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Abstract—In multi-access edge computing (MEC), mobile users
(MUs) can offload computation tasks to nearby computational
resources, which are owned by a mobile network operator
(MNO), to save energy. In this work, we investigate two important
challenges of task offloading in MEC: (i) The techno-economic
interactions of the MNO and the MUs. The MNO faces a
profit maximization problem, whereas the MUs face an energy
minimization problem. (ii) Limited information at the MUs
about the MNO’s communication and computation resources
and the task offloading strategies of other MUs. To overcome
these challenges, we model the task offloading problem as a
matching game between the MUs and the MNO including their
techno-economic interactions. Furthermore, we propose a novel
Collision-Avoidance Task Offloading Multi-Armed-Bandit (CA-
TO-MAB) algorithm, that allows the MUs to learn the amount of
available resources at the MNO and the task offloading strategies
of other MUs in an online, fully decentralized way. We show
that by using CA-TO-MAB, the cumulative revenue of the MNO
can be increased by 25% and, at the same time the energy
consumption of the MUs can be reduced by 6% compared to
state-of-the-art online learning algorithms for task offloading.
Furthermore, the communication overhead can be reduced by
55% compared to a non-learning game-theoretic approach.

I. INTRODUCTION

Multi-access edge computing (MEC) refers to the deploy-
ment of computation facilities at the edge of the Internet,
aiming to reduce computation time and energy consumption
of battery-powered mobile units (MUs) [1]. The mobile net-
work operators (MNOs) deploy cloudlets, i.e., small-scale data
centers, at the wireless access points (APs). MEC enables
computation offloading, which is the transmission of compu-
tation tasks from MUs to nearby APs with cloudlets, where
the task can be efficiently computed. From the perspective of
battery-powered MUs, computation offloading offers the pos-
sibility to reduce the energy consumption caused by intensive
computation tasks, therefore extending their operation time.
Recent works have proposed using computation offloading in
face recognition [2] and video analysis [3].

In MEC, the limited communication bandwidth and com-
putation resources have to be shared among many MUs. After
successfully offloading computation tasks, the MUs pay the
MNO to compensate for the resource usage [4]. This techno-
economic perspective, i.e., considering the economic attributes
as well as the technical performance of MEC, is becoming
increasingly important.
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The success of MEC relies on suitable task offloading
strategies that minimize the MU’s energy consumption and
maximize the MNO’s revenue. However, designing the task
offloading strategy in MEC networks faces two major chal-
lenges:

(i) The techno-economic interactions between MUs and
the MNO: Both, the MU and the MNO have technical and
economic perspectives. The MUs want to minimize their
energy consumption given a fixed willingness to pay for saved
energy. The MNO maximizes its revenue given the available
limited communication and computation resources.

(ii) Limited information: The MUs do not know how many
resources are available at each AP and what the task offloading
strategies of the other MUs are. To avoid collisions, i.e. more
MUs propose to offload their task to an AP than it can process,
the MUs have to learn how to coordinate their task offloading
strategies in a decentralized way.

Recent research on task offloading in MEC has been focused
on either the techno-economic interactions or the decentralized
online learning of the task offloading strategy. Centralized
decision-making, where tasks are scheduled based on global
information and MUs have no control, will not be considered
as it is not feasible due to the significant communication
overhead in dense MEC environments [5]. In [6], a techno-
economic model for a MEC network is formulated based on
matching theory. This game is solved using a swap-matching
algorithm. A techno-economic model for a MEC system with
a controller is formulated in [5]. A reinforcement learning
algorithm for the MUs’ offloading strategy is proposed which
relies on a central controller. The central controller minimizes
the time occupation of the edge servers. Although these works
significantly contribute to the research on techno-economic
interactions for task offloading, these works either assume that
the MUs have unlimited information or these works rely on a
central controller in the MEC network.

