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Abstract—In this paper, we consider employing an unmanned

aerial vehicle (UAV) equipped with an onboard radar transceiver
to localize a ground target at an unknown position. Exploiting
the UAV’s mobility, we aim to gather line-of-sight (LoS) range
measurements from favorable waypoints and improve the ensuing
multi-lateration process while estimating the target’s location.
To this end, we introduce a novel localization error metric,
characterized geometrically by the radius of a defined confidence
region where the target resides at a predetermined confidence
level. Additionally, we investigate robust dynamic optimization
of the UAV’s trajectory to minimize the defined localization
error metric online, utilizing sequentially available but delayed
range estimates. The formulated optimization problem belongs
to a convex-nonconcave minimax problem, which is generally
intractable. To solve this problem, we further propose two
iterative online algorithms based on semidefinite programming
(SDP) relaxation and alternating/sequential convex optimization
techniques. Simulation results show that the proposed online
schemes outperform several benchmarks, either in the final
localization accuracy or in the rate of decreasing the localization
error.

I. INTRODUCTION

The utilization of unmanned aerial vehicles (UAVs) for
localizing ground targets has recently attracted significant
interest [1], especially in applications such as search-and-
rescue operations in emergency scenarios [2]. Thereby, el-
evated UAVs can enable line-of-sight (LoS) propagation of
sensing signals to ground targets, to effectively mitigate bias
in range measurements [3]. Moreover, UAVs can be fast
deployed and flexibly relocated to favorable positions during
range measurement, which further reduces the region of lo-
calization uncertainty in the ensuing multi-lateration process
[7]. However, how to plan the UAV’s flight path/trajectory,
namely the sequence of waypoints and velocities, to achieve
high-precision high-accuracy localization remains a prominent
research concern.

So far, the existing literature has explored both static [4],
[6] and dynamic [8], [9] path planning schemes for UAV-aided
localization. In static path planning, trajectories are usually
predetermined based on heuristics, such as to explore the
residing area of ground targets from diverse positions or angles
[4]. At each predetermined waypoint, the UAVs collect key
metrics like time-of-arrival (TOA), time-difference-of-arrival
(TDOA), or received-signal-strength (RSS) [5]. These data
points indicate the ranges of the ground targets, which are
then combined for final position estimation [6]. While the
static path planning is simple to implement, it may consume
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substantial amounts of time and energy in order to achieve
a desired localization performance. Conversely, dynamic path
planning, which determines the next waypoints of the UAVs in
real-time based on range or position estimates available online
[8], [9], potentially promises superior localization perfor-
mance. However, due to inherent noise in range measurements
and uncertainties around target positions, it is challenging to
predict the localization performance at given waypoints, before
flying to these waypoints and collecting new range estimates
there. For example, the offline metrics such as the mean
squared error (MSE) and Cramér-Rao lower bound (CRLB) [8]
cannot be directly used for the online setting as they depend
on the unknown target positions.

Therefore, several research questions need to be urgently
addressed for dynamic path planning, including (i) how to
model the localization error as a cost function of UAV’s
next waypoint that captures the impact of both measurement
noise and the underlying geometry, e.g., the relative positions
between UAVs and ground targets, during multi-lateration and
(ii) how to optimize the UAV’s trajectory online. In [9], the
authors proposed to approximate the target position in CRLB
by its real-time estimate and used the resulting approximate
CRLB together with maximum likelihood position estimation
[10] for dynamic path planning. However, the approach lacks
guarantee on the performance achievable in practical settings,
as it eventually minimizes a lower bound of localization error.

Unlike the existing literature [8], [9], this paper investi-
gates dynamic path planning for UAV-aided localization by
employing a robust optimization approach. We first propose a
novel localization error metric, defined by the radius of an α-
confidence region of localization, to capture a (probabilistic)
upper bound on localization error. Then, we consider online
optimization of UAV’s next waypoints for minimization of the
proposed error metric. We formulate an intractable convex-
nonconcave minimax optimization problem, and further pro-
pose two online low-complexity iterative algorithms to solve
it. Our robust optimization approach is inspired by the wireless
sensor network aided localization approach considered in [11],
but it has significantly extended the latter in order to enable
trajectory optimization for UAV-aided localization under ran-
dom range errors. Our contributions are:

• We propose a robust minimax approach, using a novel lo-
calization error metric defined based on the α-confidence
region of localization, tailored for trajectory optimization
in UAV-aided localization of ground target.

