
Wanja de Sombre, Andrea Ortiz, Frank Aurzada, Anja Klein, “Risk-Sensitive Optimization
and Learning for Minimizing Age of Information in Point-to-Point Wireless Communications,”
in IEEE International Conference on Communications (ICC), Rome, Italy, May 2023.

©2023 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this works must be obtained from the IEEE.



Risk-Sensitive Optimization and Learning for
Minimizing Age of Information in Point-to-Point

Wireless Communications
Wanja de Sombre∗, Andrea Ortiz∗, Frank Aurzada†, Anja Klein∗

∗Communications Engineering Lab, Technical University of Darmstadt, Germany.
†Probability and Statistics Group, Mathematics Departement, Technical University of Darmstadt, Germany.

{w.sombre, a.ortiz, a.klein}@nt.tu-darmstadt.de, aurzada@mathematik.tu-darmstadt.de

Abstract—When using Internet of Things (IoT) networks for
monitoring, devices rely on fresh status updates about the mon-
itored process. To measure the freshness of these status updates,
the concept of Age of Information (AoI) is used. However, critical
applications, e.g., those involving human safety, require not only
fresh updates, but also a low risk of experiencing high AoI values.
In this work, we introduce the notion of risky states for these high
AoI events. We consider a point-to-point wireless communication
scenario containing a sender transmitting randomly arriving
status updates to a receiver through a wireless channel. The
sender decides, when to send a status update and when to wait
for a newer one. The sender’s goal is to jointly minimize the
AoI at the receiver, the required transmission energy and the
frequency of visiting risky states. We present two solutions for
this problem using optimization and learning, respectively For the
optimization approach, we propose a family of threshold-based
transmission strategies, which trigger a transmission whenever
the difference between the AoI at the sender and at the receiver
exceeds a certain threshold. Our proposed learning approach
directly includes our notion of risky states into traditional Q-
learning. As a result, it balances the minimization of AoI and the
required transmission energy, with the frequency of visiting risky
states. Through numerical results, we show that our proposed
risk-aware approaches outperform relevant reference schemes.
Moreover, and in contrast to value iteration, their computational
complexity does not depend on the set of possible AoI values.

I. INTRODUCTION

The resilience and robustness in applications, like robotics,
vehicular communication, or even in critical infrastructure can
be improved by exploiting IoT networks for monitoring [1].
Monitoring requires that IoT sensors transmit status updates
regarding the monitored processes in a timely manner over
unreliable, in general wireless communication channels. To
measure the freshness of the received status updates, the
concept of AoI was introduced in [2]. The AoI requirements
for the status updates depend on the considered application.
For example, applications concerning human safety usually
have strict AoI requirements [3]. Moreover, these strict re-
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quirements may not only concern low average AoI, but also a
low probability of experiencing large AoIs.

Minimizing the average AoI in wireless communication
systems and, in particular, in point-to-point wireless commu-
nication systems, has been the focus of recent research effort
[4]–[12]. In [4], queuing theory is used to derive closed-form
expressions for the average AoI at the receiver under different
queue models. In [5] the authors consider a monitoring system.
They propose a strategy at the sender to decide when to
sample the monitored process and when to transmit a status
update to the receiver. In a similar scenario, and assuming
the sender monitors a dynamic Markov process with a fixed
rate, the authors in [6] exploit differential encoding to increase
the system’s reliability against transmission errors. In [7],
a capacity-constrained point-to-point scenario is considered.
Assuming that the transmission of a status update requires
multiple channel uses, the authors propose a transmission
strategy to decide if an ongoing transmission should be aborted
when a new status update arrives. In [8], the average AoI is
minimized considering that the receiver is only interested in
status updates at specific times.

All the previously mentioned works focus on the mini-
mization of the average AoI, i.e., they optimize the AoI at
the receiver over a long time horizon. However, average AoI
minimization does not prevent the occurrence of events in
which the AoI exceeds a predefined safety value. We term
such events as risky states and use them to quantify and to
minimize the risk of having large AoIs in the considered
scenario. The name risky states comes from the fact that a
large AoI at the receiver can compromise the system in critical
applications like, for example, industrial IoT [12], [13]. For
this reason, a new research direction has emerged which, in
addition to the average AoI, focuses on the peak AoI. The
goal of most of the current works considering peak AoI is
to characterize the probability of reaching risky states under
different assumptions, e.g., short status update packets [9],
status update sources with and without retransmissions [10],
and a customizable status update arrival rate at the sender [11].