Several works considered the decentralized online learning
of the MUs’ task offloading strategies. In [7], a decentral-
ized multi-user multi-armed bandit is proposed to learn the
offloading decisions. In [8], a delay minimization problem
is investigated with a single AP and multiple MUs using
reinforcement learning. A multi-armed bandit learning that
minimizes the average task completion time of the MUs was
proposed in [9]. A distributed deep learning-based offloading
algorithm for a hierarchical MEC network with multiple edge
servers and one cloud server that minimizes a combination of
task completion time and energy consumption was proposed



in [10]. [11] formulates a utility model for MUs and proposes
a model-free reinforcement learning offloading mechanism
so that MUs learn long-term offloading strategies. One ap-
proach to edge server behavior is proposed in [12] where the
edge servers determine their activity status, while MUs aim
to attain Quality of Service satisfaction by choosing active
servers and determining transmission powers. Although these
works significantly contribute to the research of decentralized
online learning of task offloading strategies, these works only
consider the perspective of the MUs, without modeling the
behavior of the MNO.

Our contributions are summarized as follows. In contrast
to [7], [8], [9], [10], [11], we present a techno-economic
system model consisting of two stakeholder types, the MUs
and the MNO. We present a matching game formulation of
the task offloading problem including the techno-economic
perspective. We consider the relevant utility functions, i.e.,
the energy consumption of each MU and the revenue of
the MNO in the game formulation. To find solutions to the
formulated matching game in a completely decentralized way,
we combine elements from online learning, i.e., multi-armed
bandits, with concepts from game theory, i.e., coordination
of the MUs’ offloading strategies. Furthermore, in contrast
to [6], [5], we propose a fully decentralized online learning of
the task offloading strategies termed Collision-Avoidance Task
Offloading Multi-Armed-Bandit (CA-TO-MAB).

The rest of this paper is organized as follows. In Section II,
we introduce the system model, followed by the formulation
of the task offloading game in Section III. The novel CA-TO-
MAB algorithm is presented in Section IV and the perfor-
mance of the proposed approach is evaluated numerically in
Section V. Section VI concludes this paper.

II. SYSTEM MODEL

A. Overview

We consider a set K = {MU1, ...,MUK} of K MUs. One
MNO provides a set M = {AP1, ...,APM} of M access
points (APs) with one cloudlet at each AP. An overview of
the system model is depicted in Fig. 1.

The time is divided into discrete time slots with index i =
i, . . . , I . In each time slot i, a computation task arrives at each
of the K MUs. Each task can be processed locally on the MU
or can be offloaded to one of the cloudlets in the MEC network
using the shared wireless channel. The task is delay-sensitive,
meaning that in the case of task offloading, the task completion
time for task offloading needs to be the same or smaller than
the local computation time. When offloading the task to a
cloudlet in the MEC network, the MU sends an offloading
proposal to the selected cloudlet including information about
the task and a suggested payment. The MNO then decides
whether the offloading proposal will be accepted or if the task
has to be calculated locally.

B. Mobile Units

In each time slot i, a delay-sensitive task arrives at MUk,
which is characterized by its size sk,i in bits and its complexity
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Fig. 1. Overview of the system model.

ck,i in CPU cycles per bit [13]. There are two different ways
the task can be completed: Local computation at the MU
or task offloading to a cloudlet in the MEC network. When
calculating the task locally, the MU uses its central processing
unit (CPU) with the frequency f local

k and the power pcalc
k . For

local computation of the task in time slot i at MU k, the
processing time is calculated by

T local
k,i =

sk,i · ck,i
f local
k

. (1)

The energy required for local task completion in i is given by

Elocal
k,i = T local

k,i · (pstatic
k + pcalc

k ), (2)

where pstatic
k denotes the static power of MUk.