• We formulate a nonconvex minimax trajectory planning
problem for minimization of the defined localization
error metric. To solve the intractable problem, we fur-



ther propose two iterative online algorithms based on
semidefinite programming (SDP) relaxation together with
alternating convex optimization (ACO)/successive convex
approximation (SCA).

• Simulation results show that the proposed online algo-
rithm based on SDP and ACO outperforms in localization
accuracy, while the other proposed algorithm exhibits
accelerated rates in reducing the localization error.

Notation: Throughout this paper, R, RN , and RN×M denote
the set of real numbers, N × 1 vectors, and N ×M matrices,
respectively. IN is the N ×N identity matrix. (·)T and Tr(·)
are the transpose and trace of matrices, respectively. Pr(·) is
the probability operator. PC(·) denotes the projection operator
onto set C. | · | and ∥ · ∥ denote the absolute value of a scalar
and ℓ2-norm of a vector. Finally, ∇f(·) (or ∇xf(·)) is the
gradient of function f(·) (with respect to x).

II. SYSTEM MODEL

A. UAV-aided Localization of Ground Target

As shown in Fig. 1, we consider a rotary-wing UAV
equipped with a full-duplex radar transceiver to localize a
terrestrial target by patrolling over a rectangular area of
dimension Lx × Ly. We assume that the target remains static
and its position ps = (xs, ys)

T ∈ R2 is unknown to the UAV.
The UAV chooses N waypoints at a fixed altitude h for

range measurement. The value of N is specified a priori ac-
cording to e.g. the time and energy budgets of the mission and
the UAV. Let un = (xn, yn)

T ∈ [0, Lx]× [0, Ly] be the ground
position of the UAV’s nth waypoint for n ∈ {1, 2, . . . , N},
and u0 be the initial waypoint. We assume that the UAV
flies in a straight line from un−1 to un for a duration of ∆f.
Furthermore, at each waypoint, the UAV hovers for a duration
∆h to collect range measurements. We define ∆ = ∆h +∆f.

The UAV employs the two-way ToA method [12] for range
measurement. Thereby, while hovering at waypoint un, the
UAV broadcasts radar sensing signals, detects and receives
the echos of sensing signals reflected by the target, and
estimate the two-way propagation delay of the received echoes
using e.g. the maximum-likelihood estimation. As the UAV
is elevated, we assume that the sensing signal propagates
over LoS path to the target. Moreover, for convenience of
presentation, we assume that self-interference in the radar
transceiver is negligible. Let P be the transmit power of the
UAV. The received signal-to-noise ratio (SNR) is given by

SNRn =
β · P

σ2 · (dn)4
, (1)

where σ2 is the noise power at the receiver. β is a power-
gain factor given by β = GT ·GR · σrcs · λ2/(4π)3, where GT
and GR are the transmit and receive antenna gain of the UAV,
respectively, σrcs is the radar cross-section (RCS) of the target
[13], and λ is the signal wavelength.

Let τn be the (two-way) runtime of the sensing signal. The
range between the UAV and the target is given by

dn =
√

h2 + ||un − ps||2 = c · τn/2, (2)

(a) (b)

Fig. 1: Illustration of (a) UAV-aided localization at waypoint
un and (b) UAV trajectory projected on the ground.

where c is the speed of light. Due to impairment of e.g.
noise at the radar receiver, the runtime τn and range dn
is usually imperfectly estimated in practice [14].The range
estimate, denoted by d̂n, is modeled as

d̂n = dn + ϵn, (3)

where ϵn is the random measurement error. Based on the radar
literature [13], ϵn follows a Gaussian distribution with zero
mean and variance σ2

n that is inversely proportional to the
SNR of received echo signal, i.e.,

σ2
n =

a

SNRn
=

a · σ2

β · P · (dn)4. (4)

Here, a is a constant whose value depends on the waveform
of sensing signal and the runtime estimation algorithm.

