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Abstract—This paper explores the use of an unmanned aerial

vehicle (UAV) equipped with sensing devices to collect data, such
as temperature and wind speed, in a target area. We distinguish
from prior studies by considering correlation in the data sensed
at different positions. The correlation is captured by a spatial
autoregressive (SAR) model with distance-dependent covariance
matrix. Assuming that the covariance matrix is given, we optimize
the UAV’s trajectory under energy constraints to maximize the
information, namely the joint (differential) entropy, contained
in the sensed data. The formulated problem is a mixed-integer
nonconvex problem, which is generally intractable. To tackle this
challenge, we reformulate the problem to an equivalent dynamic
programming (DP) problem and further solve it by a low-
complexity trajectory planning scheme based on the One-Step
Lookahead Rollout (OSLR) algorithm. Our simulation results
under diverse covariance matrices, generated synthetically and
by using real-world data, show that the proposed trajectory
planning scheme can effectively exploit the UAV’s mobility
and the spatial correlation of the sensed data. Furthermore, it
significantly improves the performance by up to 38% compared
to a conventional greedy search-based trajectory design.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been used to collect
data from ground sensors or to perform aerial onboard sensing
in versatile applications, including crop sensing in precision
agriculture, terrain surveying, and meteorological monitoring
[1], [2]. UAV-aided sensing has the advantages of achieving
high accuracy, large coverage, high adaptability to the envi-
ronment, and fast task completion. Compared with sensing
from satellites and ground sensor networks, UAV-aided sensing
has significantly lower deployment costs, requiring neither
installing numerous ground sensors nor launching expensive
satellites [1]. Moreover, UAVs carrying different types of
sensors can be dispatched to the target area and perform
multiple tasks simultaneously. Therefore, UAV-aided sensing
plays a vital role for enabling integrated space-air-and-ground
sensing in the sixth-generation (6G) wireless networks.

However, due to the continuity and similarity of the sur-
rounding environments, the data from different locations are
often correlated, leading to redundancy and providing no
additional information. Moreover, as UAVs usually have a
severely limited energy supply, sensing redundant data leads
to unnecessary flight and waste of flight time/energy, which
unfavorably degrades the performance of UAV-aided sensing.
To facilitate efficient UAV-aided sensing, the UAV’s trajectory
has to be planned carefully to maximize the information in the
sensed data subject to the energy supply constraint.

This work has been funded by the LOEWE initiative (Hessen, Germany)
within the emergenCITY Center and has been supported by the BMBF project
Open6GHub under grant 16KISKO14.

The problem induced by correlated sensed data has also
been encountered in terrestrial wireless sensor networks
(WSNs), where sensor placement optimization has proven to
be an effective technique for increasing the information in the
sensed data [3], [4]. Therein, inspired by information theory,
entropy-based metrics have been used to measure the infor-
mation in sensed data and further for optimizing the sensor
placement. In [3], the authors employed mutual information to
maximize the amount information about the unexplored area
one can acquire through the sensed data. However, the metric
mutual information considered in [3] constitutes only a part
of the total information gathered by the placed sensors. By
focusing solely on mutual information for sensor placement,
the self-information of the data gathered by the sensors is
ignored. On the other hand, unlike mutual information, joint
entropy covers the total information of the data gathered from
the sensors. The authors of [4] investigated the joint entropy
maximization problem for the sensor placement and showed
the importance of the sensor placement in enhancing the
information in the sensed data. Analogous to sensor placement,
strategic trajectory planning is crucial in UAV-aided sensing.

