
Wanja de Sombre, Felipe Marques, Friedrich Pyttel, Andrea Ortiz and Anja Klein, ”A Unified
Approach to Learn Transmission Strategies Using Age-Based Metrics in Point-to-Point
Wireless Communication”, in Proc. of the IEEE Global Communications Conference - (IEEE
Globecom 2023), December 2023.

©2023 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this works must be obtained from the IEEE.



A Unified Approach to Learn Transmission
Strategies Using Age-Based Metrics in
Point-to-Point Wireless Communication

Wanja de Sombre, Felipe Marques, Friedrich Pyttel, Andrea Ortiz, Anja Klein
Communications Engineering Lab, Technical University of Darmstadt, Germany.

{w.sombre, a.ortiz, a.klein}@nt.tu-darmstadt.de, felipedrmarques@usp.br, friedrich.pyttel@stud.tu-darmstadt.de

Abstract—Based on the Age of Information as an optimization
criterion, proposals for further age-based metrics have been
made in recent years in the Internet of Things (IoT) domain.
The research community’s great interest in age-based metrics
for point-to-point wireless communication has led to a multitude
of different scenarios being investigated, including energy opti-
mization, sensing, and risk-sensitivity. All these scenarios involve
a sender-receiver pair and revolve around finding appropriate
times for the sender to communicate status updates to the
receiver. We propose a unified and modular framework that
represents the aforementioned options in various combinations
and enables transferring solutions developed for specific cases
to a variety of scenarios. We generalize an existing optimization
approach, which decides to transmit based on a threshold for the
age-based metric, using this framework. We develop a unified and
extended Q-learning-based algorithm with mechanisms to learn
suitable solutions for all scenarios derived from our framework.
These mechanisms accelerate the learning process and result
in improved algorithmic performance compared to traditional
Q-learning. Furthermore, we demonstrate the effectiveness of
our solution in numerical simulations. Our unified solution
outperforms several reference schemes in terms of age-based
metrics, energy consumption, and risk. We present our findings
as a starting point to investigate transmission strategies for more
general settings with a more efficient approach.

I. INTRODUCTION

Monitoring serves the purpose of collecting data, analyzing
system performance, detecting anomalies, and providing feed-
back to enhance system operation [1]. As this ability to im-
prove system performance, efficiency, and safety is necessary
across a broad range of applications, like robotics, vehicular
communication, and industrial plants, monitoring systems have
become an indispensable tool.

The monitoring application scenarios share a common char-
acteristic: An Internet of Things (IoT) device monitors an
environment and sends the status updates to a receiver. The
sender’s main objective is to balance between the freshness
of the status updates, the energy consumption required for
transmission, and the potential risk associated with outdated
information. To achieve this balance, the sender needs to
find effective transmission strategies. However, the exact
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characteristics of the scenario under which the sender and
receiver operate can vary significantly from application to
application. These characteristics include the risk-sensitivity
of the scenario to delayed updates [2]–[4], the use of ideal [5]
or stochastic channel models [3], [6], and the consideration of
continuously powered [3], [7], [8] or energy harvesting senders
[9]. An additional characteristic is that the sender can sense
the monitored environment continuously [6], at random [3],
[4], or at specific time instances depending on its needs [7].
Furthermore, different age-based evaluation metrics, e.g., the
Age of Information (AoI) as the most frequently used age-
based metric [3], [4], [8], [9], the Query Age of Information
(QAoI) [10], and the Age of Incorrect Information (AoII) [6]
can be considered.

The currently dominant research approach is to optimize
transmission strategies for only one specific scenario at a time.
This approach suffers from limitations in terms of generalizing
solutions to different scenarios. To overcome this, we present a
unified framework and an algorithm that can find transmission
strategies for a wide range of point-to-point scenarios. Using
this framework enables researchers to directly address a large
set of scenarios, including new and unexplored ones, without
the need for individual treatment of each scenario. An example
of a new and unexplored scenario addressed by our framework
is the combination of risk with QAoI or with AoII, which is
made possible by expanding the risk metric utilized in [4].

