
M. Wirth, A. Ortiz, and A. Klein, ”Contextual Multi-Armed Bandits for Non-Stationary
Heterogeneous Mobile Edge Computing”, in IEEE Global Communications Conference
(GLOBECOM), Kuala Lumpur, Malaysia, December 2023.

©2023 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this works must be obtained from the IEEE.

Contextual Multi-Armed Bandits for Non-Stationary
Heterogeneous Mobile Edge Computing

Maximilian Wirth, Andrea Ortiz, and Anja Klein
Communications Engineering Lab, Technische Universität Darmstadt, Germany

{m.wirth, a.ortiz, a.klein}@nt.tu-darmstadt.de

Abstract—Base station (BS) selection for task offloading in
Mobile Edge Computing (MEC) is a challenging problem due
to the dynamic nature of MEC systems. The wireless channel
as well as the load of BSs are stochastic quantities that can
change in a statistically non-stationary fashion. Moreover, the
computation capabilities of the BSs are heterogeneous. As the
dynamic behaviour of a MEC system is, in practical scenarios,
not known in advance, deciding where to offload has to be done
under uncertainty about the MEC system and considering its
non-stationary and heterogeneous characteristics. This paper in-
vestigates latency minimization in MEC with heterogeneous BSs.
In order to meet low latency demands, a mobile unit (MU) has to
quickly identify the best BS for offloading different computation
tasks while facing uncertainty about the non-stationary system
dynamics. To solve this problem, we propose a novel piece-wise
stationary contextual Multi-Armed Bandit (MAB) algorithm that
treats different task types as context and detects non-stationary
changes in the BSs’ performance. With the use of extensive
simulations, we show that our proposed approach outperforms
state-of-the-art algorithms, as it quickly adapts to changes in the
MEC system and exhibits no penalty during stationary phases.

I. INTRODUCTION

Many mobile applications, such as video and image process-
ing, mobile gaming or real-time face recognition, are com-
putationally demanding and latency sensitive. However, the
processing power of the existing battery powered mobile units
(MUs) is usually limited. Mobile Edge Computing (MEC) [1],
[2] promises to be an enabler for the timely execution of such
applications as it brings large computation resources to the
edge of the network. By offloading a computation task to a
base station (BS) equipped with a co-located edge server, both,
the computation time and the energy consumption of the MU,
can be reduced significantly.

Deciding to which BS a computation task should be of-
floaded is a non-trivial problem because the MEC systems
are dynamic. This dynamic nature of MEC is caused by the
variability of the wireless channel used for the communication
between MUs and BSs, as well as the changing loads and
configurations of the BSs. Moreover, these changes can occur
in a statistically non-stationary fashion. For example, a non-
stationary change of the wireless channel might be caused
by temporary blockages of transmission paths, or a non-
stationary event in the BS’s load might originate from an

This work has been funded by the BMBF project Open6GHub, grant
number 16KISK014, the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) Projektnummer 210487104 - SFB 1053 MAKI, and
the LOEWE Center EmergenCITY.

abrupt increase in the number of connected users. Furthermore,
the computation capabilities of the BSs are heterogeneous
in the sense that different BSs are equipped with differ-
ent hardware [3] and software [4]. Thus, depending on the
individual hardware and software requirements of the task
to be computed, the computation performance of the BSs
can vary greatly. The dynamic behaviour of a MEC system
is, in practical scenarios, not known in advance. Therefore,
deciding where to offload has to be done under uncertainty
about the MEC system and considering its non-stationary and
heterogeneous characteristics.

Many works have treated the subject of BS selection for task
offloading in MEC from an optimization point of view [5],
[6]. These works overcome the challenges in dynamic MEC
systems by making the unrealistic assumption that perfect
knowledge about the statistics of the dynamic MEC system is
available. With the goal of minimizing the latency or energy
consumption, they solve complex non-convex or even NP-
hard optimization problems by applying relaxation techniques
or heuristic methods. Although these approaches provide an
upper bound of the performance, they cannot be deployed in
real MEC systems, because finding the best offloading decision
is usually computationally prohibitive and therefore, time-
consuming, which contradicts the low latency requirement
imposed by many mobile applications. Other recent works
have tackled the offloading problem in dynamic MEC with
a reinforcement learning approach [7]–[9]. Reinforcement
learning is better suited for cases in which the statistically
(non-)stationary MEC system dynamics are not known. How-
ever, these works make simplifying assumptions regarding the
characteristics of the MEC system dynamics. The authors in
[7] consider a fully stationary scenario where all the BSs have
the same computation capabilities. In [8], only non-stationary
server load distributions are considered while the dynamics
of the wireless channels of the BSs are ignored and [9] fails
to address heterogeneity, i.e., the task dependent computation
capabilities of the BSs.