However, the design of risk-aware transmission strategies
at the sender has, so far, received little attention. The authors



in [12] take a step in this direction by proposing the use of
value iteration to derive a risk-aware transmission strategy
at the sender. Assuming that the probabilities for a status
update arrival and for a successful transmission are a-priori
known, the authors jointly minimize the average AoI at the
receiver, the average energy required for the transmissions
and a risk-measure. Although value iteration leads to the
optimal transmission policy, it is computationally expensive
and requires small sets of possible values of the AoI to derive
the optimal policy in reasonable time.

In this work, we focus on the development of transmission
strategies considering the average AoI and the average energy
required for transmissions. However, and in contrast to the
previous works, our focus lies on the design of scalable
transmission strategies that jointly reduce the average AoI, the
average required transmission energy and the occurrence of
risky states. To this end, we consider the cost of the strategy
and the risk associated to it. The cost is defined as the average
over the costs in each time step, i.e, the average over the
weighted sum of the AoI at the receiver and the transmit
energy at the sender. The risk of the strategy is defined as the
frequency with which the strategy’s execution leads to risky
states. To minimize cost and risk, we follow two approaches:
offline optimization and reinforcement learning.
The solutions we contribute can be summarized as follows:

• Concerning offline optimization, we propose a family
of threshold-based transmission strategies. Each strategy
in this family has a unique threshold and triggers the
transmission of status updates whenever the difference
between the AoI at the sender and at the receiver exceeds
this threshold. Depending on this threshold, each of
the strategies in our family of threshold-based strategies
has different properties. For example, strategies with
lower thresholds cause lower risk, but may also cause
higher costs. We provide the costwise optimal threshold-
based strategy (TB-Opt) out of the proposed family
of threshold-based strategies. Additionally, we provide
methods to balance cost and risk for these strategies. We
further derive a closed-form expression for the strategies’
average cost. Likewise, we provide an expression for the
frequency with which risky states will be visited under a
threshold-based strategy. In contrast to value iteration, our
proposed optimization approach is able to handle large
sets of possible AoIs.

• Concerning reinforcement learning, we propose a novel
risk-sensitive variation of Q-learning. We directly include
our proposed notion of risky states into a risk-aware
learning algorithm, which we call Q-learning using risky
states (Q+RS). Q+RS is able to balance cost and risk
using a tunable risk-parameter. At the same time, Q+RS
does not depend on a-priori knowledge of the probabil-
ities of a new status update arrival and of a successful
transmission. By means of numerical simulations, we
show that, compared to strategies based on traditional
learning approaches, the risk-aware strategy derived from
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Fig. 1: System Model

Q+RS not only reduces the occurrence of risky states, but
also the cost in the system.

The rest of the paper is organized as follows. The considered
system model and the formulation of the optimization problem
are presented in Sec. II and Sec. III, respectively. In Sec. IV,
we introduce threshold-based strategies including TB-Opt .
Our new risk-aware learning strategy Q+RS is introduced in
Sec. V. The numerical evaluation of the proposed strategies is
presented in Sec. VI, Sec. VII concludes the paper.

II. SYSTEM MODEL

As considered in [12] and as shown in Fig. 1, the system
consists of a sender, a receiver and a wireless packet erasure
channel connecting both. The sender can be an IoT-device
receiving status updates (e.g. distances or temperatures). The
receiver relies on fresh information from this IoT-device.