Our main contributions can be summarized as follows:
• We introduce a unified and modular framework for

age-based metric minimization in point-to-point wireless
communication scenarios. The model includes multiple
options for sensing, power supply, channel quality, age-
based evaluation metric, and risk-sensitivity. The chal-
lenge is to identify a transmission strategy that mini-
mizes energy consumption and age-based metric, while
also mitigating the risk of high values in the age-based
metric. By using the new notion of a configuration, a
wide spectrum of point-to-point scenarios can be derived
from our proposed modular framework. The framework’s
implementation is publicly available on github:
https://github.com/wanjads/P2PFramework

• To capture the dynamics of the different scenarios in our
framework, we use a single Markov Decision Process



(MDP). This mathematical model allows us to propose
a unified solution to find transmissions strategies for all
the included scenarios. An approach proposed in [4] uses
a threshold for the age-based metric to decide whether the
sender should decide to transmit a status update or not.
Using this as a starting point, we provide an algorithm
to find thresholds not only for one specific, but all the
scenarios included in our framework. We then use this
algorithm to determine suitable starting values for risk
sensitive Q-learning as proposed in [4]. We additionally
include a mechanism for incorporating the battery state
into the learning process. These enhancements accelerate
the traditional Q-learning algorithm and improve its final
performance.

• We further demonstrate that our proposed solution out-
performs the standard tabular Q-learning algorithm in
optimizing energy consumption, age-based metrics, and
mitigating high risk values across new and various wire-
less communication scenarios. To substantiate this, we
evaluate the algorithm across an extensive range of con-
figurations.

The rest of this paper is organized as follows. In Sec. II,
the general system model for the framework is described.
The MDP modelling the framework mathematically is given
together with the optimization problem in Sec. III, followed
by a description of the threshold-based approach and the mod-
ified Q-learning approach to solve the described optimization
problem in Sec. IV. Sec. V contains numerical evaluations
of this approach. Finally, we conclude in Section VI with a
summary of our contributions.

II. SYSTEM MODEL

Figure 1 shows the system model used to construct our
framework. The blue components are part of all included
scenarios, while the green components offer multiple options
depending on the scenario characteristics. The specific config-
uration of the scenario determines which options are realized.
For example, one configuration might use random sensing,
energy harvesting, and the AoI, while another configuration
might use actively controlled sensing, a continuously powered
sender, and a risk-sensitive variant of the QAoI. Regardless of
the specific configuration, the whole process is divided into
discrete time steps t ∈ N.

In the following subsections, we provide a detailed descrip-
tion of each component. The parameters for every component
of the system model are given in Table A in Fig. 1. Next, we
introduce the concept of a configuration.

A. System Core

The system core consists of a sender-receiver pair. The
sender is equipped with a buffer to store the latest status
update. Each time a new status update arrives at the sender, the
currently stored status update is dropped and the new status
update replaces the old one. In each time step t, the sender
decides, whether it sends the currently stored status update to
the receiver (at = 1), or whether it waits without transmitting

(at = 0). If the sender transmits, it incurs discrete energy
costs ν ∈ N, leading to a finite set of battery states. The set
of battery states can be large to ensure fine-grained steps that
capture the continuous reality.

To model the channel, we use Bernoulli distributed random
variables with success probability p ∈ (0, 1]. If p = 1,
the channel is assumed to be ideal in the sense that every
transmission attempt is successful. After a transmission, the
information whether a status update could be decoded suc-
cessfully at the receiver is then communicated back to the
sender through an error-free feedback channel.