So far, UAVs have traditionally served as data collection
platforms for terrestrial WSNs [5]–[7]. In [5], [6], the UAV’s
trajectory was optimized to minimize the energy consump-
tion of the terrestrial WSNs. In [7], the association between
multiple UAVs and sensor nodes (SNs) was optimized by
maximizing the entropy to facilitate efficient data collection
from terrestrial SNs. However, when UAVs are only utilized
as data collectors for terrestrial SNs, the inherent flexibility and
ease of deployment for advanced sensing are underutilized. To
leverage these advantages, recent studies have also explored
the use of UAVs as aerial SNs that actively sense and collect
data [8], [9], and investigated the related trajectory planning
techniques under energy constraints. In [8], multi-UAV tra-
jectory planning was studied to ensure obstacle-aware ground
coverage with minimized flight energy. In [9], the trajectory
of an energy-constrained UAV is optimized to maximize the
quality of its captured images. The correlation among the
captured images is taken into account by considering the
diminishing returns of more images sensed for one target.
Note that the sensed data’s correlation and information were
neglected in [7], [8]. The diminishing returns of more images
for one target in [9] under-represent the correlation and the
information in the sensed data.

Unlike previous studies [5]–[9], this paper models the
spatially correlated data in a slowly time-varying environment
using a spatial autoregressive (SAR) model. The SAR is
widely used to model ecological, economic and demographic



Fig. 1. Sensing with an energy-constrained fixed-wing UAV, which flies over
a path before depleting the energy allocated for the sensing task.

data with spatial autocorrelations [10]. We then employ joint
(differential) entropy from information theory to quantify
the information within the correlated sensed data. Moreover,
we consider a trajectory planning scheme for an energy-
constrained UAV to maximize the information contained in
the sensed data. To our knowledge, no existing literature has
yet reported on entropy-based trajectory optimization for UAV-
aided sensing that considers the correlation between the data.
Our contributions can be summarized as follows:

• We deploy an energy-constrained UAV equipped with
onboard sensors to sense correlated data from a target
area. The trajectory of the UAV is optimized to maximize
the information in the correlated sensed data, using the
joint entropy as a metric to quantify the information.

• The formulated optimization problem is a mixed-integer
nonconvex problem, which is generally intractable. To
this end, we reformulate the problem as a dynamic
programming (DP) problem. Subsequently, we propose
a novel trajectory planning scheme based on the One-
Step Lookahead Rollout (OSLR) algorithm, which offers
a computationally efficient suboptimal solution to the DP
problem.

• The simulation results show that the proposed OSLR-
based solution outperforms the baseline greedy search
scheme in terms of achieving a higher joint entropy
with limited flight energy or time. Moreover, trajectories
obtained from the proposed scheme prioritize the explo-
ration of the area with more information and can also
ensure more thorough area coverage.

In the remainder of this paper, Section II presents the system
model of UAV-aided sensing. The formulation and the solution
of the joint entropy maximization problem are provided in
Sections III and IV, respectively. Section V evaluates the per-
formance of the proposed trajectory planning scheme. Finally,
Section VI concludes the paper.

II. SYSTEM MODEL
In this section, we present the system model for UAV-aided

sensing and the SAR model of correlated sensed data. We also
introduce the joint entropy to measure the information within
the correlated sensed data.
A. UAV-aided Sensing

As depicted in Figure 1, a fixed-wing UAV equipped with a
sensor is considered for performing aerial sensing tasks, such

as temperature and wind monitoring. Thereby, the UAV is
deployed to gather sensed data from an area of width Dw

and length Dl. We assume that the UAV flies at a constant
altitude during data collection. Moreover, the UAV is allocated
a maximum amount of energy, Emax, for data collection. Here
we assume that the UAV has sufficient amount of energy left
for flying back after completing the data collection. Moreover,
for miniature sensors, the power consumption is significantly
smaller compared with the flight power consumption. There-
fore, we neglect the power consumption for sensing.

To facilitate trajectory planning, we consider a discrete-time
system, where each time slot has duration ∆ ≥ 0. Let i be the
index of time slots. Moreover, the target area is equally divided
into small rectangles formed by N grid nodes located in set
V = {v1,v2, ...,vN}, cf. Figure 1. Let Ki = [u0,u1, · · · ,ui]
be the vector of the locations of the grid nodes selected to
sense data for the UAV until time slot i, which represents the
trajectory of the UAV, with u0 serving as the starting point
of the UAV. In each time slot, the UAV can sense data at any
grid node under the speed constraints between the minimum
speed Vmin and the maximum speed and Vmax.