The system uses discrete and equidistant time steps, indexed
by t ∈ N. The status update arrival process is modeled as a
Bernoulli process, such that at the beginning of each time step
t, an update arrives at the sender with probability λ. The sender
has a buffer, able to store only the freshest status update. This
means that, as soon as a new status update arrives, the currently
stored update is replaced by the new one. Assume that status
updates arrive at random time steps t = ti, where i ∈ N. Then
the AoI at the sender evaluated at time step t ∈ [ti, ti+1 − 1],
is denoted as AoITx,t ∈ N0 and it is defined as

AoITx,t := t− ti, for t ∈ [ti, ti+1 − 1]. (1)

Hence, the minimal AoITx,t is 0.
In each time step t, the sender has then to decide, whether it

wants to send the currently stored status update to the receiver
or not. If the sender decides to transmit, the status update
can correctly be detected at the receiver with a probability
of p. This probability p models the quality of the wireless
noisy channel. The transmission power is constant, i.e. each
sending attempt needs the same amount of energy ν. We
assume that the sender receives information of whether the
packet could correctly be detected at the receiver or not via a
perfect feedback channel. This allows the sender to keep track
of the AoI at the receiver. The AoI at the receiver is denoted
as AoIRx,t ∈ N and is defined as

AoIRx,t+1 :=


AoITx,t + 1, if a transmission

attempt succeeds at t,
AoIRx,t + 1, otherwise.

(2)

Note that the lowest possible value of AoIRx is 1, while the
lowest possible value of AoITx is 0. This modeling decision
was adopted from [12].

The decision of the sender in time step t results in a cost
Ct associated with the single time step t. Ct is defined as the



weighted sum of the age of information AoIRx at the receiver
and the transmission energy ν. This means that a persistently
high AoIRx will result in high costs. A successful transmission
will result in a lower AoIRx and hence in lower costs. Formally,
Ct is defined as

Ct =

{
αAoIRx,t + βν if the sender sends,
αAoIRx,t otherwise,

(3)

where α and β are weights on the AoI and the energy cost.
The cost of a strategy π is defined to be the long-term

average of the costs of all single time steps:

cost(π) := lim
n→∞

1

n

n∑
t=1

E[Ct|π], (4)

where E[Ct|π] denotes the expected costs in time step t under
strategy π.

We additionally introduce the concept of risky states as
events in which the AoIRx ≥ ζ, where ζ ∈ N is a predefined
safety value, which is measured in time steps. In the context
of the given application, this safety value ζ quantifies the idea
that the information at the receiver might be too old, which
possibly results in undesirable system behaviour.

The details of how cost and risk are considered in the
proposed approaches are explained in Sec. IV and Sec. V.

III. PROBLEM FORMULATION

In this section, we formulate the problem as an average-cost
Markov Decision Process (MDP) M. For given parameters
p, λ ∈ (0, 1) and ν ≥ 0, the MDP M modeling the described
system consists of a set S := N0 × N of states, a set
A := {0, 1} of actions, a cost function c and state transition
probabilities given by a function P . Each state s ∈ S is a pair
of natural numbers modeling the AoI at the sender and at the
receiver, i.e., s = (AoITx,AoIRx). The action space A contains
two actions. 0 means that the sender waits, 1 corresponds to a
sending attempt. The cost function c returns the cost of a state-
transition (st, a, st+1), i.e., the cost arising from transitioning
from state st = (AoITx,t,AoIRx,t), at time step t, to state
st+1 = (AoITx,t+1,AoIRx,t+1) ∈ S at time step t + 1 after
taking action a ∈ A. We define the function c : S×A×S → R
as c(st, a, st+1) = Ct+1 using Ct+1 defined in (3). According
to the previously described system, the transition probability
function P : S × A × S → [0, 1] is defined, such that the
probability for a new packet (AoITx,t+1 = 0) is λ. Otherwise,
AoITx,t+1 = AoITx,t +1. Independently, if at = 1, the probabil-
ity for a successful transmission (AoIRx,t+1 = AoITx,t +1) is p.
Otherwise, or if at = 0, AoIRx,t+1 = AoIRx,t + 1. Strategies π
for the solution of this MDP are maps from S to A. Expressing
the average cost as defined in (4) for the MDP, we write

cost(π) := lim
n→∞

1

n

n∑
t=1

E[c(st, π(st), st+1)], (5)

where the occurrence of the state st at time step t depends on
the transition probabilities of M. E[c(st, π(st), st+1)] denotes
the expected cost of the transition (st, π(st), st+1).