B. α-Confidence Region of Localization

The range estimate d̂n in (3) follows a Gaussian distribu-
tion with unbounded support and its mean and variance are
both unknown. Hence, the conventional region of localization
uncertainty, namely the set of all possible locations of the
target inferred based on the available range measurements,
is also unbounded, which cannot be directly used for robust
optimization. To tackle this challenge, here we propose a
novel localization error metric, referred to as the α-confidence
region of localization. The metric characterizes a subset of
the region of localization uncertainty in which the target lies
with confidence level α ∈ (0, 1]. In this paper, α is specified
a priori, but can be fine-tuned to improve the localization
performance.

Assume that the UAV obtains M range measurements d̂n,m,
m = 1, ...,M , at waypoint n, whose sample mean dn and
sample variance σ̂2

n are calculated as

dn =
1

M

∑M

m=1
d̂nm, (5)

σ̂2
n =

1

M − 1

∑M

m=1
(d̂nm − dn)

2. (6)

According to [14], the random variable defined by (dn −
dn)/(

√
σ̂2
n/M) follows the t-distribution with (M−1) degrees

of freedom. Thus, we have

Pr
{
In ≤ dn ≤ On

}
= α. (7)



Fig. 2: Confidence region of localization (with blue ver-
tices/extreme points) and its Chebyshev circle with/without
inner range constraints (in blue/red solid line).

i.e., [In, On] is an α-confidence interval for dn, with

In = dn − t1−ασ̂n/
√
M, (8a)

On = dn + t1−ασ̂n/
√
M. (8b)

Here, t1−α is the critical t-value for 1−α and can be looked
up in the t-table. Note that as M → ∞, we have dn →
dn, σ̂2

n → σ2
n, and the distribution of random variable (dn −

dn)/(
√

σ̂2
n/M) approaches normal.

Let In =

√
I
2

n − h2 and On =

√
O

2

n − h2. Substituting
(2) into (7), the α-confidence region of localization, the term
being borrowed from the α-confidence interval for dn, after
having measured at N waypoints is defined as

SN ≜
{
s∈R2 |In≤∥un − s∥≤On, n = 0, 1, . . . , N

}
. (9)

As illustrated in Fig. 2, SN is the intersection of disks centered
at each waypoint un, where the inner and outer radii of each
disk are given by In and On, respectively. Assume that (7)
holds for N+1 waypoints well dispersed in different directions
from the target. We can estimate that Pr{ps ∈ SN} =
Pr{dn ∈ [In, On], n = 0, 1, . . . , N} ≈ 1−(1−α)N+1; but the
converse is not true. This further implies Pr{ps ∈ SN} → 1
when N is large enough, provided α ∈ (0, 1].

Now, consider the minimum circle enclosing the confidence
region SN , i.e., the Chebyshev circle of SN [11], cf. Fig. 2.
The center and radius of the Chebyshev circle of SN , denoted
as pN and RN , can be obtained by

(pN , RN )=argmin
(p,R)

{
R2 |∥s−p∥≤R,∀s ∈ SN

}
. (10)

Here, pN provides a convenient estimate of the target location
and RN is the resulting minimum worst-case localization
error with given probability. As SN is a nonconvex set, the
position estimate may lie out of SN . However, for UAV-aided
localization, the likelihood can be reduced by optimizing the
waypoints.

III. ROBUST OFFLINE TRAJECTORY OPTIMIZATION

Sec. II reveals that the localization error captured by SN ,
depends critically on the UAV’s waypoints. In this section,

we formulate the trajectory optimization problem for mini-
mization of the defined localization error. For gaining insights
into the solution and defining a performance benchmark, we
start with solving the problem in the offline setting, assuming
that the target position is known. The online solution to the
optimization problem is postponed to Sec. IV.