B. Modeling of Correlated Sensed Data

In this paper, we model the correlated sensed data using
the SAR. To this end, let Z = [Z1, ..., ZN ]

T ∈ RN×1 be a
random vector representing the sensed data at the grid nodes
within V , where Zn is the random variable representing the
sensed data at grid node n located at vn. Analogous to the
autoregressive models in time series [10], the SAR model of
Z is given as

Z = ρWZ +Aβ + ϵ, (1)

where ρ ∈ [0, 1] is the spatial lag parameter and reflects
the overall spatial autocorrelation of the data in the whole
area. Moreover, the weight matrix W ∈ RN×N represents
the location-specific spatial relation of the sensed data. The
diagonal elements are set to zero wn,n = 0, n = 1, ..., N
to exclude the self-neighbor relation, and the off-diagonal
elements are given by wn,n′ = exp (−θ · dn,n′) for n ̸= n′,
n′ = 1, ..., N , where θ > 0 denotes the rate of decreasing
in spatial autocorrelation with the distance dn,n′ between two
sensing locations. The weight matrix W is symmetric, i.e.,
W = W T , since dn,n′ = dn′,n. Moreover, A ∈ RN×L

contains independent input variables that affect the output
vector Z. For example, Z may denote the temperature in
a certain area, and An,l can then be the latitude or local
population density of this area. β ∈ RL×1 is a weight vector
for A. Finally, ϵ = [ϵ1, ..., ϵN ]T ∈ RN×1 represents the noise
vector and is modeled as a zero-mean Gaussian random vector
with covariance matrix σ2IN .

Based on (1), the data value at a specific location is
influenced by the nearby data, with the extent of this influence
determined by both ρ and W . If (I − ρW ) is invertible, Z
in (1) can be rewritten as

Z = (I − ρW )
−1

(Aβ + ϵ). (2)



In our paper, we assume that ρ, W , A and β are known
a priori. Therefore, Z follows a multivariate normal distri-
bution, N (µ,Σ), where the mean µ is given by E[Z] =
(I − ρW )

−1
Aβ and covariance matrix is given by

Σ = E[ZZT ] =σ2(I − ρW )
−1

(I − ρW T )
−1

(3)

+ (I − ρW )
−1

AββTAT (I − ρW T )
−1

.

C. Joint Entropy based Measure of Sensed Information

We use joint differential entropy, or simply joint entropy,
to quantify the information in the data that the UAV collects.
Let Yi = [Y0, Y1, · · · , Yi] be the vector of random variables
corresponding to data samples collected at locations Ki =
[u0,u1, · · · ,ui]. Note that the random variables in Yi are
selected (possibly with repetition) from Z. Joint (differential)
entropy of multiple random variables Yi is defined as

H(Yi) = −E [log f(y0, · · ·, yi)] , (4)

where f(y0, · · · , yi) is the joint probability density function.
The joint entropy H(Yi) of the random variables Yi can

also be derived using the chain rule

H(Yi)=H(Y0)+H(Y1|Y 0)+· · ·+H(Yi|Yi−1). (5)

The conditional entropy of Yj , j ≤ i, given Y j−1 is given
using its conditional variance σ2

Yj |Yj−1
[3]

H(Yj |Y j−1) =
1

2
log(2πeσ2

Yj |Yj−1
), (6)

where the conditional variance is given by [3]

σ2
Yj |Yj−1

= σ2
Yj

− cYjYj−1
C−1

Yj−1Yj−1
cTYjYj−1

, (7)

where σ2
Yj

denotes the variance of Yj , cYjYj−1
=

[cYjY1
, cYjY2

, · · · , cYjYj−1
] is the vector that contains the

values of covariance between Yj and Y j−1. C−1
Yj−1Yj−1

is
the inverse matrix of the covariance matrix of the random
variables Y j−1. For the special case where Y j−1 contains Yj ,
H(Yj |Y j−1) = 0.