For a safety value ζ, the set R of risky states is given as

R := {s = (AoITx,AoIRx) ∈ S|AoIRx ≥ ζ}. (6)

IV. THE THRESHOLD-BASED APPROACH

In this section, we present our proposed threshold-based
transmission strategy based on optimization. This strategy
πTB(n) is characterized by a threshold n. According to
πTB(n), the transmitter sends, if and only if the difference
of the AoI at the receiver and that at the sender is equal to or
larger than n. We define πTB(n) as the following strategy:

πTB(n)((AoITx,AoIRx)) =

{
0 for AoIRx − AoITx < n,

1 for AoIRx − AoITx ≥ n.

The intuitive idea behind the threshold-based strategy is that
the AoIRx is reduced by the difference of both AoIs, which
means that a decision to send is more profitable for a higher
difference of the AoIs.

We continue with a lemma about the cost cost(πTB(n))
associated with the strategy πTB(n). This lemma is used
to find the costwise optimal value for the threshold n and
to derive the costwise optimal threshold-based strategy TB-
Opt. Afterwards, risk is considered in a second lemma, where
we provide a term for the frequency of the appearance of
risky states during the strategy’s execution. Combining both
lemmas, one is able to find a value for the threshold n
optimizing the cost under a given risk constraint. To apply
the lemmas, the risk constraint has to be given in terms of a
maximal frequency for the appearance of risky states.

Lemma 1. The average cost of the strategy πTB(n) is given
by

cost(πTB(n)) =

α(
∑n

k=1 pk(a(n)−
k(k−1)

2 ) +
∑∞

k=n+1 pk(k + a(1))) + β·ν
p

1−p
p + 1 + 1−λ

λ +
∑n−1

k=1 pk · (n− k)
,

a(n) :=
n− 2

λ
+

n− 2

p
+

(n− 2)(n− 1)

2
+

1

λ2
+

1

λp
+

1

p2
,

pk := (1− λ)k−1(1− p)k−1 − (1− λ)k(1− p)k.

Proof. The average cost cost(πTB(n)) of πTB(n) depends on
the required transmission energy ν and the AoIRx at every time
step. To find cost(πTB(n)), we consider the periods between
two successful transmissions. These periods have an average
period length l ∈ R, which is measured in time steps. During
a period, the strategy chooses to send for m ∈ R times on
average. The average energy cost can then be written as e :=
ν ·m · l−1. Finding the average sum A per period of the AoIRx
weighted by the period length allows to write the AoI-cost as
A · l−1. Combining AoI-cost and e, we get

cost(πTB(n)) = α(l−1 ·A)+βe = l−1 ·(α ·A+β ·ν ·m). (7)

It remains to find l, m and A.
The number of average sending attempts per period m is

m = p

∞∑
i=0

(i+ 1)(1− p)i =
1

p
. (8)



The average length l of a period depends on the value r0 of
AoIRx at the period’s first time step. The probability for r0 to
be 1 is given by p1, i.e., P(r0 = 1) = p1. This results from the
fact that r0 will only become larger than 1, if the last period
ended with at least one failed attempt to transmit. Also, during
this last time step of the last period, there must not arrive a
new status update. Generalizing the case r0 = 1 to r0 = k
for arbitrary k results in P(r0 = k) = pk. If in a given period
r0 ≥ n, the sender will decide to send as soon as a new status
update arrives. This results in an average period length of

l[r0 ≥ n] = λ

∞∑
j=0

(1− λ)jp

∞∑
i=0

(1− λ)i(i+ j + 1)

=
1− p

p
+ 1 +

1− λ

λ
.

Otherwise, the sender will wait for (n− r0) time steps before
sending newly arrived updates:

l[r0 < n] = (n− r0) + l[r0 ≥ n].

Including the relevant probabilities results in

l =

∞∑
k=1

pk · l[r0 = k]

=
1− p

p
+ 1 +

1− λ

λ
+

n−1∑
k=1

pk · (n− k).