B. Customizable Components

1) Monitored Environment: For the monitored environ-
ment, there are two options. The first option is selected
whenever the age-based metric does not depend on the content
of status updates (e.g., for AoI). In such cases, the dynam-
ics of the specific environment can be modeled arbitrarily.
Otherwise, the second option is chosen. In this case, we
employ a Markov chain, as illustrated in Fig. 1, following
the approach presented in [6]. At time step t, the current
state of the environment is denoted by Xt ∈ 1, ..., N , where
N ∈ N represents the number of states of the environment.
The environment stays in the same state with a probability
pr ∈ (0, 1] and transitions to any other state with a probability
pc :=

1−pr

N−1 .
When a transmitted update is successfully decoded, the

estimated state at the receiver X̂t is updated accordingly. This
update is reflected in the definition of X̂t as follows:

X̂t+1 :=

{
Xt+1 if a new update is decoded,
X̂t otherwise.

(1)

2) Sensing: The sender monitors the underlying environ-
ment through a sensing mechanism s, for which we consider
three options, i.e., s ∈ {active, random, perfect}. The option
s = active allows the sender to decide when to generate a
status update, incurring energy costs of µ ∈ N if it chooses to
sense and generate an update. The sender’s sensing decision at
time step t is denoted by mt ∈ {0, 1}, where mt = 1 indicates
that the sender has decided to sense, and mt = 0 indicates
that it has decided not to sense. The option s = random
is based on randomly arriving status updates, where there
is a probability λ ∈ (0, 1] that a new status update arrives
in each time step. This is modeled by independent Bernoulli
random variables. The energy costs of random sampling can
be included into the power supply dynamics, by adjusting the
relevant parameters as explained in Sec. II-B3. The option
s = perfect assumes the sender has perfect knowledge about
the underlying environment, i.e., λ = 1.

3) Power Supply: We consider three common types of
power supply: e ∈ {unlimited, constrained, harvesting}.

The first option, e = unlimited, assumes an unlimited power
supply that allows transmission in every time step [3], [4]. In
this case, the energy cost is minimized together with the age-
based metric chosen from the options in Sec. II-B4.
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Fig. 1: System Model with Parameter Overview

The second option, e = constrained, assumes the power
supply is on average limited to a finite amount E ∈ R. This
assumption introduces the following constraint:

lim
n→∞

(
ν · 1

n

n∑
t=1

at + µ · 1
n

n∑
t=1

mt

)
≤ E. (2)

Note that if the configuration uses randomly arriving status
updates instead of active sampling, µ can be set to 0 and E
can be adjusted accordingly.

The third option, e = harvesting, considers that the power
supply is a finite battery with capacity B ∈ N that can
be recharged using energy harvesting. For simplicity, the
harvested energy shares the same unit as the energy costs.
At the beginning of each time step, an amount ht of energy is
harvested and stored in the battery. ht is a realization of the
random variable H , which follows a discrete and uniform dis-
tribution over the range {0, ..., hmax} with hmax ∈ {1, ..., B}.
Before performing the energy consuming actions at = 1
and mt = 1, the battery is checked for sufficient charge
bt ∈ {0, ..., B}. The charge at the beginning of a time step
bt+1 is then given by:

bt+1 := min(bt + ht, B)− µ ·mt − ν · at, (3)

where ν ∈ N0 denotes the transmission energy costs and µ ∈
N0 denotes the sensing energy costs.

4) Metric: We include three options for the age-based
evaluation metric D, namely, D ∈ {AoI, QAoI, AoII}. To
provide their definitions, we first define the AoI at the sender
AoITx. It is set to 0 each time a new status update arrives or
is generated at the sender. If no new status update arrives in
the next time step, AoITx is increased by 1:

AoITx,t+1 :=

{
0 if a new update arrives,
AoITx,t + 1 otherwise.

(4)

We set AoITx,1 = 0.
The first option for the age-based metric, i.e., D = AoI,

considers the AoI at the receiver AoIRx which is defined as:

AoIRx,t+1 :=

{
AoITx,t + 1 if a new update is decoded,
AoIRx,t + 1 otherwise.