III. PROBLEM FORMULATION

Based on Section II, the trajectory of the UAV, along which
the UAV collects the sensed data, determines the amount of
information contained in the sensed data. In this section, we
formulate a trajectory optimization problem to maximize the
information contained in the sensed data collected by the
UAV with limited energy Emax. To this end, we maximize
the joint entropy H(YM ) of the random variables YM , where
M represents the total flight time until the UAV’s energy is
depleted. Let KM = [u0,u1, · · · ,uM ] denote the trajectory
of the UAV. Given the UAV’s starting point u0, minimum and
maximum velocity Vmin and Vmax, and the covariance matrix
Σ, the resulting problem is formulated as

P1 : max
ui∈V,M∈Z+

H(YM ) (8)

subject to: C1 :
∑M

i=1
Pi(vi) ·∆ ≤ Emax, (8a)

C2 : Vmin ≤ vi ≤ Vmax, 1 ≤ i ≤ M. (8b)

Constraint C1 limits the maximum flight energy to Emax. The
power consumption is given by Pi(vi) = α1v

3
i + α2

vi
, where

vi = ∥ui − ui−1∥/∆ is the speed of the UAV in time slot
i, and α1, α2 > 0 are the parameters of the flight energy
consumption model of the UAV. The flight speed vi of the
UAV in time slot i is restricted by the minimum and maximum
flight speeds Vmin and Vmax in constraint C2.
P1 is a mixed-integer nonconvex problem since it involves

the integer variable M and the objective function is nonconvex
w.r.t. the selection of the M grid nodes for sensing data. Such
type of problem is generally difficult to be optimally solved
within a polynomial computation time.

IV. PROBLEM SOLUTION

In this section, we first show that P1 can be reformulated
into an equivalent DP problem and optimally solved using DP
algorithms. However, the resulting computational complexity
is overwhelming. Inspired by recent success in approximate
DP and reinforcement learning, we propose a low-complexity
suboptimal solution based on the OSLR algorithm, which
tackles the problem by approximating the optimal reward
function in the Bellman optimality equation.

A. Dynamic Programming based Reformulation

Let xi = [ui,Ki−1, Ei] be the system state in time slot
i, including the UAV’s current location ui, previously visited
locations Ki−1, and the UAV’s remaining flight energy Ei in
time slot i. Accordingly, we model the system state updating
equation by

xi+1 = f(xi, si), i = 0, · · · ,M, (9)

where si is the action, i.e., the UAV’s movement at time i.
si ∈ Si(xi) = {si ∈ R2 | vi,min ≤ ∥si∥

∆ ≤ vi,max,ui +
si ∈ V}. vi,min and vi,max denote the lower and upper
bounds on the UAV’s speed in time slot i, respectively.
vi,min ∈ {R | vi,min ≥ Vmin, Pi(vi,min)∆ ≤ Ei}, and
vi,max ∈ {R | vi,max ≤ Vmax, Pi(vi,max)∆ ≤ Ei}, which
guarantees that vi,min and vi,max does not surpass the UAV’s
minimum and maximum flight speeds and the resulting flight
energy consumption does not exceed the remaining flight
energy Ei in time slot i. The action si is determined by
the policy si = πi(xi). The policy space Πi comprises
all functions πi(·) : xi → si that map a state xi to an
action si ∈ S(xi). Moreover, xM is the terminal state when
SM (xM ) = ∅.

The system state updating equation f(·) is defined as
ui+1 = ui + si,

Ki = [Ki−1,ui],

Ei+1 = Ei − Pi+1(vi+1)∆.

(10)

Let g(xi, si) represent the reward resulting from the transition
from state xi to xi+1 when action si is taken. We define
g(xi, si) = H(Yi+1|Yi), which represents the increase in
the joint entropy by collecting the sensed data at location
ui+1. Based on (5), we have H(YM ) =

∑M
i=0 H(Yi|Yi−1) =

H(Y0) +
∑M−1

i=0 g(xi, si), i.e., the sum of the reward gives



the information in the sensed data collected at the grid nodes
{u0,u1, · · · ,uM} by the UAV.