(9)

Remember A is the average sum per period of the AoI at the
receiver weighted by the period length. Now, we evaluate A
for two cases: r0 ≤ n and r0 > n. For r0 ≤ n we get

A[r0 ≤ n] = λ

∞∑
j=0

(1− λ)jp

∞∑
i=0

((1− λ)i

· ( (n+ i+ j)(n+ i+ j + 1)

2
− r0(r0 − 1)

2
))

=
n− 2

λ
+

n− 2

p
+

(n− 2)(n− 1)

2

+
1

λ2
+

1

λp
+

1

p2
− r0(r0 − 1)

2
.

Note that a(n) = A[r0 = 1]. For r0 > n we then get

A[r0 > n] = r0 +A[r0 = 1] = r0 + a(n).

As for l, we include the relevant probabilities to obtain

A =

n∑
k=1

pk(a(n)−
k(k − 1)

2
) +

∞∑
k=n+1

pk(k + a(1)). (10)

Combining A from (10), l from (9) and m from (8) as
indicated in (7) yields the result of Lemma 1.

To find the threshold for TB-Opt, the resulting term for
cost(πTB(n)) from Lemma 1 can be easily minimized in n.
This is because the corresponding function in n is convex in
the considered parameter space.

Note that TB-Opt is designed in a risk-neutral manner.
Risk is now included into a threshold-based strategy by using

a lower threshold than the costwise optimal threshold. To
this end, we provide an expression for the frequency of
the appearance of risky states with high AoIRx during the
strategy’s execution. Given a risk constraint in terms of a
maximal frequency for risky states, this expression can be
used to find a sufficiently low threshold. Conversely, given a
threshold, this expression can be used to quantify the arising
risk. To make the notion of a frequency precise, we use the
following definition.

Definition 2. For a sequence of random variables (si)i=1,2,...,
the frequency fA of an event A is defined as

fA := E[ lim
m→∞

1

m

m∑
i=1

1si∈A].

For the threshold based strategy πTB(n), risky states with
AoIRx = k ≥ ζ appear with the frequency fk given by the
following lemma. Note that the lemma holds for all AoIRx =
k ≥ n, where n is the strategy’s transmission threshold.

Lemma 3. For the strategy πTB(n), the frequency fk of an
AoI at the receiver of k > n is given by

fk =
pk + Pn · (

∑n
r0=1 pr0) +

∑k−1
r0=n+1 pr0Pr0

l
,

where

Pr0 := 1− pλ

k−r0−1∑
j=0

i∑
j=0

(1− λ)j(1− p)i−j

and l is as in Eq. (9).

Proof. As in the proof of Lemma 1, we will use the concept of
periods. A period ranges from one successful transmission to
the next. The average length of a period is given by l as found
in Eq. (9). Next, we want to find the probability Pr0 that the
AoIRx will be equal to k at some time step in a given period.
Note that in every period, the event AoIRx = k will appear at
most once. Whether the event AoIRx = k appears depends on
the first value r0 of AoIRx in the respective period. If r0 > k,
AoIRx will not take the value k in this period (Pr0 = 0). If
r0 = k in the first time step of a period, the event AoIRx = k
appears in this period (Pr0 = 1). If r0 < n, the sender waits
until AoIRx = n, which means that the probability for an AoIRx
of k in periods with r0 < n is the same as in periods starting
with an AoIRx of r0 = n (Pr0 = Pn). Then, by using pr0 from
the previous proof, we get that

fk =
1

l

∞∑
r0=1

pr0Pr0 =
1

l
(pk+Pn ·(

n∑
r0=1

pr0)+

k−1∑
r0=n+1

pr0Pr0).

We still need to find Pr0 for r0 ∈ {n, ..., k − 1}. In a given
period starting with an AoIRx of r0 ∈ {n, ..., k − 1}, k will
appear if and only if it takes at least k − r0 time steps
until the next successful transmission. We will now find Σr0 ,
which is the sum of all the probabilities for faster successful
transmissions. Subtracting Σr0 from 1 results in Pr0 .