(5)
Furthermore, we set AoIRx,1 = 1.

The second option, D = QAoI, is based on the definition
of the AoI, but uses its value only in specific time steps called
query time steps. In other time steps, the QAoI is set to 0. As in
[10], query time steps are randomly selected by performing a
Bernoulli trial for each time step with a probability q ∈ (0, 1].

The third option, D = AoII, measures the number of
time steps since the last time when the information at the
receiver matched the state of the underlying environment. It
is defined similar to the AoI, however, it is important to note
that the AoII assumes perfect knowledge about the underlying
environment. For configurations with AoII we hence assume
that s = perfect. This assumption results in AoITx being
constantly 0. The definition of the AoII is then given by

AoIIt+1 :=

{
0 if Xt = X̂t,
AoIIt + 1 otherwise.

(6)

5) Risk: Real-world scenarios often exhibit risk-sensitivity,
where high values of the age-based metric can lead to severe
potential harm. To include this in our framework, we use
our ideas presented in [4], specifically the concept of risky
states. Risky states are states with a high value of the age-
based metric and a risk-aware transmission strategy should
aim at avoiding these states. The risk-sensitivity of a scenario
is modelled using a parameter ρ ≥ 1. Higher values of ρ
indicate a higher sensitivity to risk. Here ρ = 1 means that
the scenario is considered to be risk-neutral.

C. Configurations

We proceed with the definition of a configuration:

Definition 1. A configuration C is a tuple

C = (N, pr, s, e, E,B, hmax, ν, µ, p, λ,D, q, ρ). (7)

For a given configuration, the corresponding system model is
a special case of the model depicted in Fig. 1 and consists of
an underlying environment with N ∈ N states, a probability
pr ∈ [0, 1] to remain in an environment state, a sensing
mechanism s ∈ {random, active, perfect}, a type of power
supply e ∈ {unlimited, constrained, harvesting}, a maximal
average energy E ∈ R, a battery capacity B ∈ N, a maximal
amount of harvested energy hmax ∈ {1, ..., B}, transmission
energy costs ν ∈ N0, sensing energy costs µ ∈ N0, a channel
quality p ∈ (0, 1], a probability λ ∈ (0, 1] of a new status
update at the sender in each time step, an evaluation metric
D ∈ {AoI, QAoI, AoII}, a probability q ∈ [0, 1] of query time
steps and the tolerated degree ρ ≥ 1 of risk-sensitivity.

Remark 2. It is evident that selecting certain parameters
can render other parameters inconsequential for the resulting
system model. For instance, if D ̸= AoII, the parameter N
can be chosen arbitrarily without influencing the results of
a simulation of the resulting system model. This does not
compromise the effectiveness of the presented model.



III. PROBLEM FORMULATION

In this section, we mathematically define the MDP we use
to model the system described in Sec. II.
Definition 3. The MDP MC = (S,A, P, c) which models the
system in Fig. 1 is specified for configuration C by defining
its individual components:
S = {0, 1} × {0, ..., B} × N0 × N × N0,

A = {0, 1} × {0, 1},
P : S ×A× S → [0, 1] with

P (St, (mt, at), St+1) = Pproc,tPbat,tPsens,tPTx,tPAoII,t,

c : S ×A× S → [0, 1] with

ct := c(St, (at,mt), St+1) := Dt+1 + µ ·mt + ν · at,where

• S = {St = (It, bt,AoITx,t,AoIRx,t,AoIIt)|t = 1, 2, ...}
is the set of states. It indicates, whether the information
about the underlying environment corresponds to the
currently stored state at the receiver, while bt, AoITx,t,
AoIRx,t and AoIIt are defined in Sec. II.

• (mt, at) ∈ A is the action at time step t, consisting of
the sensing action mt and the sending action at. If s =
random, mt has no effect on state transitions.