A. Problem Formulation

Assume that SN and u0 are given. The offline problem opti-
mizes the UAV’s trajectory, namely the sequence of waypoints
u ≜ (u1, . . . ,uN ), to minimize the worst-case localization
error given by the radius of Chebychev circle for SN . The
resulting optimization problem is formulated as

P1: min
u∈U

R2
N (u), (11)

where U =
∏N

n=1 Un(un−1) and Un(un−1) ≜ {un ∈
[0, Lx] × [0, Ly] | ∥un − un−1∥ ≤ Vmax∆f} constrains the
UAV to fly within the defined rectangular area with a velocity
below Vmax. The objective function of P1 is given in (10) and
can be equivalently reformulated as

R2
N (u) = min

pN∈R2
max
s∈SN

∥s− pN∥2. (12)

Let s∗ and p∗
N be the optimal solutions of s and pN for prob-

lem (12), respectively. Geometrically, s∗ is the intersection of
SN with its Chebyshev circle centered at p∗

N , cf. Fig. 2.
In problem P1, the objective function value of each given

u is specified via the optimal value of problem (12), which
is a convex-nonconcave minimax optimization problem with
nonconvex set SN . Moreover, in problem P1, SN is coupled
with the UAV’s trajectory u. Due to these facts, both problem
P1 and problem (12) cannot be optimally solved using existing
polynomial-time algorithms. In the following, we first obtain
an upper bound on R2

N (u) using the SDP relaxation technique.
Built on this, we then propose an iterative suboptimal solution
for problem P1.

B. Problem Transformation

1) Relaxation of Problem (12): Let W ⪰ ssT. Using the
auxiliary matrix W, a convex set enclosing the confidence
region SN is given by

ŜN (W)={s∈R2 |I2n≤Tr(unu
T
n − 2uns

T +W)≤O2
n,

W ⪰ ssT, n = 0, 1, . . . , N}, (13)

with ŜN (W) ⊇ SN , provided ŜN (W) ̸= ∅. Using W and
ŜN (W), an upper bound on R2

N (u) can be derived as

R2
N (u) ≤ min

pN∈R2
max

s∈ŜN (W)
Tr(W)− 2sTpN + pT

NpN (14)

= max
s∈ŜN (W)

min
pN∈R2

Tr(W)− 2sTpN + pT
NpN (15)

= max
s∈ŜN (W)

Tr(W − ssT), ∀u ∈ U . (16)

Here (14) is due to ŜN (W) ⊇ SN . The right-hand side
of (14) is a convex-concave minimax optimization problem
with separable optimization variables pN and s. Hence, the



minimization and maximization in (14) can be interchanged
without changing the optimal value [11], which leads to (15).
Finally, (16) follows from the fact that pN = s is the optimal
solution to the inner minimization problem of (15).

2) Dual of Relaxed Problem (16): Note that (16) is a
concave maximization problem and is strictly feasible. Hence,
strong duality holds for (16), i.e., it has the same optimal value
as its dual problem given in the following lemma.

Lemma 1: For any u, the dual problem of (16) is given as

min
t≥1,φn≥0,

ωn≥0

∑N

n=0

[
(ωn − φn)u

T
nun + φnO

2
n − ωnI

2
n

]

+ ∥
∑N

n=0
(φn − ωn)un∥2/t

s.t.
∑N

n=0
(φn − ωn) = t, (17)

where φn and ωn are dual variables, and t is an auxiliary
variable.

Proof: The derivation is ignored here due to limited page
space. Please refer to [11] for a similar proof.

The dual problem (17) is a convex minimization problem.
By optimizing u in (17), problem P1 is reformulated as

P2: min
u∈U,t≥1,

φn≥0,ωn≥0

∑N

n=0

[
(ωn − φn)u

T
nun + φnO

2
n − ωnI

2
n

]

+ ∥
∑N

n=0
(φn − ωn)un∥2/t

s.t.
∑N

n=0
(φn − ωn) = t, (18)

Like (16), the optimal value of P2 provides an upper bound
for that of P1. But unlike (17), the objective function of P2 is
not jointly convex with respect to its optimization variables.