Alternatively, the task can be offloaded to a cloudlet. We
introduce the indicator variable xk,m,i ∈ {0, 1} to indicate
whether MUk offloads its task to APm (xk,m,i = 1) or
calculates the task locally (xk,m,i = 0, ∀m). The task can
only be offloaded to one AP, i.e., xk,m,i = 1 for only one
m ∈ {1, . . . ,M}. We introduce the task offloading matrix
Xi = (xk,m,i) which contains the information about which
MU offloads its task to which AP in time slot i. When
offloading the task, the task has to be transmitted over the
shared wireless channel. We assume a block fading model,
i.e. the channel is assumed to be constant during time slot i,
but changes in between time slots. The gain of the wireless
channel between MU k and AP m in time slot i is denoted by
|hk,m,i|2. We assume a white Gaussian noise at the receiver
with noise power σ2. We assume Frequency Division Multiple
Access (FDMA), i.e., a bandwidth bk,m,i is assigned to each
MU. We can calculate the data rate

Rk,m,i = bk,m,i · log2
(
1 +

ptrans
k · |hk,m,i|2

σ2

)
, (3)

where bk,m,i denotes the bandwidth assigned to MUk at APm

in i and ptrans
k denotes the transmit power of MUk. The time

required for the transmission of the task from MUk to APm

in time slot i is given by

T trans
k,m,i =

sk,i
Rk,m,i

. (4)



The time required for processing the task on cloudlet m is
given by

T calc
k,m,i =

sk,i · ck,i
fk,m,i

, (5)

where fk,m,i denotes the CPU frequency assigned to MU k on
cloudlet m in i. The total time required for task completion is
given by T offloading

k,m,i = T trans
k,m,i + T calc

k,m,i. As the tasks are delay-
sensitive, the constraint

T offloading
k,m,i ≤ T local

k,i (6)

is important. The total energy required at MUk for its task
completion on cloudlet m is given by

Eoffloading
k,m,i = T trans

k,m,i · ptrans
k + T calc

k,m,i · pstatic
k , (7)

which includes the energy required for the transmission of the
task. The utility of MUk in time slot i

UMU
k,m,i =

{
Elocal

k,i − Eoffloading
k,m,i , if xk,m,i = 1

0, otherwise
(8)

is the energy saved by the task offloading to APm. Each MU
has a different willingness to pay the MNO for the successful
task offloading which is modeled by the factor αk [14], [15].
MUk pays the MNO for successful task offloading depending
on the saved energy with a payment

Pk,m,i =

{
αk · UMU

k,m,i, if T offloading
k,m,i ≤ T local

k,i

0, otherwise
(9)

in time slot i. If the task completion time constraint (6) is
violated, the MU will not pay for the task offloading.

Each MU solves an energy minimization problem, i.e. select-
ing a cloudlet to maximize the saved energy (8) while keeping
the task completion time constraint (6) of each task.

C. Mobile Network Operator

The MNO owns and operates the APs and cloudlets. Each
AP has a limited bandwidth Bmax

m,i of the wireless channel,
which has to be shared between the offloading MUs. Further-
more, each cloudlet has a limited CPU frequency Fmax

m,i , which
has to be shared between the offloaded tasks. Therefore, the
MNO has to fulfill the constraints

K∑
k=1

bk,m,i ≤ Bmax
m,i and

K∑
k=1

fk,m,i ≤ Fmax
m,i ∀m, i. (10)

Given these constraints, the MNO wants to maximize its utility

UMNO
i (Xi) =

M∑
m=1

K∑
k=1

xk,m,iPk,m,i (11)

in time slot i given by the sum of all payments by the MUs.
The MNO solves a profit maximization problem, i.e. select-

ing the MUs to maximize its profit (11) given the constraint of
the available communication and computation resources (10).

III. TASK OFFLOADING GAME

A. Game formulation

We use game theory, specifically matching theory, to ana-
lyze the task offloading problem. The main goal of matching
theory is to obtain a stable matching, i.e., reaching a task
offloading matrix Xi in which MUs and the MNO cannot si-
multaneously improve their utility by changing their offloading
decisions. This reflects the selfish behavior of MUs and the
MNO that try to obtain their individual best solution.