In this work, we investigate a statistically non-stationary
MEC system with heterogeneous BSs. We consider a single
MU and multiple BSs with co-located edge servers. For every
new task to be computed, the MU selects one BS for task
offloading with the goal of minimizing the experienced latency.
As in practical systems, no prior knowledge about any system
information, such as expected transmission rates, server loads
or task execution latencies, is assumed. Our contributions are:

• We model a realistic MEC system in a highly dynamic
non-stationary environment in which the wireless channel
as well as the load of BSs and edge servers are modelled
by piece-wise stationary random variables.

• We consider heterogeneous BSs, i.e., each BS has differ-
ent hardware and software configurations. Thus, the task
execution latency depends on the specific hardware and
software requirements of the task to be computed and is
different for each BS.

• We propose C-CPD-UCB, a novel reinforcement-learning
algorithm based on contextual Multi-Armed Bandits
(MABs) that detects change points in the BSs’ perfor-
mance for a swift adaptation to non-stationary environ-
ments while exhibiting negligible performance penalties
during stationary phases. Our algorithm is able to handle
different types of tasks by modeling them as its context.
This allows us to identify the best BS depending on the
hardware and software requirements of each task.

• We carry out extensive simulations to verify the superior
performance of our proposed algorithm.

The remainder of the paper is structured as follows. In
Section II, we introduce our system model while in Section III,
the optimization problem for the latency minimization is for-
mulated. In Section IV, our proposed algorithm is explained.
The performance of our solution is evaluated in Section V and
Section VI concludes the paper.

II. SYSTEM MODEL
A. Overview

The considered scenario consists of a single MU and K ∈ N
BSs in the set K = {1, . . . ,K}. Each BS is equipped with an
adjacent edge server for task computation. In every time step
t = 1, . . . , T , where T ∈ N is the number of considered time
steps, the MU has a task to be computed. At the beginning
of each time step t, the MU selects one BS k ∈ K for
task offloading. Different tasks can have different software or
hardware requirements, e.g., processor, memory, graphics card.
Therefore, each task is characterized by a task type αt, taken
from the set A = {1, . . . , A} consisting of A ∈ N different
task types. It is assumed that each task type has similar
requirements in terms of hardware and software. Examples for
task types are video-processing, gaming or augmented reality.
Let T exe

k,t (αt) be the task execution latency associated with
selecting BS k in time step t, i.e., the time needed to complete
the task execution on the edge server of BS k. Due to the
specific hardware and software requirements of task type αt,
T exe
k,t (αt) depends heavily on the selected BS’s software and

hardware set-up. As discussed in [10], it is generally hard
to determine the exact execution latency of a task, even when
the deployed hardware and software are known. Moreover, the
MU may not have knowledge about each BS’s exact hardware
and software capabilities. Thus, it is assumed that the MU
is uncertain about the exact task execution latency and only
knows the type αt of each task. In addition to the type, each
task is described by a task size βt(αt) in bits, that the MU
has to transmit to the BS. The task size βt(αt) is known to

BS 1

BS 2

BS K

MU

Edge Server 1

Edge Server 2

Edge Server K

Fig. 1. MEC scenario with heterogeneous edge servers.

the MU and depends on the type αt of the task. Note that the
task size does not affect the task execution latency T exe

k,t (αt).
The length of a single time step is variable and equal to

the task latency. The task latency when selecting BS k in time
step t can be expressed by

Tk,t(αt) = T tx
k,t(αt) + Twait

k,t + T exe
k,t (αt), (1)

where T tx
k,t(αt) is the transmission latency, associated with the

task transmission to the BS k in time step t and Twait
k,t denotes

the waiting latency, attributed to the time the task has to wait
in the queue of the edge server of BS k in time step t. As
most other works, the time required to send the result back to
the MU is assumed to be negligible [4].