• Dt is the value of the respective age-based metric indi-
cated in the configuration at time step t,

• Pbat,t, denoting the factor of the transition probability
related to the battery state, depends on St, (at,mt), St+1

and on e.
If e = harvested:

Pbat,t :=


1

hmax+1 if h ∈ {0, ..., hmax} and
bt+1 = min(St + h,B)− µmt − νat,

0 otherwise,

If e = constrained:

Pbat,t :=

{
1 if bt+1 = St + E − µmt − νat,

0 otherwise,

otherwise, if e = unlimited, Pbat,t := 1 and bt = ∞ for
all time steps t.

• The definitions of Pproc,t, Psens,t, PTx,t and PAoII,t,
which represent the remaining factors of the transition
probability associated with the environment, sensing,
transmission, and AoII, respectively, are straightforward.
For the sake of brevity, we omit their explanation here.

We additionally define the set RD of risky states, which
depends on the age-based metric. We define:

RAoI := {St : AoIRx,t ≥ ζAoI},
RAoII := {St : AoIIt ≥ ζAoII},
RQAoI := {St : AoIRx,t ≥ ζQAoI ∧ t query time step},

(8)

where ζAoI, ζAoII and ζQAoI are risk-thresholds.
Using the definitions above, our objective is to identify a

strategy π : S → A for a given configuration C, with the aim
of minimizing the average long-term costs expressed as:

costs(π) := E

[
lim

T→∞

1

T

T∑
t=1

c (St, π(St), St+1)

]
. (9)

Algorithm 1: Threshold Finder
Data: sensing type s, power supply type e, energy bound E, age-based

measure D, simulator for MC , action space A, starting state S1, no.
of time steps per run T

Result: Best threshold T
1 last costs ←∞
2 continue ← True
3 T ← 0
4 while continue do
5 costs ← 0
6 St ← S1

7 for i=1,...,T do
8 (mt, at)← (0, 0)
9 if D ∈ {AoI, QAoI} and AoIRx,t − AoITx,t ≥ T then

10 (mt, at)← (1, 1)
11 end
12 if D = AoII and QAoIt ≥ T then
13 (mt, at)← (1, 1)
14 end
15 sample St+1, ct using MC and a = (mt, at)
16 costs ← 1

i (ct + (i− 1) · costs)
17 St ← St+1

18 end
19 if costs > last costs then
20 continue ← False
21 else
22 T ← T + 1
23 last costs ← costs
24 end
25 end
26 return T − 1

If e = constrained, we add the constraint defined in Eq. (2)
to the minimization problem. To evaluate the risk associated
with a strategy, we utilize the frequency of risky states as
defined in [4]:

fRD
:= E

[
lim

m→∞

1

T

T∑
t=1

1St∈RD

]
. (10)

IV. THE Q-LEARNING BASED SOLUTION

In this section, we present our Q-learning based solution for
determining transmission strategies in the scenarios derived
from our framework. Our solution is based on our threshold-
based approach introduced in [4]. This threshold-based ap-
proach uses the idea of selecting time steps with high AoIRx,t

and low AoITx,t as the optimal transmission times, where the
difference between the two serves as the decision criterion. We
directly transfer this idea to QAoI and by replacing AoIRx,t

with AoIIt, we generalize the concept to AoII. The central
novelty of our algorithm is the combination of this threshold-
based approach with risk-sensitive Q-learning. This is realized
by initializing the Q-values according to the best threshold-
based strategy.

The optimization approach presented in [4] for finding
the optimal threshold for the age-based metric lacks gen-
eralizability. We instead propose Algorithm 1 to find the
optimal threshold T for all the scenarios derived from out
framework by simulations. The algorithm assumes at = mt.
This simplification allows to directly transfer the idea of a
single threshold to all scenarios within the framework. The
general case, including at ̸= mt, is considered by the Q-
learning algorithm.