Now let Js(x0) = H(Y0) +
∑M−1

i=0 g(xi, si) denote the
sum of the reward after taking the sequence of actions
s = {s0, · · · , sM−1} starting from the initial state x0. Then
problem P1 can be solved via finding the optimal actions s∗

for the following optimization problem [12]

s∗ = argmax
s

Js(x0). (11)

This requires solving the following Bellman optimality equa-
tion at each time slot i = 0, 1, . . . ,M − 1,

J∗
i (xi) = max

si∈Si(xi)
[g(xi, si) + J∗

i+1(f(xi, si))], (12)

where J∗
i (xi) denotes the optimal sum reward starting from

state xi to xM , and the action si is selected in time slot i to
maximize the sum reward J∗

i (xi). Note that J∗
M (xM ) = 0,

since the action space SM (xM ) = ∅.
To solve the Bellman equation (12), the DP algorithm

calculates the optimal sum reward J∗
M−1(xM−1), · · · , J∗

0 (x0)
by starting from the terminal state xM and going backwards in
a recursive manner, until the optimal sum rewards starting at
all states, i.e., J∗

M−1(xM−1), · · · , J∗
0 (x0), are obtained. Then,

a forward algorithm is further used to attain the optimal actions
{s∗0, s∗1, · · · , s∗M−1}, and states {x0,x

∗
1, · · · ,x∗

M−1} with the
given initial state x0. Please refer to [13, Sec. 6.4] for details
of the DP solution for deterministic finite horizon problems.

However, the DP algorithm attains the optimal solution for
problem P1 at the cost of an overwhelming computational
complexity. Particularly, when the number of states M and/or
the number of actions become large, DP suffers from the curse
of dimensionality. Moreover, such a complex solution is not
applicable for the UAV-aided sensing since the UAV only has
limited energy and computing resources.

B. Proposed Suboptimal Solution based on OSLR Algorithm

Here we propose a low-complexity suboptimal solution
based on the OSLR algorithm to overcome the shortcomings
of DP. The rollout algorithm has been successfully employed
in AlphaGo [14] and our problem of trajectory planing for the
UAV also resembles to some extent placing the chess pieces
on the board. The difference lies in that here we apply rollout
to solve an optimization, rather than learning, problem.

To motivate the rollout algorithm, let us start with a heuristic
policy πh(·) which chooses the action si that maximizes the
reward g(xi, si) in time slot i, so called greedy search. The
problem is given as follows

P3 : max
si∈Si(xi)

g(xi, si). (13)

Note that P3 only considers the instantaneous reward of taking
action si at state xi, but completely ignores J∗

i+1(f(xi, si)) in
subproblem (12). As such, applying the heuristic policy in each
time slot can be far from the optimal policy. This is because the
locations of the UAV chosen in previous iterations can affect
the choices of the UAV’s locations in the following iterations.
Moreover, as the UAV has a limited energy supply, the greedy

search may quickly deplete the energy since it always chooses
the “best” next location for the current time slot among those
locations reachable with the residual flight energy.

Algorithm 1: OSLR-based UAV’s Trajectory Planning
Input: N , V , Σ, Vmax, x0 = {u0,K0, Emax}
Output: K∗

M

1 Initialize i = 0
2 while i < N − 1 do
3 find Si(xi)
4 if Si(xi) ̸= ∅ then
5 s∗i = argmax

si∈Si(xi)

JR
i (xi)

6 i = i+ 1, and update xi

7 else
8 M = i, K∗

M = Ki and stop iteration
9 end

10 end

Unlike greedy search, which disregards J∗
i+1(f(xi, si)),

the OSLR approximates J∗
i+1(f(xi, si)) in (12) as

JR
i+1(f(xi, πh(xi))) =

∑M−1
j=i+1 g(xj , πh(xj)) using the

heuristic policy πh(·). The action si for a given state xi is
therefore determined by solving the approximate Bellman
equation given below

JR
i (xi) = max

si∈Si(xi)
[g(xi, si) + JR

i+1(f(xi, πh(xi)))], (14)

where JR
i (xi) is the maximum sum reward if actions

{si, πh(xi+1), · · · , πh(xM )} are taken starting from state xi.
The heuristic policy πh(·) utilizing greedy search is employed
for future actions, which simplifies computational require-
ments. In contrast to the greedy policy πh(·) employed in
each iteration, the OSLR algorithm takes into account not only
the immediate reward associated with the current action si,
but also considers the long-term consequences and potential
rewards resulting from this action si. Compared to solving the
subproblem in (12), the computational complexity of solving
the subproblem in (14) is significantly reduced since the policy
πj(·) remains fixed as πh(·) for j ≥ i + 1. Hence, the
OSLR-based algorithm offers an improved solution compared
to greedy search, while maintaining a lower computational
complexity than the optimal solution.