It is assumed that the K BSs are positioned at fixed
locations for all considered time steps. Similar to [11], only
small and slow movements of the MU are considered, i.e., the
distance between the MU and each BS stays approximately
constant. However, the wireless channel between the MU and
the BSs can change significantly due to movements from line-
of-sight (LoS) to no-line-of-sight (NLoS) or due to changes
in the surrounding environment, like temporary blockages.

B. Communication Model

The channel coefficient hk,t of the wireless channel from
MU to BS k in time step t is drawn from a Rician distribution,
which allows to capture both, LoS and NLoS transmission
conditions. Consequently, hk,t can be expressed as [12]

hk,t =

√
κk

κk + 1
ejθk,t +

√
1

κk + 1
h̃k,t, (2)

where h̃k,t follows a zero-mean and unit-variance complex
Gaussian distribution and the phases θk,t are uniformly dis-
tributed on [0, 2π] and statistically independent. Moreover,
κk ≥ 0 denotes the energy ratio between LoS and NLoS for
the wireless channel between MU and BS k. It is assumed that
κk can change over time in a piece-wise constant fashion, i.e.,
κk changes at certain time steps and stays constant in between.
This variation is caused by MU movements and implies
that hk,t is drawn from a piece-wise stationary probability
distribution. The channel gain of the wireless link from MU
to BS k in time step t is given by [12]

Hk,t = d
−γ/2
k,t · hk,t, (3)

where dk,t is the distance between MU and BS k in time step
t and d

−γ/2
k,t is the path loss with path loss coefficient γ ≥ 2.

It is considered that each BS uses a separate frequency band
and an orthogonal frequency-division multiple-access scheme
for the communication with the MU and other connected users.
Hence, the signals of the MU and other users do not interfere
with each other. In order to capture the impact of other users
on the load of the wireless network, let N tx

k,t be the number
of additional users connected to BS k in time step t. N tx

k,t is
assumed to be drawn form a Poisson distribution Pois(νk) with
parameter νk > 0. Using Shannon’s channel capacity formula,
the maximum achievable transmission rate from MU to BS k
in time step t can be expressed by

Rk,t =
B

1 +N tx
k,t

· log2
(
1 +

|Hk,t|2 · P
σ2
n

)
in

bit
s
, (4)

where P is the constant transmit power of the MU, σ2
n

denotes the thermal noise power and B > 0 denotes the
maximum system bandwidth, which is shared among the MU
and other users connected to the same BS. Furthermore,
it is assumed that νk is piece-wise constant, rendering the
allocated bandwidth a piece-wise stationary random variable.
This allows us to capture the dynamically varying load of the
BSs. The transmission latency associated with the transmission
of a task to BS k is given by

T tx
k,t(αt) =

βt(αt)

Rk,t
. (5)

C. Computation Model

As mentioned before, the exact task execution latency
T exe
k,t (αt) is not precisely known to the MU. In order to

account for variability within the same task type and changing
availability of the BSs’ resources, T exe

k,t (αt) is drawn from an
exponential distribution Exp(ηk(αt)) with distribution param-
eter ηk(αt) > 0 for BS k and task type αt. Similar to [13],
the waiting latency in the server queue is defined as

Twait
k,t =

N queue
k,t∑

n=1

T queue
k,n,t (ϕk,n,t), (6)

where the number of tasks N queue
k,t in the queue of the edge

server of BS k in time step t is drawn from a Poisson
distribution Pois(λk) with parameter λk > 0. Furthermore,
T queue
k,n,t (ϕk,n,t) denotes the execution latency and ϕk,n,t denotes

the task type of the n-th task in the queue of the edge server
of BS k in time step t. The task types ϕk,n,t are selected
randomly from A with equal probability and T queue

k,n,t (ϕk,n,t) is
drawn from Exp(ηk(ϕk,n,t)).