A matching game is characterized by the set of players and
their preferences. The MUs are modeled as individual players.
The preferences of the MUs are given by the preference
ranking

APl ⪰MU
k APn ⇐⇒ UMU

k,l,i ≥ UMU
k,n,i, (12)

i.e., MUk prefers APl over APn if the MU’s utility is higher
when using APl. The MUs rank all APs in the set M
of available APs according to their utility. This ranking is
different for each MU.

The MNO is modeled as a player which has preferences
regarding the offloading MUs at each AP. The MNO ranks
sets of MUs at each AP

C ⪰AP
m C ′ ⇐⇒ UMNO

i (Xi) ≥ UMNO
i (X′

i), (13)

i.e., APm prefers the set C of MUs over the set C ′ if the
MNO’s utility is higher. The task assignment matrix Xi is a
matrix indicating that the set C of MUs is offloading to APm,
X′

i is the matrix indicating that C ′ is offloading to APm.
The task offloading game Gi in time slot i is formally

described by a tuple Gi = (K,M,⪰MU
k ,⪰AP

m ) containing the
set K of MUs, the set M of APs, the MUs’ preference ordering
⪰MU

k and the APs’ preference ordering ⪰AP
m . We denote the

set of MUs that are matched to APm as µ(APm), and the AP
to which the MU is matched to as µ(MUk).

B. Stable solution

Comparable to the concept of the Nash Equilibrium (NE),
a solution of the matching game Gi is a task offloading matrix
Xi where neither the MNO nor the MUs can simultaneously
improve their utility by changing their strategy. In matching
games, both, the MUs and the MNO have to agree to change
the matching, therefore the solution concept is different from
the NE.

A matching is defined to be stable when there is no pair of
an APm and a set C of MUs that can further improve their
utility by changing the current matching. A pair (APm, C) is
called a blocking pair if the APm and all MUs in C can
improve their utility [16]. Formally, the pair (APm, C) is
a blocking pair if all of the following three conditions are
fulfilled:
(i) C \ µ(APm) ̸= {}, i.e., not all MUs C are currently
matched to APm.
(ii) C ⪰AP

m µ(APm), i.e., the MNO prefers to have C matched
to the APm over its current matching µ(APm).
(iii) APm ⪰MU

k µ(MUk), ∀MUk ∈ C, i.e., all MUs in C



prefer to be matched to APm over their current matching
µ(MUk).

If one blocking pair (APm, C) exists, the matching is
defined to be unstable as it can be improved by offloading
all the tasks of the MUs in C to APm. Conversely, if no
blocking pair exists, the matching is defined to be stable.

C. Available information

Initially, the MUs have no information about the maximum
available communication bandwidth Bmax

m,i and computation
resources Fmax

m,i at each APm. Furthermore, the MUs do not
know how much bandwidth bk,m,i and CPU frequency fk,m,i

they get assigned at each APm. This depends heavily on the
offloading strategies of the other MUs and the decisions of
the MNO. We define the expected allocated bandwidth as
b̄k,m = E{bk,m,i} and the expected allocated CPU frequency
as f̄k,m = E{fk,m,i}. We define the MU-side information as
IMU
k = {b̄k,m, f̄k,m, ∀APm ∈ M}, which is the information

about the expected bandwidth and expected CPU frequency
that will be assigned to MUk at APm.