Algorithm 1 summarizes the proposed UAV trajectory
planning algorithm based on OSLR. The trajectory planning
process begins with the given initial state x0, and in each time
slot, the state is updated based on the action s∗i that maximizes
the reward JR

i (xi). The UAV’s states are iteratively explored
until the action space SM (xM ) becomes empty, indicating that
the UAV cannot take any further action at state xM without
surpassing the maximum energy limit Emax.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
OSLR-based trajectory planning scheme through simulations.
We consider a 40 m × 40 m square area and equally divide
it into 400 small squares of 2 m × 2 m in size, resulting in



TABLE I
PARAMETER SETTINGS

Parameter Value
Duration of time slot ∆ = 0.08 s

Maximum flight speed Vmax = 36 m/s
Spatial lag parameter in SAR ρ = 0.9

Coefficients of independent variables A β = 0
Parameter of spatial weight matrix θ = 0.98

Variance of noise ϵ in SAR σ2 = 1.5
Parameters of the energy consumption model α1 = 0.01, α2 = 1

(a) (b)

Fig. 2. (a) Values of covariance between Z10 and Z. (b) Joint entropy versus
the maximum energy Emax of proposed and baseline scheme.

N = 441 generated grid nodes denoted as V = {v1, ...,vN}.
Unless stated otherwise, we set the simulation parameters
according to Table I. For comparison, we also evaluate the
performance of the greedy search as a baseline scheme.

In the simulations, we first consider a covariance matrix
generated based on Equation (3) and the parameters in Table I.
Figure 2(a) shows the covariance between the pair of random
variables Z10 and Z, which represent the sensed data at
v10 = [18, 0] and V , respectively. Note that in Figure 2(a),
the peak value, which is highlighted by a red dot, represents
the variance of Z10. We observe from Figure 2(a) that the
covariance values between Z10 and nearby Zn, particularly
around v10, are higher, indicating that the correlation between
data sensed in close proximity is higher. Using the simulated
covariance matrices, Figure 2(b) further evaluates the joint
entropy as a function of the maximum energy Emax of the
UAV for both, the proposed and baseline scheme. Notably,
the joint entropy increases with the maximum energy Emax

for both schemes. This is because, as Emax increases, the
UAV can exploit the additional flight energy to cover more
area. Moreover, the proposed scheme consistently outperforms
the baseline greedy search scheme and the performance gap
widens as Emax increases. At Emax = 800 J, the proposed
scheme achieves an increase of 38% in joint entropy compared
to the baseline scheme.

For insights into the performance gains, Figure 3 compares
the trajectories obtained by both schemes for Emax = 1200 J
in (a)-(b) and Emax = 2000 J in (c)-(d), where the starting
point is u0 = [0, 0]. The heatmap in each subfigure shows the
variance of Z for all grid nodes, which peaks in the center
and reduces with the distance to the center in all directions.
Note that sensing at a position with high variance and hence,
large uncertainty, can increase the information in the sensed
data. Hence, for all considered setups in Figure 3(a)-(d), the
UAV initially flies to the center of the target area. However,

the UAV’s trajectories differ significantly. Particularly, when
Emax = 1200 J, Figure 3(a)-(b) show a spiral and a directional
flight trajectory for the proposed and the baseline schemes,
respectively. This is because the baseline scheme aims at
maximizing the information at each position. To this end,
the UAV would gather data at spatially distant positions to
reduce the correlation among the collected data. Consequently,
the UAV flies back and forth on the diagonal of the area
at the highest speed since the baseline scheme ignores the
impact of each selected position on the future data acquisition,
which may rapidly deplete the energy and further limit the
total amount of sensed data. Unlike the baseline scheme, the
proposed scheme considers the impact of each UAV movement
on the subsequent data collection. Consequently, the UAV
adopts a reduced speed and a spiral flight pattern to maintain
large distances between the data collection points in order to
reduce the correlation in the sensed data.