It is assumed that the parameters λk and ηk(α) can change
over time, such that the waiting latency Twait

k,t and task exe-
cution latency T exe

k,t (αt) are drawn from piece-wise stationary
distributions. These non-stationary changes can be caused by
load changes on the BSs’ edge servers as well as alterations
in their software and hardware configurations.

D. Piece-Wise Stationary Model

The task latency Tk,t(αt) associated with offloading a task
to BS k in time step t is a sample drawn from a distribution
that is characterized by the parameters νk, κk, λk and ηk(αt).
More specifically, the task latency is a realization of the
random variable Tk(α), which describes the random task
latency that the MU experiences when it offloads a task of
type α ∈ A to BS k ∈ K. Furthermore, it is assumed
that the task latency is upper bounded by Tmax > 0, i.e.,
Tk,t(αt) ∈ (0, Tmax]. Moreover, let µk(α) = E[Tk(α)] be the
expected task latency that is associated with selecting BS k
for the task type α. Finally, due to the piece-wise constant
nature of the distribution parameters νk, κk, λk and ηk(α),
the random variable Tk(α) is piece-wise stationary, i.e., µk(α)
changes over time. It is assumed that the distributions of the
task latency random variables Tk(α), for all BSs k ∈ K
and task types α ∈ A combined, do not change more than
Γ(T) ∈ N times until the end of the last time step T , where
Γ(T) ≪ T .

III. PROBLEM FORMULATION

The MU’s goal is to select the BSs that minimize the sum
of all experienced task latencies. The optimization problem
can be written as

min
{yt,k}k∈K, t∈{1,...,T}

T∑
t=1

K∑
k=1

yt,kTk,t(αt) (7)

subject to
K∑

k=1

yt,k = 1, ∀t, (8)

yt,k ∈ {0, 1}, ∀k, ∀t, (9)

where yt,k is a decision variable, i.e., yt,k = 1 if MU selects
BS k in time step t and yt,k = 0 otherwise. Moreover,
Constraint (8) ensures that only one BS is selected in every
time step and Constraint (9) enforces the binary nature of the
decision variable. It is worth noting that decisions made in
different time steps have no impact on each other. Thus, the BS
selection can be performed for each time step independently,
i.e., in each time step t, the MU selects a BS such that the
task latency Tk,t(αt) for the given task type αt is minimized.
Furthermore, the solution of the aforementioned optimization
problem requires non-causal knowledge about the dynamic
behaviour of the MEC system.

IV. C-CPD-UCB ALGORITHM

A. Overview

As in real MEC systems the MU has no prior knowledge
about the statistical behaviour of the wireless channel, the
BSs’ loads or their computation capabilities, in this sec-
tion, we present Contextual Change-Point-Detection Upper-
Confidence-Bound (C-CPD-UCB), a learning-based approach
to learn the expected task latency µk(α) associated with
each BS. C-CPD-UCB is based on the Upper-Confidence-
Bound algorithm (UCB) [14]. Since UCB is designed for
stationary bandits, C-CPD-UCB is able to achieve near optimal

performance during stationary phases. Moreover, it takes into
account that the probability distributions for the task latencies
Tk(α) are piece-wise stationary, i.e., µk(α) changes over time,
and allows the MU to identify and adapt to these changes.

C-CPD-UCB is a MAB approach. In the MAB-setting, the
learning agent is the MU and the arms of the bandit, or
actions, correspond to the K BSs in K. Furthermore, with
a slight abuse of the terminology, the rewards are defined
as the experienced task latencies Tk,t(αt) and our goal is to
minimize the reward in each time step t. As the experienced
task latency Tk,t(αt) depends on the task’s hardware and
software requirements, i.e., the task type αt, the set of task
types A is considered as the context space in our MAB
formulation. It is worth noting that in our case, the context
space is one-dimensional and discrete. Nevertheless, our pro-
posed algorithm can also be extended to multi-dimensional and
continuous context spaces.1 Incorporating context into existing
algorithms for non-stationary bandits is not straightforward.
For contextual MABs, every arm and context combination
needs a separate estimate for the expected reward. At the same
time, compared to non-contextual MABs, there are less reward
samples for every estimate available given the same number
of time steps. This results in an increase of the convergence
time and a harder detection and adaptation to changes in the
reward distributions.

