaf
nodes that also do not relay data frames anymore and disconnect from their parent after
receiving the entire data. In this way, the tree is eventually deconstructed.

7.1. Testbed

To evaluate BTP, we utilized a testbed deployed at our university. It consists of
75 Raspberry Pis spread over a university building across four floors. Besides Wi-Fi, all
nodes also have an Ethernet uplink to a central management server and are configured for
network booting to support easy, large-scale deployment. We created a network-bootable
image for our experiments using the Pimod framework [47] (https://github.com/Nature4
0/pimod (accessed on 4 July 2023)). Although we used RAW sockets with a custom
EtherType, the Wi-Fi chip did not receive any frames if it was not part of a Basic Service Set
(BSS), i.e., associated with an access point or part of the same ad hoc network. Therefore,
the Raspberry Pis were set to ad hoc mode with the same BSS ID. Furthermore, the Linux
kernel will refuse to send frames to the Wi-Fi interface if an IP address has not been set.

https://nexmon.org
https://github.com/Nature40/pimod
https://github.com/Nature40/pimod
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Thus, we assigned a random IP address to all Raspberry Pis. We used channel 1 of the
802.11n mode and employed the RTS/CTS method of the 802.11 CSMA/CA mechanism.

7.2. Experimental Setup for the Real-World Implementation

Table 4 summarizes the parameters used in our evaluation.

Table 4. Parameters used in our evaluation.

Parameter Values

Source Nodes 3
Data Sizes 1 KiB, 4 KiB, 16 KiB
Finishing Threshold 5, 15, 25
Protocols BTP, SBP
Runs 5

Since we could not alter the position of the nodes (in contrast to our Matlab and NS-3
simulations), we used three source nodes located in the northern part of the building, in its
center, and in the southern part. Furthermore, we used three data sizes, representing simple
sensor values (1 KiB), network diagnosis (4 KiB), and device updates (16 KiB). Although
both simulations showed that 10 iterations constitute a sweet spot between overhead and
finding the optimal tree, we sought to evaluate BTP in greater depth for practical imple-
mentation. Therefore, we used three finishing thresholds for the counter of the number
of iterations without topology changes. Finally, we again compared BTP to SBP. Each
experimental configuration was repeated five times, resulting in 270 experimental runs.

7.3. Results of the Real-World Implementation
7.3.1. Total Energy Consumption

Due to the testbed’s setup, we could not measure the power draw of all the nodes.
Hence, we decided to employ a model to compute the energy consumption in mJ based on
the used parameters of the physical and data link layers to estimate the energy used in each
run. Figure 9 shows the total energy consumption for different parameter sets. The y-axis
shows energy in mJ, while the x-axis denotes different data sizes, where different colors
represent different finishing thresholds and SBP, respectively. The values include frames
for tree construction as well as the data themselves. BTP requires between 68% (1 KiB and
a finishing threshold of 5) and 90% (16 KiB and a finishing threshold of 25) less energy
compared to SBP, depending on the data size and the values of the finishing thresholds.
This is due to the fact that the broadcast tree resulting from BTP is optimal with respect to
the energy requirements. Among the BTP parameters, energy use does not show significant
differences with increasing finishing threshold values. While SBP requires about 70% more
energy for 16 KiB compared to 1 KiB data, BTP only requires about 20% more energy. This
is counter-intuitive since one would expect about the same increase in energy consumption.
We discovered that this result was due to RF interference. Neither BTP nor SBP include any
advanced MAC mechanism, which leads to congestion in the RF spectrum for larger data
sizes. However, because BTP uses less power to transmit data, there is less interference
causing retransmission, resulting in a moderate increase in overall energy consumption.
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Figure 9. Total required energy.

7.3.2. Energy Consumption for Tree Construction and Data Dissemination

Figure 10 presents the energy required for broadcast tree construction and for data
dissemination. The x-axis shows different data sizes, while the y-axis shows the energy
used for Application Data packets (blue) and for the tree construction packets (red) for
BTP and all the finishing thresholds. The energy required for tree construction does not
depend on the size of the data but only on the number of nodes; thus, the red plots do
not show significant differences. The energy required for data dissemination increases
with the size of the data. For the 1 KiB data, about 30% of the energy is used for data
dissemination, and about 70% is used for tree construction. However, even in this scenario,
BTP performs significantly better than SBP in terms of total energy consumption, as shown
in Figure 9. BTP requires about 1.5 MiB of data to construct a tree, regardless of the finishing
threshold or data size, whereas data dissemination requires about 150 MiB of total data
transfer for 1 KiB experiments, 300 MiB for 4 KiB experiments, and about 400 MiB for
16 KiB experiments. Note that there are outliers in experiments, since the environment
can vary under real conditions. For example, in the 4 KiB experiments, three runs required
between 740 mJ and 800 mJ of energy, which is outside the 1.5-fold interquartile range.
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Figure 10. Energy required for both broadcast tree phases.