The MNO does not have information about the MUs in the
network. In the case of an offloading proposal, the MU reports
the task size sk,i, the task complexity ck,i, the time constraint
T local
k,i , the channel gain |hk,m,i|2 and its willingness to pay αk

to the MNO.
Our goal is to optimize the task offloading matrix Xi in

a completely decentralized fashion without requiring prior
knowledge of IMU

k . For this purpose, each MU learns IMU
k

to find its most preferred AP in each time slot i. In turn,
the MNO has to identify the most profitable MUs for each
AP. We assume strict privacy constraints, meaning that the
MUs do not share information about IMU

k , neither with the
MNO nor other MUs. Because of the limited information and
privacy constraints, an efficient task assignment can only be
achieved by means of decentralized online learning. A major
challenge for the MUs is the exploration of the APs at the
beginning, when all MUs explore simultaneously the different
APs, having only poor estimates of IMU

k . To analyze the task
offloading problem from the perspective of the MUs and the
MNO, we propose a novel decentralized learning algorithm in
the next section.

IV. COLLISION-AVOIDANCE TASK OFFLOADING
MULTI-ARMED-BANDIT

In this section, we propose a novel decentralized online
learning algorithm for the task offloading game Gi. The al-
gorithm is fully decentralized and it consists of two strategies:
The strategy of the MUs (Algorithm 1) and the strategy of
the MNO (Algorithm 2). The collision concept of Collision-
Avoidance Task Offloading Multi-Armed-Bandit is based on
the collision-avoidance multi-armed bandit from [17].

The fundamental idea of our proposed CA-TO-MAB algo-
rithm is that the MUs learn the expected utility of each AP and
whether other MUs with higher willingness αk to pay propose
to the same AP. Each MU wants to avoid collisions with MUs
having a higher willingness αk to pay, as the MNO will prefer

Algorithm 1 CA-TO-MAB (MUs’ strategy)
Require: Set M of APs, λ ∈ [0, 1), {ϵi}i=0,...,I

1: for each i ∈ {0, . . . , I} do
2: if i = 0 then
3: Propose to a random APm ∈M, Initialize Lk,m,0 = {}
4: else
5: Draw d ∈ {0, 1} from Bernoulli distribution with p = λ
6: if d = 0 then
7: Determine plausible set Sk,i from Lk,m,i

8: Sample a number e uniformly from [0, 1)
9: if e < 1− ϵi then

10: Send offloading proposal to APm ∈ Sk,i with highest
average utility (ties broken arbitrarily)

11: else
12: Send offloading proposal to a random APm ∈ Sk,i

13: end if
14: else
15: Propose to the same APm as previous time slot
16: end if
17: end if
18: The MNO uses Algorithm 2 to determine the accepted MUs
19: if MUk is accepted at APm, i.e., MUk ∈ Gm then
20: Offload the task to APm, Nm ← Nm + 1
21: Observe utility UMU

k,m,i (8) and update Qk,m,i ▷ Eq. (14)
22: else
23: Calculate the task locally
24: Update Lk,m,i with Gm ▷ Eq. (15)
25: end if
26: end for

MUs with a higher αk. Therefore, the collision-avoidance
concept was proposed in [17]. CA-TO-MAB learns the set
Lk,m,i which contains all other MUs that were preferred over
MUk by the MNO at APm. The strategy of the MNO is to
select the MUs that maximize its revenue at each AP once all
MUs have sent their offloading proposals.

Algorithm 1 describes the online learning process of each
MUk. In the first time slot i = 0, each MU initializes its set
Lk,m,0 and sends its offloading proposal to a random AP (line
3). For time slots i > 0, each MU draws a random number d ∈
{0, 1} from a Bernoulli distribution with the probability λ (line
5). Using the set Lk,m,i, the MU calculates the set Sk,i. If d =
0, the MU selects an AP from Sk,i for the offloading proposal
according to a decaying ϵ-greedy scheme, i.e., with probability
ϵi the MU explores and selects a random AP (line 12) and with
probability 1− ϵi the MU exploits its learned information and
selects the AP with the highest expected average utility (line
10).

If d = 1, the MU sends an offloading proposal to the
same AP as in the last time slot (line 16). This mechanism
is required to ensure that not all MUs switch simultaneously
the AP they propose to in each round, which is required to
achieve stability [17].