Algorithm 1: Q-learning + risky states (Q+RS)
Data: simulator for M, starting state s0, no. of time steps N ,

actions a1, ..., ak , real learning rates (αi)i∈{1,...,n},
discount factor γ, initial ϵ, decay factor δ, set of risky states
R, risk-factor ρ

Result: Q(N)-values as estimates for Q-values
1 Q(0) ← (0, ..., 0)
2 st ← s0
3 for i=1,...,N do
4 sample a random action a ϵ-greedy
5 update ϵ as ϵ← δ · ϵ
6 sample next state st+1 and cost Ct+1 using the simulator for

M
7 if st+1 ∈ R then
8 Ct+1 ← ρ · Ct+1

9 end
10 for (s′, a′) ∈ S ×A do
11 if s′ = st & a′ = a then
12 V (st+1)← maxaj=a1,...,ak Q(i−1)(st+1, aj)

Q(i)(s′, a′)←
(1− αi)Q

(i−1)(s′, a′) + αi(Ct+1 + γV (st+1))
13 else
14 Q(i)(s′, a′)← Q(i−1)(s′, a′)
15 end
16 end
17 st ← st+1

18 end
19 return Q(N)

As r0 ≥ n, the sender chooses to send immediately as
soon as a new status update arrives. The necessity for a new
status update results in a factor λ in Σr0 . The transmission
is successful with a probability of p, which is the second
necessary factor for Σr0 . In the remaining k − r0 − 1 time
steps, the sender could either wait for the new update, resulting
in an additional factor (1 − λ), or fail to send, resulting in
an additional factor (1− p). Adding all possible sequences of
waiting and failing resulting in successful transmissions before
AoIRx reaches k, we get

Σr0 = pλ

k−r0−1∑
j=0

i∑
j=0

(1− λ)j(1− p)i−j .

Subtracting Σr0 from 1 results in Pr0 as in Lemma 3.

V. THE Q-LEARNING BASED APPROACH

In this section, we present the risk-sensitive learning al-
gorithm Q+RS, which combines Q-learning and the notion of
risky states. This is achieved by modifying the costs associated
with each time step by adding a penalty for risky states.
Q+RS does not depend on a-priori knowledge of the system
parameters. Q+RS is also not limited to small sets of possible
AoIs as the value iteration approach in [12], because in
contrast to value iteration, the number of performed machine
operations does not grow in the size of the state space. We
apply ϵ-greedy tabular Q-learning to the MDP in Sec. III.

The pseudo code for Q+RS is given in Algorithm 1. The
algorithm iteratively approximates the so-called Q-value of
each state-action pair, i.e., the pair’s expected future cost.
The resulting approximations after N iterations are called
Q(N)-values. The initial approximations Q(0) are set to be 0.

After initial operations (lines 1-2), the algorithm works in an
iterative fashion (l. 3-18). The ϵ-greedy strategy used during
learning chooses a random action with a probability of ϵ and
the action with the lowest estimated Q-value with a probability
of (1− ϵ) (l. 4). During learning, ϵ is reduced by multiplying
it by a decay factor δ ∈ (0, 1) after every iteration (l. 5). The
Q-value update from traditional Q-learning (l. 10-16) is used
with an additional manipulation of the time step’s cost Ct+1

(l. 7-9) in case of risky states. To weight current and future
costs (see l. 12), Q-learning uses a discount factor γ, which we
here introduce as a hyperparameter. From the resulting Q(N)-
values, a strategy is constructed by choosing the action with
the lowest Q(N)-value in each state.
Q-learning in its original form is risk-neutral in the sense

that it optimizes costs in the MDP without considering any
risk-measure. In contrast to this original form of Q-learning,
we include risk-sensitivity by modifying the cost function c
in the MDP. This approach trivially inherits all convergence
properties of Q-learning.