7.3.3. Successful Receptions

Figure 11 shows the results in terms of successful deliveries. The x-axis shows ex-
periments with different data sizes, while the y-axis shows the percentage of nodes that
received the entire dataset. The colors denote different finishing thresholds and SBP, re-
spectively. BTP produces results that are at least on par with SBP; with larger data, SBP’s
performance becomes even worse. For 1 KiB and 4 KiB data sizes, BTP achieves a nearly
100% delivery ratio, with a few runs producing outliers. SBP only achieves this success
ratio for 1 KiB, while for 4 KiB and 16 KiB data sizes, the average delivery rate falls below
85%. For a data size of 16 KiB, BTP still achieves an average delivery ratio of about 98%.
This result (and the failed runs for 1 KiB and 4 KiB data sizes) is mainly due to the varying
conditions of the network and the wireless medium. Even though the tests were conducted
in a testbed, there were no lab conditions. The testbed was deployed in a building in the
university, where there are offices and lecture rooms with employees and students and
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a number of other Wi-Fi networks; thus, some of the experiments were not completed.
The poor performance of SBP, however, is due to the fact that BTP makes better use of the
wireless medium by refraining from flooding the network with maximum transmission
power, thus producing less interference between stations. Note that there are outliers
in experiments, since the environment can vary under real conditions. For example, in
the 1 KiB and 16 KiB experiments, there are runs that have no successful receptions at all,
which is outside of the 1.5-fold interquartile range.
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Figure 11. Ratio of nodes successfully receiving data.

7.3.4. Time for Broadcast Tree Construction Phase

Figure 12 shows the time taken to construct the broadcast tree. The x-axis shows the
different data sizes, while the y-axis shows the construction time in seconds. The different
colors represent different finishing thresholds. This figure has three key takeaways. First,
the size of the data does not influence the time it takes to construct the broadcast tree.
Second, the higher the finishing threshold, the longer it takes to construct the tree, which is
the expected result. Third, the average time of seven seconds for the initial construction
of the broadcast tree, which is only performed once, is reasonable since the constructed
broadcast tree can subsequently be used for an arbitrarily long time period. Note that
there are outliers in experiments, since the environment can vary under real conditions.
For example, in the 1 KiB SBP experiments, there are runs that take up to 40 s to construct
the tree, which is outside of the 1.5-fold interquartile range.
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Figure 12. Time taken to construct the broadcast tree.

7.3.5. Contributions of Individual Nodes

Our last evaluation shows how much energy is contributed by individual nodes in
the network. Figure 13 is a scatter plot where every dot represents the proportional energy
used by a node in a particular experimental run.
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Figure 13. Scatter plot of the load distribution per node over different experimental runs.

The x-axis arranges nodes according to their loads (not their topological relationships)
in relation to the total energy consumed over the entire experiment. This means that, for
example, node 1 is not next to node 2, but node 1 contributes more to the total amount of
energy required than node 2. The y-axis shows how much an individual node contributes
to the amount of energy required, e.g., a dot at 50% at 0 means that node 0 contributes
50% of the required energy. The sub-plots and colors represent the two protocols with all
experimental configurations. Using BTP, only a few nodes had a relatively high level of
energy usage, while the nodes beyond node 20 barely contributed to the overall level of
energy consumption. In SBP, on the other hand, all nodes contributed to overall energy
utilization. This shows that although there are nodes in BTP that have a high load, the
energy for most nodes is preserved, giving them a higher lifetime when battery-powered.
Note that Figure 13 is a scatter plot covering all experimental runs; thus, it is not easy to see
which values sum to 100%. There were experiments where, taking SBP as an example, a
single node was responsible for 100% of the energy consumed. In this specific experiment,
no other node sent any data, indicating that one node in the neighborhood of the source
node received the data. This was the case for the unfinished experiments with a 1 KiB data
size and a finishing threshold of 5, as indicated in Figure 11.

8. Conclusions

In this study, we presented BTP, a novel broadcasting protocol for wireless multi-
hop networks based on a game-theoretical model and designed to function in practical
implementations. BTP constructs a spanning tree in a decentralized manner to minimize
the total energy consumption of an entire network by minimizing the transmission power
at each node. In this section, we highlight our contributions as well as directions for
future work.

8.1. Contributions

We made the following contributions. First, we adopted a game-theoretical model
for the design of BTP while preserving the relevant convergence characteristics of the
game-theoretical model. Second, we addressed the practical constraints in the implemen-
tation of BTP, i.e., (a) each node operates only on information that is locally available in
its neighborhood, (b) all nodes operate asynchronously without requiring any form of
time synchronization, and (c) ping-pong effects possibly occurring in the original game-
theoretical model are avoided. Third, we integrated three algorithms capable of inhibiting
the creation of graph cycles into the design of BTP. Finally, we evaluated BTP with respect
to various aspects. We performed simulations to compare BTP to other algorithms from the
literature and investigate the scalability of BTP. A practical implementation of BTP on a
testbed with 75 Raspberry Pis allowed us to evaluate BTP under realistic conditions. BTP
was able to achieve a total energy reduction of up to 90% compared to a simple broadcast
protocol in our testbed.



Sensors 2023, 23, 7419 23 of 25

8.2. Future Work

There are several areas for future work. For example, the current BTP implementation
does not consider node mobility, which would require the spanning tree to be maintained
continuously, including during the data dissemination phase. Furthermore, BTP can be
enhanced with mechanisms that increase the reliability of data transfers, such as acknowl-
edgments or checksums. In its current form, BTP also only allows data dissemination from
the source node to the other nodes. However, as soon as a broadcast tree is constructed,
bi-directional data transfer should be supported, e.g., to allow the source node to function
as a data sink for sensor nodes. Moreover, once the broadcast tree has been built, routing
protocols such as AODV [48] or DSR [49] may be used to transmit data to a particular node.
Finally, BTP is based on a conventional medium access control mechanism with random
back-off times, which works well in many scenarios. Future work might also incorpo-
rate coordinated medium access control mechanisms to provide real-time guarantees and
further enhance the reliability of BTP [50].
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