Afterward, MUk waits for the response of the MNO, as
described in Algorithm 2. After MUk receives the MNO’s
response, its behavior depends on whether it was accepted or
not. If MUk was accepted, the computation task is offloaded
(line 20) and the MU can observe its utility UMU

k,m,i and update



Algorithm 2 CA-TO-MAB (MNO’s strategy)
Require: M, offloading proposals σm

1: for i = 0, . . . , I do
2: Wait for the set σm of MUs’ sending offloading proposals.
3: for each APm ∈M do
4: Gm = {},A = {}
5: Calculate utility UMNO

i (11) for each MUk ∈ σm.
6: for l = 1, . . . , |σm| do
7: Determine MUk with highest utility.
8: if UMNO

i (Gm ∪MUk) ≤ UMNO
i (G) then

9: for each MUg ∈ G do
10: if UMNO

i ((Gm∪MUk)\(A∪MUg)) > UMNO
i (Gm)

then
11: A← A ∪MUg

12: end if
13: end for
14: end if
15: if UMNO

i ((Gm ∪MUk) \A) > UMNO
i (Gm) then

16: Gm ← ((Gm ∪MUk) \A)
17: end if
18: end for
19: Broadcast set Gm of MUs that are accepted at APm

20: Reserve the CPU frequency fk,m,i and the bandwidth
bk,m,i for each MUk in Gm for the time slot i ▷ Eq. (16)

21: end for
22: end for

its estimate

Qk,m,i = Qk,m,i−1 +
1

Nm
(UMU

k,m,i −Qk,m,i−1), (14)

of the expected utility, where Nm denotes how often MUk has
successfully offloaded its task to APm (line 21).

If MUk was rejected by the MNO, it calculates its task
locally (line 23) and therefore cannot observe the utility at
APm. However, the MU can learn about the MUs that were
more preferred by the MNO. The set Lk,m,i is updated using

Lk,m,i = Lk,m,i−1 ∪Gm, (15)

i.e., all MUs which were accepted at APm instead of MUk

are included in Lk,m,i (line 24).
Algorithm 2 describes the decision-making process of the

MNO for each APm. The selection of MUs is based on a
greedy approximation of the maximum of UMNO

i of (11) based
on [18]. Firstly, the MNO waits for all offloading proposals
by the MUs. The proposing MUs to APm are denoted by
the set σm. Then at each APm, the set of accepted MUs
and the set of rejected MUs is determined to maximize
UMNO
i of (11). Firstly, the marginal contribution to the MNO’s

utility is calculated (line 5). Secondly, the MU with the
highest marginal contribution to the utility is selected (line 7).
If sufficient communication and computation resources are
available at APm (line 15), the MU is added to the set Gm

of accepted MUs (line 16). We assume the MNO shares the
resources according to

bk,m,i =
Bmax

m,i

|Gm|
and fk,m,i =

Fmax
m,i

|Gm|
∀k ∈ Gm,m, i, (16)

i.e., each accepted MU gets the same amount of bandwidth
bk,m,i and CPU frequency fk,m,i allocated in time slot i at

TABLE I
EVALUATION PARAMETERS

Parameter Value
Simulated area 1 km2

Available bandwidth at each AP Bmax
m,i = 2MHz

Available CPU frequency at each AP Fmax
m,i ∼ N (30, 5)GHz

Channel gain in distance dk,m |hk,m,i|2 ∼ ( 1
dk,m

)4

Noise power σ2 = 1× 10−13 W

MU’s transmit, static, ptrans
k = 0.2W, pstatic

k = 0.1W

and CPU power pcalc
k = 1.5W

Local CPU frequency f local
k = 2GHz

Willingness to pay αk = 3.56 · 10−5

Large Task sk,i = 12Mbit, ck,i = 500

Medium Task sk,i = 1Mbit, ck,i = 1000

Small Task sk,i = 150 kbit, ck,i = 2000

Exploration parameter ϵi =
0.1

1.01i

Delay probability λ = 0.1

APm. When the communication and computation resources
are not sufficient to compute the task within the time constraint
(line 8), the MNO checks if it is beneficial to swap the
proposing MU with one of the MUs in the set Gm (lines
9-12).