The usage of a modified cost function c can be naturally
combined with the notion of risky states. This is achieved
by multiplying costs for transitions to risky states by a risk
factor ρ > 1. ρ = 1 would result in the original MDP, while
ρ < 1 would result in risk-seeking strategies. The modified
cost function as implemented in Algorithm 1 is defined as

cR(s, a, s′) := (1s′ /∈R + ρ · 1s′∈R) · c(s, a, s′). (11)

VI. SIMULATION RESULTS

A. Reference schemes

This section contains numerical results for the evaluation
of the proposed optimal threshold-based strategy TB-Opt as
well as of Q-learning using risky states Q+RS. We compare
our results with two reference schemes. The first reference is
a random strategy choosing to wait or to send both with a
probability of 0.5 and independently of the current state. As
a second reference, we use traditional risk-neutral Q-learning.
We omit the value iteration approach introduced in [12] in the
comparison, as otherwise, it would have become necessary to
introduce a limit for the AoI. This limit could be chosen large
enough to not influence the results, e.g. if it is never reached
by the AoI during the simulations. However, this is not feasible
due to the high computational complexity of value iteration.

B. Simulation setup

To simulate the system, we fix the parameters for transmis-
sion energy ν := 1 and the channel’s successful transmission
probability p := 0.9. The weights in the cost function are
set to α = 1 and β = 3. These weights are chosen, such
that the costs arising from a transmission attempt are high
enough that it is costwise reasonable for the sender to decide
for the wait action in some time steps. The default update
arrival probability is set to λ = 0.5. λ is varied in one of
the experiments to values between λ = 0.1 and λ = 0.9. For
Q-learning based strategies, we use N := 100.000 time steps
for learning and a discount factor γ := 0.7. As risk-factor, we
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choose ρ = 2 and as risk-threshold, we use ζ = 5. Initially,
ϵ = 0.9, the decay factor is set to δ = 0.999.

For the experiments displayed in Fig. 2 to 4, we take the
average of 100 independent runs. In each run, we first train
the Q-learning based approaches. We then use the result-
ing learned strategies and compare them with the reference
schemes. In each run, we use 10.000 time steps per strategy
for testing.

C. Numerical results
Figure 2 shows the average cost of our proposed strategies

Q+RS and TB-Opt compared to the reference schemes. Error
bars indicate standard deviations of the outcomes. While using
knowledge of the system parameters, the optimal threshold-
based strategy TB-Opt outperforms all other strategies and has
the lowest standard deviation, but at the price of requiring a-
priori knowledge of the parameters. Both Q-learning based
strategies are able to perform close to TB-Opt in comparison
to the random reference strategy. Risk-neutral Q-learning
generates average costs 4.3% higher than that of the optimal
threshold-based strategy. The strategy derived from Q+RS
generates costs only 1.6% higher than that of TB-Opt and
has a by 55% lower standard deviation than unmodified Q-
learning. Comparing the costs of our strategies to traditional
Q-learning, Q+RS is reducing the average cost by 2.6%, while
TB-Opt is reducing it by 4.1%.

In Figure 3, we show the average cost for different update
arrival probabilities ranging from λ = 0.1 to λ = 0.9. For
greater λ, average costs are smaller due to smaller AoI costs.
Our proposed strategies consistently outperform the reference
schemes as they do for λ = 0.5.

Figure 4 shows the average frequency of the appearance of
risky states for our approaches and the reference strategies.
The strategy derived from Q+RS avoids those states actively
and hence has a low frequency of 8.4% compared to 22.2% in
the random case, 12.7% for risk-neutral Q-learning and 9.3%
for TB-Opt. Note that the optimal threshold-based strategy TB-
Opt is not optimizing the frequency of the appearance of risky
states. Although TB-Opt was designed to minimize costs, it
still is risk-sensitive, as it visits a low number of risky states
compared to traditional Q-learning or the random strategy.

VII. CONCLUSIONS

In this work, we derive risk-sensitive strategies for a point-
to-point wireless communication scenario with randomly

arriving status updates. We measure risk using the notion of
risky states. We first propose a threshold-based strategy and
use offline optimization to find the costwise optimal threshold
and derive a costwise optimal threshold-based strategy
TB-Opt. By lowering this optimal threshold, the frequency
of visited risky states decreases, leading to a risk-sensitive
strategy. We provide expressions for cost and risk of the
threshold-based strategy. Our second proposed strategy is
based on the modified Q-learning algorithm Q+RS, where
we add risk penalties to the cost function.
In simulations, we show that both of our proposed strategies
outperform the reference schemes costwise and riskwise.
Also, the standard deviations of the experiment outcomes are
lower for our proposed strategies.
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