C. Trajectory Optimization with Known Target Position

To facilitate a convenient solution for P2, we further relax
ŜN (W) (or SN ) by setting In ≡ 0. This leads to ωn ≡ 0, as
the inner bound constraints in ŜN (W) (or SN ) are inactive,
cf. (8) and Fig. 2. Moreover, define auxiliary variables zn =
φnun ∈ R2 and let yn ≜ (zT

n,u
T
n, φn, t)

T. Define Yn ≜ Xn×
Un(un−1)× [0,∞)× [1,∞). By considering In ≡ 0 and using
the new notation, problem P2 can be reformulated as

P3: min
yn∈Yn

g(yn) +
∑N

n=0
h(yn), (19)

with nonconvex function g(yn) and convex function h(yn),

g(yn) ≜ ∥
∑N

n=0
zn∥2/t+ c1

∑N

n=0
∥zn − φnun∥2

+ c2∥
∑N

n=0
φn − t∥2 (20)

h(yn) = 2η∥zn − φnps∥3/φ2
n + η2∥zn − φnps∥4/φ3

n

+ φnp
T
sps − 2zT

nps. (21)

Here, η ≜
√
aσ2/(βP ). c1 > 0 and c2 > 0 are given large

penalty factors to prevent non-zero values in zn − φnun and∑N
n=0 φn − t.
In Problem P3, though g(yn) is a nonconvex function of

yn, it is convex in (zT
n, φn, t)

T for given un, and vice versa.

Thus, P3 can be solved using the ACO method (similar to
steps 4-9 of Algorithm 1), which is guaranteed to converge to
a stationary point of P3.

IV. ROBUST ONLINE TRAJECTORY OPTIMIZATION

Based on the results of Sec. III, in this section, we further
tackle problem P1 in the online settings where the target
position ps is unknown, and On and In, n = 1, . . . , N are
known sequentially after, not before, optimizing waypoint un.
Instead, un is optimized at each time n, based on the available
range measurements or Sn−1. We then propose two iterative
algorithms to solve P1, which are based on the primal problem
(16) and its dual problem P2/P3 in Sec. III, respectively.

A. Proposed Online Algorithm 1

Let ŝ be the optimal solution of problem (16) when the
confidence region is given by Sn−1. Moreover, let p̂proj ≜
PSn−1(ŝ) = argminp̂∈Sn−1

∥ ŝ − p̂∥2 be the projection of ŝ
onto Sn−1, where SDP relaxation is first used to solve the
minimization problem and then, a feasible solution is recov-
ered using the Gaussian sampling technique [16, Ch. 4.2.2].
Based on (15), we use p̂proj as a position estimate. Now let
d̃n ≜ ∥un − p̂proj∥. Similar to [9], we approximate On by,

On ≈ Õn ≜ d̃n + η(d̃n)
2, ∀n. (22)

Note that Õn is a convex function of un.
To facilitate a tractable solution, we present the online

design based on problem P3. By defining ψk ≜ (φk, ωk)
T,

k = 0, ..., n− 1, the resulting online problem is formulated as

P4: min
ψk≥0,yn∈Yn

∑n−1

k=0
f0(ψk) + g̃(yn,ψk) +h̃(yn), (23)

in which h̃(yn) is obtained by replacing ps with p̂proj,

f0(ψk) ≜
[
(ωk − φk)u

T
kuk + φkO

2
k − ωnI

2
k

]
, (24)

g̃(yn,ψk) ≜ ∥
∑n−1

k=0
(φk − ωk)uk + zn∥2/t (25)

+c1∥zn − φnun∥2 + c2∥
∑n−1

k=0
(φk − ωk) + φn − t∥2.

Note that uk, Ok and Ik, k = 0, . . . , n − 1, are known.
Problem P4 is nonconvex problem due to the nonconvex
function g̃(ỹk,ψn). But like P3, P4 can also be solved using
the ACO method, which is summarized in Algorithm 1.