Then the MNO broadcasts the set Gm of accepted MUs at
APm to all MUs that sent an offloading proposal. Further-
more, the MNO reserves the communication and computation
resources for each MU in time slot i. The MUs in Gm then
can offload their computation task to APm.

V. NUMERICAL EVALUATION

A. Simulation setup

For the simulations, the parameters listed in Table I are
considered, unless otherwise specified. We consider K = 65
MUs, and M = 6 APs. The MUs are randomly positioned
in an area of 1 km2 and the APs are placed in an equidistant
grid. Each of the MUs has one computation task arriving in
each time slot belonging to one of the following task types:
small, medium, or large. The size and complexity of each task
type are specified in Table I. Each of the MUs has a battery
level ak which is uniformly distributed in the interval (0, 1].
The battery level ak determines the willingness to pay, i.e., the
lower the battery level, the more the MU will pay for energy
consumption reduction. The willingness to pay is calculated
by

αk(ak) = 3.56 · 10−5(1− ak)
Monetary Units

J
, (17)

which is the amount of monetary units that an MU is willing
to pay for the energy consumption reduction by 1 J. In each
time slot i, the available CPU frequency Fmax

m,i at each AP is
drawn from a normal distribution with mean 30GHz and a
standard deviation of 5GHz. For each figure, 15 Monte-Carlo
iterations over a time horizon of I = 500 were performed.

We use the following algorithms as benchmarks for our
proposed CA-TO-MAB. Assuming full information IMU

k for
each MU, we consider the following offline approaches:
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Fig. 4. Percentage of successfully offloaded tasks.

• Resource Allocation Matching (RAM): This algorithm is
a modified version of the algorithm from [6]. This algo-
rithm solves the task offloading game from Section III
assuming complete information, i.e., MUs have complete
information about the available resources. Each MU can
calculate its preference ranking (12) in advance. In each
time slot i, the MUs send offloading proposals to APs in
the order of their preference ranking until an offloading
proposal is accepted.

• Only the MNO acts strategically (MNO-only): Each MU
proposes to a random AP in each time step. The MNO
will select the MUs to maximize its revenue according
to Algorithm 2. If the MU is rejected, it may send an
offloading proposal to another random AP.

Additionally, we consider the following decentralized online
learning benchmark, which does not require IMU

k :
• Heterogeneous Decentralized Epoch Based Offloading

(H-DEBO) [7]: The learning process of the MUs is split
into three phases. In the exploration phase, the MUs
are grouped and explore the resources in a round-robin
fashion. In the second phase, the matching phase, MUs
are matched to resources based on their experienced
utility of (8) from the exploration phase. In the third
phase, the exploitation phase, the MUs offload the task
to the AP determined in the second phase. We modified
the matching phase of the algorithm so that the time
constraint (6) of each MU is fulfilled.

B. Results

Fig. 2 shows the average reduction of energy consumption
of the MUs per 1 kbit of task size in each time slot. The
RAM and MNO-only algorithms show constant performance
over time, as both algorithms do not use online learning.
Both algorithms require the full information already at the
first time slot i = 0. The RAM algorithm shows the best
performance with an average reduction of energy consumption
of 1.03mJ per kbit. The MNO-only algorithm achieves an
energy reduction of 0.81mJ per kbit. The H-DEBO algorithm
has an exploration phase until i = 100, during which its
performance is poor. In the exploration phase of H-DEBO, it
is especially challenging to ensure that all MUs can fulfill the
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Fig. 5. Communication overhead caused by offloading proposals.

time constraint (6). Therefore, the number of offloading MUs
is limited by the algorithm in the exploration phase at each AP
to ensure that each MU can successfully offload its tasks. In the
matching and exploitation phase, the performance significantly
improves. The proposed CA-TO-MAB algorithm shows a
performance comparable to the MNO-only algorithm in i = 0,
as the MUs do not know their preference ranking (12) of APs.
After convergence, the proposed CA-TO-MAB achieves 6%
higher energy consumption reduction compared to H-DEBO.