B. MAB Formulation
Our proposed algorithm is summarized in Algorithm 1. In

accordance to the UCB [14] algorithm, at each time step t,
the MU selects a BS k̂t according to

k̂t = arg min
k∈K

µ̂k,t−1(αt) − ck,t−1(αt), (10)

where µ̂k,t−1(αt) is the MU’s estimate for the expected task
latency µk(α) and ck,t−1(αt) is an exploration term of BS k
given context αt. µ̂k,t(αt) and ck,t(αt) are calculated as

µ̂k,t(αt) =
1

Nk,t(αt)

t∑
n=t−τ+1

Tk,n(αn) ·1{k̂n=k ∧ αn=αt} (11)

and

ck,t(αt) = ξ

√
log(t− τ)

Nk,t(αt)
, (12)

where 1{·} denotes the indicator function and Nk,t(αt) is the
number of times a BS k was selected in combination with
context αt. It is given by

Nk,t(αt) =

t∑
n=t−τ+1

1{k̂n=k ∧ αn=αt}. (13)

ξ is an algorithm parameter that tunes the exploration behavior
of the MU, i.e., the larger ξ, the larger the exploration term
and the more likely the MU is to explore other potentially
suboptimal BSs. Moreover, τ is the last time step before t at
which a change in a task latency distribution was detected.

1Under some regularity conditions for the context space, it can be quantized
into a partition consisting of equally large hypercubes. The MU would then
have to learn the expected reward for every hypercube-arm combination.

C. Change Point Detection

C-CPD-UCB adapts to non-stationarities by identifying
change points in the task latency distributions. Motivated by
[15], the intuition behind our proposed mechanism for the
change point detection is to compare the W ∈ N most recent
task latency samples Tk̂n,n

(αn), n = t − W + 1, . . . , t
with the long-term task latency estimates µ̂k̂n,t

(αn), n =
t −W + 1, . . . , t that correspond to the last W selected BSs
and task types. Compared to doing a comparison for every BS
and task type combination separately, this allows for a quicker
detection without the necessity to acquire many task latency
samples per BS and task type pair. This is especially helpful,
since, due to the large number of BS and task type pairs,
there might be a scarcity of task latency samples for every
combination. In particular, a change point in a task latency
distribution is detected if the following inequality is satisfied

1

W

t∑
n=t−W+1

| Tk̂n,n
(αn)− µ̂k̂n,t

(αn) | ≥ δ, (14)

where δ > 0 is a threshold parameter for the detection. Both,
W and δ are input parameters of the algorithm, that tune the
sensitivity for the detection of non-stationarities. In particular,
the smaller W and δ, the higher the detection sensitivity.
However, the likelihood of false detections also increases
with smaller W and δ. In case a change in the task latency
distributions is detected in time step t, the algorithm enters
a reset phase. In order for Equation (14) to be satisfied, it is
likely that multiple task latency samples are needed after the
occurrence of a non-stationarity. Therefore, it is plausible to
assume that the detection of a change point is always slightly
delayed. Hence, τ is set to t−W and the task latency estimates
are updated based only on the last W task latency samples.
This also accelerates the convergence after the detection, as
the algorithm already acquired W samples for the estimation.

Algorithm 1 C-CPD-UCB
1: Input Parameters: T , W , ξ and δ
2: Set Nk,0(α) = 0, ∀k, ∀α.
3: Set τ = 0.
4: for each t = 1, . . . , T do
5: Observe task type αt.
6: if Nk,t−1(αt) > 0 ∀k ∈ K then
7: Select BS k̂t according to (10).
8: else
9: Select BS k̂t randomly from set {k ∈ K|Nk,t−1(αt) = 0}.