B. Proposed Online Algorithm 2

The solution in Sec. IV-A is built on problem P3, the dual
problem of (16). Here we present a heuristic solution that is
derived based on (16) directly. Let u∗ be the optimal solution
of problem P1. We have

R2
N (u∗) ≤ min

u∈U
max

s∈ŜN (W)
Tr(W − ssT) (26)

≤ min
u∈U

max
s∈Ŝn(W)

Tr(W − ssT),∀n ≤ N (27)

≤ min
un∈Un(un−1)

max
s∈Sn(W)

Tr(W − ssT) (28)

≤ min
un∈Un(un−1)

(
O2

n − ∥un − sn−1∥2
)
, (29)



Algorithm 1: Online UAV Trajectory Optimization using ACO

1: initialization: Set S0 and u0. Let n = 1;
2: while n < N do
3: Compute p̂s in problem (16) and p̂proj = PSn−1(p̂s);
4: Set u(0)

n ∈ Un(un−1) and iteration index j = 1;
5: repeat
6: Optimize (y

(j)
n ,ψ

(j)
k ) for given u

(j−1)
n by solving P4;

7: Optimize u
(j)
n for given (y

(j)
n ,ψ

(j)
k ) by solving P4;

8: Update j = j + 1;
9: until stopping criterion is met;

10: Update Sn after collecting new measurements at un;
11: Update n = n+ 1;
12: end while

where (26) restates the result in (16) as a convex-concave min-
imax problem. As u and s are coupled in (26), the approach in
Sec. III-B cannot be employed to solve (26). Instead, we derive
a computable upper bound for (26) via inequalities (27)–(29),
where (27) is due to Ŝn(W) ⊇ ŜN (W), ∀u, ∀n ≤ N . In (28),
we define Sn(W) ≜ {s ∈ Ŝn(W) | u1, . . . ,un−1 are given}
and the inequality holds since fixing u1, . . . ,un−1 is subop-
timal. Finally, (29) is due to

maxs∈Sn(W) Tr(W − ssT)

≤ maxs∈Sn−1(W) Tr(W − ssT) (30)

≤ maxs∈Sn−1(W) O
2
n − uT

nun + 2uT
ns− sTs (31)

= O2
n − ∥un − sn−1∥2, ∀un ∈ Un(un−1), (32)

where (31) is due to (13) and sn−1 is its optimal solution.
In general, the upper bound in (29) can be quite loose. To

tighten the bound, we choose to recover a rank-one solution
of W based on its optimal solution in (30) using the Gaussian
sampling [16, Ch. 4.2.2]. Based on this, we then select sn−1 as
the intersection of Sn−1(W) with its Chebyshev circle, which
is an extreme point of Sn−1. By approximating On as in (22),
the objective function of problem (29) is given as a difference
of convex functions f1(un) = (∥un−p̂proj∥+η∥un−p̂proj∥2)2
and f2(un) = ∥un − sn−1∥2. Therefore, problem (29) can be
sovled using the SCA method, as given in Algorithm 2.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
schemes via simulations. We consider a rectangular area of
dimension Lx = Ly = 1000 m, while the target is located
at ps = [900, 600]T. The UAV takes off at [0, 50]T. Having
this initial confidence region, we compute an initial estimated
position of target. After that, the UAV starts to design its
trajectory either using offline optimization or online optimiza-
tion approaches. The other simulation parameters are given
in Table I. For providing performance benchmarks, we also
evaluate two baseline schemes,

• Baseline Scheme 1: The UAV knows the target position
ps and optimizes its trajectory offline as in Sec. III-C.

Algorithm 2: Online UAV Trajectory Optimization using SCA

1: initialization: Set S0 and u0. Let n = 1
2: while n < N do
3: Compute p̂s in (16), p̂proj = PSn−1(p̂s), and sn−1;
4: Set u(0)

n ∈ Un(un−1) and iteration index i = 1;
5: repeat
6: u

(i)
n = argminun∈Un(un−1) f1(un) − [f2(u

(i−1)
n ) +

∇f2(u
(i−1)
n )(un − u

(i−1)
n )];

7: Update i = i+ 1;
8: until stopping criterion is met;
9: Update Sn after collecting new measurements at un;

10: Update n = n+ 1;
11: end while

TABLE I: Simulation Parameters

Parameter Value
UAV’s flight altitude h = 100 m
Transmit power of sensing signal P = 0.5 W
Power gain factor β = −50 dB
Received noise power σ2 = −110 dBm
System parameter in (4) a = 1
Maximum flight velocity Vmax = 30 m/s
Maximum number of waypoints N = 15
Number of measurements per waypoint M = 41
Confidence level α% = 99%
Flight duration between waypoints ∆f = 4 s

• Baseline Scheme 2: The UAV employs the online Algo-
rithm 2 to optimize the next waypoint, but it can only fly
in 4 (left, right, up, and down) directions or hover.