On the other hand, when the maximal allowed energy is
increased to Emax = 2000 J, we observe from Figure 3(c)-(d)
that both, the proposed and the baseline scheme, still show
similar flight patterns as in Figure 3(a)-(b). Note that the
UAV can utilize the additional energy to explore and sense
more positions for both considered schemes. Interestingly, the
positions visited by the UAV are well spread over the target
area for the proposed scheme. However, the trajectory derived
from the baseline scheme is confined in the left upper triangle,
which reveals the superior capability of the proposed scheme
in trajectory planning. Therefore, the proposed trajectory plan-
ning scheme is more advantageous in sensing information
maximization than the baseline scheme.

To further validate our results, we employ another co-
variance matrix calculated by applying real world data to
the method from [15], where the daily average wind speeds
collected from five stations (‘RPT’,‘VAL’,‘DUB’,‘BEL’, and
‘MAL’) in the Republic of Ireland from 1961 to 1978 are used.
For the UAV’s trajectory planning, the five stations are placed
on the 40 m×40 m target area, aligned proportionally to their
actual positions. Figure 4(a) shows the values of covariance
between Z10 and Z. Figure 4(b) shows the joint entropy versus
Emax for the considers schemes. Compared to the baseline
scheme, the increase of joint entropy is approximately 28%
at Emax = 800 J, which confirms the applicability of our
proposed scheme.

Figure 5 (a) and (b) show the trajectories obtained by the
proposed and baseline scheme with Emax = 650 J and starting
point u0 = [22, 4]. The trajectory derived from the proposed
scheme prioritizes the area with more information in the lower
right corner since the proposed scheme considers the impact of
each step on future data collection. Furthermore, the greedy
search has a tendency to choose a higher speed, which can
lead to rapid energy depletion and reduced collected data. To
exclude the effect of less time on the amount of the obtained
information, Figure 6 shows the joint entropy as a function
of the time slots M , where we can see that the proposed
scheme still outperforms the baseline scheme, with an increase
of about 22% at M = 45.



(a) (b) (c) (d)
Fig. 3. UAV’s trajectory of (a) the proposed scheme and (b) the baseline scheme, respectively, with Emax = 1200 J and of (c) the proposed scheme and (d)
the baseline scheme, respectively, with Emax = 2000 J.

(a) (b)

Fig. 4. Values of covariance between Z10 and Z generated by using the
method in [15] based on real-world wind data. (b) Joint entropy versus the
maximum energy Emax of proposed and baseline scheme.

(a) (b)
Fig. 5. UAV’s trajectory (a) of the proposed scheme, (b) of baseline scheme,
with Emax = 650 J.

VI. CONCLUSION

In this paper, we investigated the information maximization
problem in the energy-constrained UAV-aided sensed data col-
lection, considering data correlation. The information within
the correlated sensed data is quantified using joint entropy.
To achieve this objective, we formulated a mixed-integer non-
convex trajectory optimization problem to maximize the joint
entropy. To solve the mixed-integer nonconvex problem, we
first reformulated the problem into an equivalent DP problem.
However, solving the DP problem can be computationally in-
tensive. To this end, we proposed a low-complexity trajectory
planning scheme using OSLR, which provides a suboptimal
solution for the DP problem. In the simulation results, we
compared the performance of the proposed trajectory planning
scheme with the baseline scheme based on greedy search.
The proposed scheme demonstrates significant improvement,
improving the joint entropy by up to 38% compared to
the baseline scheme. Furthermore, we applied the proposed
scheme on the covariance matrix derived from the real-world
data using the method in [15]. The simulation results show that

Fig. 6. Joint entropy versus number of time slots M .

our proposed scheme has a performance gain of about 28%,
which confirms the applicability of the proposed scheme.
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