Fig. 3 shows the cumulative revenue of the MNO in mone-
tary units. The RAM and MNO-only algorithms show a linear
performance over time, as both algorithms yield the same
revenue of the MNO in each timestep. Both algorithms do not
use online learning but require knowledge of IMU

k at each MU,
therefore their revenue in each time slot is constant over time.
The RAM algorithm shows the best performance with 0.52
monetary units after 500 time slots. The proposed CA-TO-
MAB achieves the second highest MNO’s cumulative revenue
with 0.48 monetary units. The H-DEBO algorithm achieves a
lower MNO’s cumulative revenue of 0.38 monetary units, as
it does not consider a techno-economic model. The H-DEBO
algorithm is focused on the MU’s utility function (8), therefore
the MNO’s cumulative revenue is 25 % lower at i = 500 than
the MNO’s cumulative revenue when using CA-TO-MAB.
Thus, our proposed CA-TO-MAB algorithm increases both,
the MUs’ energy savings and the MNO’s revenue, compared
to the state-of-the-art H-DEBO algorithm.

Fig. 4 shows how many computation tasks are offloaded to



the MEC network. Using the RAM algorithm, 79 % of the
MU’s computation tasks are offloaded to the MEC network.
The proposed CA-TO-MAB algorithm offloads 55 % of the
MUs’ tasks to the MEC network. The MNO-only and H-
DEBO algorithm can offload 48% of the MU’s tasks to the
MEC network. The number of offloaded tasks shows how well
the resources of the MEC network are utilized.

Fig. 5 shows the communication overhead required for each
algorithm in terms of the number of offloading proposals
per MU. The non-learning approaches require a significantly
higher constant communication overhead. The RAM (MNO-
only) algorithm requires on average 2.7 (2.2) offloading pro-
posals per MU. These algorithms send multiple offloading
proposals per MU, as the MUs do not learn to avoid collisions
at the APs, and therefore it is required that MUs send
offloading proposals to multiple APs. The proposed CA-TO-
MAB algorithm starts with 2.2 offloading proposals per MU
at i = 0, and then significantly decreases the number of
offloading proposals. The MUs with a bad channel, i.e., low
channel gain |hk,m,i|2, or low willingness αk to pay learn that
it is not beneficial to offload and consequently stop to send
offloading proposals. Both online learning algorithms, CA-TO-
MAB and H-DEBO, converge to 1.15 offloading proposals
on average per MU, which significantly reduces the required
communication overhead in the MEC network.

VI. CONCLUSION

In this work, we study decentralized online learning for
computational task offloading in MEC. We consider two major
challenges in MEC: (i) The techno-economic perspective of
the MUs and the MNO and (ii) the limited information at
the MUs about the resources and task offloading strategies
of other MUs. To address the first challenge, we formulate a
matching game that models the techno-economic interaction
of the MNO and MUs. Furthermore, we consider the limited
information of the MUs about the resources and the offloading
strategies of other MUs. We propose a novel decentralized
online learning algorithm for task offloading, termed CA-
TO-MAB, which combines elements from online learning
and game theory. In the numerical evaluation, we show that
our proposed CA-TO-MAB algorithm decreases the energy
consumption of MUs up to 10 % compared to the state-of-
the-art H-DEBO online learning approach and, at the same
time increases the cumulative revenue of the MNO by 25 %.
Furthermore, the communication overhead can be reduced by
55% compared to the RAM algorithm. The extension to a
dynamic system model with asynchronous task arrivals and
the consideration of practical implementation aspects are left
for future work.
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