10: end if
11: Observe delay Tk̂t,t

(αt) and update µ̂k̂t,t
(αt), Nk̂t,t

(αt) and ck̂t,t
(αt)

based on Equations (11), (13) and (12), respectively.
12: if Equation (14) is satisfied AND Nk,t(α) > 0 ∀k ∈ K, ∀α ∈ A then
13: Set τ = t − W .
14: for k ∈ K do
15: for α ∈ A do
16: Update Nk,t(α) according to Equation (13).
17: if Nk,t(α) > 0 then
18: Update µ̂k,t(α) and ck,t(α) based on Equations (11) and (12),

respectively.
19: end if
20: end for
21: end for
22: end if
23: end for

TABLE I
SIMULATION PARAMETERS [4]

Parameter Value Parameter Value
B 10 MHz βt(1) 100 MB
σ2
n 10−13 W βt(2) 1 MB
P 200 mW βt(3) 10 MB
γ 3 βt(4) 25 MB
νk [2, 6] λk [2, 10]
κk [0, 5] ηk(α) [0.2, 0.6]

D. Regret

The performance and convergence behavior of an MAB
algorithm are usually evaluated using the notion of regret.
The regret is defined as the cumulative difference between
the expected rewards obtained from selecting the optimal
arms k∗t = arg mink∈Kµk(αt) and the actual obtained reward
resulting from the algorithm selecting arms k̂t, i.e., R(T) =∑T

t=1 Tk̂t,t
(αt)− µk∗

t
(αt).

V. NUMERICAL RESULTS

For our simulations, we consider an area of 500 m×500 m
divided into a grid consisting of 16 equally sized squares.
If not specified otherwise, we place K = 9 BSs uniformly
on the inner grid nodes. The MU is placed randomly inside
of the area and it is assumed that the MU only moves on a
small scale. If not stated otherwise, A = 4 different task types
are considered. Similar to [4], these task types correspond
to different classes of applications with different task sizes
as well as hardware and software requirements, i.e., video-
processing, computation (e.g., MATLAB), audio and photo
processing [4], or the processing of sensor data [8]. The
task type is drawn randomly for every time step with equal
probability. The simulation parameters are displayed in Table I.

In order to capture the dynamic non-stationary nature of
the wireless channel as well as the BS load, it is assumed
that the underlying probability distributions can change up to
Γ(T) times per simulated scenario, i.e., there are Γ(T) + 1
stationary phases. For every stationary phase, the values of the
distribution parameters are randomly drawn from uniform dis-
tributions with intervals specified in Table I. As performance
benchmarks, we consider the following MAB approaches
from the literature. Note that all of the considered algorithms
incorporate context, i.e., the task type.

• C-UCB: Contextual variant of the classic UCB algorithm
[14] for stationary bandits.

• C-ϵ-greedy: This algorithm picks a BS randomly with
probability ϵt, where ϵ ∈ (0, 1), and exploits the BS with
the lowest estimated task latency with probability 1− ϵt.

• C-SW-UCB and C-D-UCB: Contextual extensions of the
non-stationary MAB algorithms Sliding-Window UCB
and Discounted UCB proposed in [16].

The parameters for all the baseline algorithms are tuned such
that they can achieve their best performance for the considered
scenario. For our proposed algorithm, we chose ξ = 0.012,
δ = 0.05 and W = 40. For every result shown, T = 2000 time
steps and the average of 200 Monte Carlo runs are considered.
The regret is the metric used to assess the performance of our

proposed C-CPD-UCB and the baseline algorithms. It reflects
the performance loss, in terms of task latency, compared to
selecting the optimal BS.