Finding the costwise best threshold, resulting from the trade-
off between energy costs and age-based costs, is a convex



Algorithm 2: Q-learning Framework (QLF)
Data: transmission costs ν, sensing costs µ, sensing type s, power supply

type e, energy bound E, age-based measure D, risk-factor ρ, simulator
for MC , action space A, starting state S1, no. of time steps T , real
learning rates (αt)t∈{1,...,T}, discount factor γ, initial ε, decay
factor δ, risk-threshold ζD , initial Q-values Q(0)

Result: Q(T )-values as estimates for Q-values
1 R ← RD

2 Q(1) ← Q(0)

3 St ← S1

4 for t=1,...,T do
5 sample a random action a = (mt, at) ε-greedy
6 update ε as ε← δ · ε
7 sample next state St+1 and cost ct using the simulator for M and the

action a
8 if e ∈ {constrained, harvested} then
9 ct ← ct + β(bt) · (µ ·mt + ν · at)

10 end
11 if St+1 ∈ R then
12 ct ← ρ · ct
13 end
14 for (S′, a′) ∈ S × A do
15 if S′ = St & a′ = a then
16 V (St+1)← maxâ∈A Q(t−1)(St+1, â) Q(t)(S′, a′)←

(1− αt)Q
(t−1)(S′, a′) + αt(ct + γV (St+1))

17 else
18 Q(t)(S′, a′)← Q(t−1)(S′, a′)
19 end
20 end
21 St ← St+1

22 end
23 return Q(T )

problem. Algorithm 1 exploits this convexity property to
numerically find the value of T . The algorithm gradually
increases T (lines 4-24) while evaluating the associated costs.
At each threshold, the algorithm simulates the system using
MC (lines 5-18) and calculates the costs using incremental
averaging (line 16). Initially, costs are high but they decrease
as T increases. The algorithm stops increasing T as soon as
the costs start to increase again (lines 19-21), indicating that
the optimal threshold has been reached for the given config-
uration. Finally, the algorithm returns the optimal threshold
(line 26).

We use the threshold found by Algorithm 1 to initialize the
Q(0) values of the actions according to the resulting strategy.
Specifically, we set the Q(0) values of the chosen actions to
0 and those of the remaining actions to a larger value Kmax.
Based on these initial Q-values, we utilize ε-greedy tabular
Q-learning. The pseudo-code for this algorithm is provided in
Algorithm 2. Traditional Q-learning is implemented in lines
3-7 and 14-23. In each time step t, an action a = (mt, at)
is chosen for the current state St (line 5), while balancing
exploration and exploitation using the ε-greedy mechanism.
Then ε is updated (line 6) and MC is used to simulate a
single step of the scenario (line 7). The resulting costs are
later used to update the Q-value of the encountered state-
action pair (lines 14-20). Before the next iteration starts, the
current state is updated (line 21). To incorporate risk, we
include risk-sensitivity as in [4], where the costs associated
with transitioning to a risky state are scaled by a factor ρ. To
this end, the set of risky states is defined in line 1 as per Eq.
(8). By including energy costs in lines 8-10 for the cases where
e = constrained and e = harvested, we accelerate the learning

process. We introduce a dynamic weighting factor β of the
energy costs, which is a strictly monotonically decreasing
function of the battery charge: β(bt) := k1 · exp

(
−k2

bt
B

)
.

Neglecting the energy costs associated with battery depletion
would pose a significant challenge to the algorithm in compre-
hending the impact of an empty battery state. This restriction
would force the algorithm to only learn about the impact of
energy scarcity when the battery is empty, thus necessitating
frequent visits to these states and increased sensitivity to
future events. Incorporating energy costs linearly exhibited
comparable issues. Our novel approach, which incorporates
energy costs at each time step using the weighting factor β,
overcomes this limitation, enabling the algorithm to converge
more rapidly by eliminating the need to reach empty battery
time steps.