For initializing the considered schemes, the UAV obtains an
initial confidence region of localization S0 by flying and
measuring the range over Ninit = 3 predefined waypoints, with
the last waypoint being u0.

Fig. 3 and Fig. 4 show the UAV trajectories, the worst-case
localization errors, and distances ∥p̂proj−ps∥ at each waypoint,
respectively. We observe that, with the Baseline Scheme 1, the
UAV flies almost in a straight line towards the target for n ≤
7, and the resulting localization error significantly decreases
over time. This is because, with the target position known at
the UAV, approaching the target can lower the error variances
of range measurements at each waypoint, and further reduce
the worst-case localization error. However, the UAV tends to
circle around the target, instead of approaching it, for n ∈
{7, . . . , N}. This is because the UAV is close to the target
and the error variances of range measurements are small. By
circling around the target, the UAV can exploit multi-lateration
at different angles to further improve the localization.

Meanwhile, the proposed online scheme 2 aims to minimize
an upper bound of the optimal value, defined based on the
extreme point sn−1, cf. (29). From Fig. 3 and Fig. 4 we
observe that, as the initial extreme point is far from the target
estimate, the UAV circles around the extreme point, which
intends to exclude the extreme point from the confidence
region using the range measurement that would be collected
at the next waypoint. Nevertheless, due to the loose upper
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Fig. 3: Comparison of the UAV’s flying trajectories.

bound in (29), the worst-case localization error saturates for
n ∈ {0, . . . , 4}. In contrast, when the extreme point is close
to the target estimate, the UAV starts approaching the target
estimate. It is interesting to see that the resulting localization
error of the proposed online Algorithm 2 decreases over
n ∈ {4, . . . , 12} even faster than that of the proposed online
Algorithm 1 does over n ∈ {0, . . . , 10}. On the other hand,
due to quantization of flight directions, the UAV’s trajectory
of the Baseline Scheme 2 deviates from that of the proposed
online scheme 1, with random effects on the localization
performance.

Fig. 4 shows that the proposed online scheme 1 outperforms
the other online localization schemes, namely the proposed
online scheme 2 and the Baseline Scheme 2, where both the
flying trajectory and localization performance of the proposed
online scheme 1 are close to that of the Baseline Scheme 1.
The former is because both the proposed online scheme 2 and
the Baseline Scheme 2 employ the loose upper bound in (29).
On the other hand, the latter is because as shown in Fig. 4, the
differences between the projected position estimates p̂proj and
the target position ps are much smaller, compared to the worst-
case localization error, and become negligible after flying over
7 waypoints.

VI. CONCLUSION

This paper considered robust dynamic trajectory optimiza-
tion for UAV-aided localization, to minimize the proposed
(probabilistic) worst-case localization error metric. The latter
characterizes the radius of the Chebyshev circle for the α-
confidence region of localization. Two iterative online sub-
optimal algorithms designed based on SDP relaxation and
the ACO/SCA methods were further proposed to tackle the
intractable problem. Simulation results showed that, compared
to several baselines, the proposed online algorithms can ef-
fectively exploit the movement of the UAV to achieve either
the best overall localization performance or the fastest rate
of decrease in the localization error. In this paper, we have
assumed that the target remains in the UAV’s LoS sensing
range and that the errors in range estimation follow Gaussian
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Fig. 4: Worst-case localization errors and distances ∥p̂proj−ps∥
along waypoints.

distributions. Modifying or omitting these assumptions in real-
world contexts is a promising direction for future research.
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