In Figure 2, the per time step regret Tk̂t,t
(αt)− µk∗

t
(αt) is

displayed for a scenario with one distribution change point at
t = 1000. Figure 2 illustrates the algorithms’ behavior during
stationary phases as well as the reaction time and convergence
after the occurrence of a non-stationary event. The initial
convergence behavior of all algorithms is similar, as they are
capable of achieving a regret of less than one second within
100 time steps. After t = 300, our proposed C-CPD-UCB as
well as the stationary MAB algorithms C-ϵ-greedy and C-UCB
maintain their regret, indicating that they converge. However,
C-D-UCB and C-SW-UCB, exhibit an increased regret during
the first stationary phase, i.e., until t = 1000. This behaviour is
caused by the mechanisms they use to adapt to non-stationary
environments. In order to adapt to changes in the reward
distribution, C-D-UCB applies a discount factor and C-SW-
UCB applies a sliding window to the reward history. That
means that the most recent reward samples have a greater
influence on the expected reward estimates compared to older
ones. In consequence, there are less samples available for
an accurate estimation of the expected task latencies, which
in turn causes more frequent exploration of suboptimal BSs.
For C-D-UCB, this happens in a gradual manner, while for
C-SW-UCB, these exploration phases come in bursts. Our
proposed C-CPD-UCB does not suffer from this issue as it
aims for actively detecting changes in the reward distributions
rather than passively always reducing the influence of older
reward samples. By tuning the detection parameters δ and
W appropriately to avoid an overdetection, C-CPD-UCB can
achieve the same performance as C-UCB during stationary
phases. After the non-stationarity at t = 1000, C-UCB and
C-ϵ-greedy show a slow reaction time and, on average, fail
to converge back to the optimal solution. This is explained
by C-UCB and C-ϵ-greedy using all past reward samples for
the estimation of the expected task latency. That means that
new additional samples do not contribute much after a large
number of reward samples has been acquired. Although based
on UCB, our proposed algorithm does not suffer from this
limitation because it aims to actively detect change points in
the reward distributions. Compared to C-D-UCB, our solution
shows a similar reaction time. However, as discussed before,
C-D-UCB shows a performance loss during the succeeding sta-
tionary phase. In comparison with C-SW-UCB, our proposed
algorithm is capable of reacting to the distribution change
point within half of the amount of time steps.

As explained in Section IV, extending existing solutions for
non-stationary MABs, like SW-UCB and D-UCB, to handle
context is not a trivial task. To support this hypothesis, Figure 3
displays the average cumulative regret R(T)/T for Γ(T) = 2
distribution change points versus the numbers of considered
task types. The change points are located at random time steps.
The more task types are considered, the more challenging
the learning problem becomes, because there are more BS
and task type combinations to learn. It can be seen that C-

0 500 1000 1500 2000

Time Step

0

1

2

3

4

5
P

e
r

T
im

e
 S

te
p
 R

e
g
re

t
/
s

C-SW-UCB

C-D-UCB

C-CPD-UCB

C- -greedy

C-UCB

Fig. 2. Regret per time step for Γ(T) = 1 and
K = 9 BSs.

1 2 3 4

Number of Task Types

0

0.2

0.4

0.6

0.8

1

A
v
e
ra

g
e
 C

u
m

u
la

ti
v
e
 R

e
g
re

t
/
s C-D-UCB

C-SW-UCB

C-CPD-UCB

Fig. 3. Regret versus number of task types for
Γ(T) = 2 and K = 9 BSs.

2 4 6 8

Number of BSs

0

0.2

0.4

0.6

0.8

1

1.2

A
v
e
ra

g
e
 C

u
m

u
la

ti
v
e
 R

e
g
re

t
/
s C-D-UCB

C-SW-UCB

C-CPD-UCB

Fig. 4. Regret versus number of BSs for
Γ(T) = 2.

SW-UCB and C-D-UCB scale poorly with increasing number
of task types compared to our proposed algorithm. For C-
D-UCB, the regret increases by 107% when going from one
task type up to four, compared to an increase of only 88%
for our proposed solution. This is due to the fact that for an
increasing number of task types, there are less task latency
samples for each BS and task type combination available. C-
SW-UCB and C-D-UCB rely on putting more weight on the
most recent task latency samples, which might be scarce for
every BS-task type pair. This results in a poor performance
during stationary phases due to a lack of samples for a reliable
estimation and therefore, more frequent explorations.

Figure 4 illustrates the impact of the number of BSs K
on the average cumulative regret R(T)/T for Γ(T) = 2. For
Figure 4, we place the BSs uniformly and symmetrically on the
inner grid nodes inside of the considered area. With increasing
K, there are more BS and task type combinations to learn.
Thus, the learning problem becomes more challenging. Similar
to the behavior observed in Figure 3, with an increasing num-
ber of BSs K, the gains obtained by C-CPD-UCB compared to
the baseline algorithms become more pronounced. Specifically,
for K = 2 BSs, compared to our C-CPD-UCB, C-D-UCB and
C-SW-UCB exhibit a 16% and 17% higher regret, respectively.
For K = 8 BSs, this gap widens to 23% for C-D-UCB and
40% for C-SW-UCB, indicating that our proposed algorithm
scales better with an increasing number of BSs.