V. NUMERICAL EVALUATION

A. Reference schemes

This section presents a numerical comparison of four strate-
gies. The first strategy (rand) randomly chooses the action
(mt, at) = (1, 1) with a probability of prandom, depending
on the considered scenario. Otherwise, the random strategy
chooses (mt, at) = (0, 0). The second strategy (TQL) uses
traditional Q-learning. The third strategy (TB) utilizes thresh-
olds generated by Algorithm 1, while our proposed strategy
(QLF) employs the Q-values learned by Algorithm 2.
B. Simulation setup

To show the variety of possible scenarios in the frame-
work and the performance of our solution, we consider nine
configurations C1 up to C9. The specific parameters of each
configuration are listed in Table I.

In the following, 100 realizations are considered. For the
learning algorithms, we use T = 105 training time steps in
each realization. Afterward, we test all four strategies in each
realization over 104 time steps. Both Q-learning algorithms
use ε0 = 0.9, a factor δ = (0.0001/0.9)1/T to decrease ε,
γ = 0.7, and a constant learning rate of αt = 0.007. The risk
thresholds are set to ζAoI = 5 and ζAoII = 3. For the case of
e = constrained, we set prandom = E(µ + ν)−1, and for the
case of e = harvested, we set prandom = B(2(µ+ν))−1, with
the objective of maximizing energy utilization. We set k1 := 2
and k2 := 5 and Kmax to Kmax := 10.
C. Numerical results

We present our numerical results in Fig. 2, Fig. 3, Fig. 4,
and Fig. 5, demonstrating the effectiveness of our framework
in comparing a vast number of scenarios without the need
for completely re-implementing individual scenarios. Note that
the ordinate scales in Fig. 2 and Fig. 3 are logarithmic to
ensure all bars are visible. Each figure includes a sketch
of the considered scenario, with the highlighted component
varied between configurations. Notably, our proposed solution
exhibits broad applicability, proving to be effective across all
tested configurations, including AoI, AoII, risky states, and
QAoI metrics. Only rand consistently performs poorly, with
the exception of C2, where it achieves a low frequency of risky
states due to the choice of prandom = 1. Our results highlight



config N pr s e E B hmax ν µ p λ D q ρ

C1/C2/C3 10 0.5 perfect constr./unl./harv. 0.5/∞/∞ 0/0/10 0/0/1 1 2 0.9 1 AoII 1 2
C4/C5/C6 10 0.5 act./rand./perf. unlimited ∞ 0 0 4 1 0.9 0/0.5/1 AoI 1 2
C7/C8/C9 10 0.5 random harvested ∞ 5 1 0 1 0.9 0.8 QAoI 1/0.75/0.5 1

TABLE I: Parameters for the configurations C1 to C9
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Fig. 5: Average cost after 105 learning time steps for configurations C7 to C9

QLF’s clear advantage over TQL, while QLF and TB produce
comparable results in most cases, with QLF outperforming TB
in certain configurations. The clear advantage of QLF over
TQL can be attributed to TB’s ability to provide a strong
starting point for QLF’s learning process. Furthermore, in
cases where e = harvested and e = constrained, learning is
accelerated by using the weighting factor β.

VI. CONCLUSIONS

In this paper, we introduce a unified framework that can
model a wide range of point-to-point communication sce-
narios, including various options for sensing, power supply,
age-based metrics, and risk-sensitivity. Our framework allows
for generalizing solutions developed for specific cases to a
large set of related applications. By utilizing an MDP, we
present a mathematical model of this framework and provide
a risk-sensitive Q-learning algorithm to find solutions for all
the scenarios represented by the framework. For that, we use
an approach based on a threshold for the age-based metric.
Furthermore, we demonstrate the versatility of our approach
for new and various configurations. Our results clearly demon-
strate the effectiveness of our solution in several scenarios and
show that it provides a solid foundation for future research.
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