VI. CONCLUSION

We considered latency minimization in MEC with heteroge-
neous edge servers. A MU sequentially selects the best BS for
offloading computation tasks. Due to different hardware and
software configurations, the BSs exhibit different computation
performance, i.e., latency, depending on the type of computa-
tion task and its requirements. Furthermore, we considered
a dynamic environment in which transmission rates to the
BSs and the edge servers’ task execution latencies are mod-
elled with piece-wise stationary probability distributions. We
proposed a piece-wise stationary contextual MAB algorithm
that treats the task type as context and detects changes in
the latency probability distributions. Simulations showed that
our proposed algorithm exhibits excellent performance during
stationary phases and a quick detection and adaptation in case
a non-stationarity occurs.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
communications surveys & tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646,
2016.

[3] Y. Jararweh, A. Doulat, O. AlQudah, E. Ahmed, M. Al-Ayyoub, and
E. Benkhelifa, “The future of mobile cloud computing: integrating
cloudlets and mobile edge computing,” in 2016 23rd International
conference on telecommunications (ICT). IEEE, 2016, pp. 1–5.

[4] T. Mahn and A. Klein, “Energy-efficient application-aware mobile edge
computing with multiple access points,” in 2020 IEEE 31st Annual
International Symposium on Personal, Indoor and Mobile Radio Com-
munications. IEEE, 2020, pp. 1–7.

[5] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,”
IEEE Transactions on Communications, vol. 65, no. 8, pp. 3571–3584,
2017.

[6] J. Liu and Q. Zhang, “Offloading schemes in mobile edge computing
for ultra-reliable low latency communications,” Ieee Access, vol. 6, pp.
12 825–12 837, 2018.

[7] T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, “Adaptive user-
managed service placement for mobile edge computing: An online
learning approach,” in IEEE INFOCOM 2019-IEEE conference on
computer communications. IEEE, 2019, pp. 1468–1476.

[8] A. Bozorgchenani, S. Maghsudi, D. Tarchi, and E. Hossain, “Computa-
tion offloading in heterogeneous vehicular edge networks: On-line and
off-policy bandit solutions,” IEEE Transactions on Mobile Computing,
vol. 21, no. 12, pp. 4233–4248, 2021.

[9] S. Ghoorchian and S. Maghsudi, “Multi-armed bandit for energy-
efficient and delay-sensitive edge computing in dynamic networks with
uncertainty,” IEEE Transactions on Cognitive Communications and
Networking, vol. 7, no. 1, pp. 279–293, 2020.

[10] B. A. Al-Maytami, P. Fan, A. Hussain, T. Baker, and P. Liatsis, “A task
scheduling algorithm with improved makespan based on prediction of
tasks computation time algorithm for cloud computing,” IEEE Access,
vol. 7, pp. 160 916–160 926, 2019.

[11] Y. Zhou, C. Shen, and M. van der Schaar, “A non-stationary online
learning approach to mobility management,” IEEE Transactions on
Wireless Communications, vol. 18, no. 2, pp. 1434–1446, 2019.

[12] D. Tse and P. Viswanath, Fundamentals of wireless communication.
Cambridge university press, 2005.

[13] A. Bozorgchenani, D. Tarchi, and G. E. Corazza, “A control and data
plane split approach for partial offloading in mobile fog networks,”
in 2018 IEEE Wireless Communications and Networking Conference
(WCNC). IEEE, 2018, pp. 1–6.

[14] R. Agrawal, “Sample mean based index policies by o (log n) regret
for the multi-armed bandit problem,” Advances in Applied Probability,
vol. 27, no. 4, pp. 1054–1078, 1995.

[15] G. Ghatak, “Actively tracking the optimal arm in non-stationary envi-
ronments with mandatory probing,” arXiv preprint arXiv:2205.10366,
2022.

[16] A. Garivier and E. Moulines, “On upper-confidence bound policies for
non-stationary bandit problems,” arXiv preprint arXiv:0805.3415, 2008.

