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Abstract—Mobile Crowdsensing (MCS) is a promising dis-
tributed sensing architecture that harnesses the power of sensors
on mobile units (MUs) to perform sensing tasks. The MCS is a
dynamic system in which the requirements of the sensing tasks,
the MUs’ conditions and the available resources change over time.
The performance of an MCS system depends on the selection
of the MUs participating in each sensing task. However, this
is not a trivial problem. An optimal task participation strategy
requires non-causal knowledge about the dynamic MCS system,
a requirement that cannot be fulfilled in real implementations.
Moreover, centralized optimization-based approaches do not scale
with increasing number of participating MUs and often ignore the
MUs’ preferences. To overcome these challenges, in this paper
we propose a novel multi-agent federated deep reinforcement
learning algorithm (FDRL-PPO) which does not need this perfect
non-causal knowledge, but instead, enables the MUs to learn their
own task participation strategies based on their own conditions,
available resources, and preferences. Through federated learning,
the MUs share their learned strategies without disclosing sensitive
information, enabling a robust and scalable task participation
scheme. Numerical evaluations validate the effectiveness and
efficiency of FDRL-PPO in comparison with reference schemes.

I. INTRODUCTION

In recent years, a novel sensing architecture called Mobile
Crowdsensing (MCS) has emerged in the field of distributed
sensing. MCS employs sensors installed on smart devices
(e.g. smartphones, wearables, and smart vehicles) to perform
sensing tasks and utilizes the ‘wisdom of the crowd’ [1]. In
comparison with traditional wireless sensor networks (WSNs),
MCS offers many advantages such as higher coverage due to
the mobility of mobile units (MUs), lower infrastructural costs
and larger availability of MUs in a given area. As a result,
MCS has become a topic of interest in the research community
[2], [3]. Many applications such as traffic monitoring [4], [5],
environmental monitoring [6], spectrum sensing [7], mHealth
[8] and crowd-sourcing [9] use MCS for distributed sensing.

An MCS scenario commonly consists of three entities,
namely, data requesters, an MCS platform (MCSP) and MUs.
Data requesters require sensing data and communicate this
request to an MCSP. The request includes different require-
ments of the sensing result (e.g., maximum size of the sensing
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result in bits) along with a predefined monetary budget for
this request. The monetary budget is usually directly propor-
tional to the strictness of the task requirements. The MCSP
reformulates the request as a sensing task and sequentially
broadcasts such tasks along with their requirements to its
associated MUs. Based on their individual preferences, the
MUs decide whether they want to convey their willingness to
perform the task or not (i.e., task proposal). A task proposal
consists of the MU’s desired payment as a reward for their
task efforts in terms of energy spent if they perform the
current sensing task successfully. Multiple MUs may send
their proposals to perform one sensing task. The MUs are
typically battery operated and require a charging mechanism
to replenish their batteries. In this work, we assume energy
harvesting (EH) MUs that form a sustainable MCS architecture
[10], [11]. Due to the budgeted nature of the problem, the
MCSP selects the cheapest MUs within its task budget, and
signals them this decision such that they can perform the
complete sensing task independently. In an ideal case, the
MCSP needs only one MU to perform the sensing task.
However, to ensure task completion, the MCSP may select
multiple MUs within the task budget for redundancy. Only
those MUs which complete the task successfully according to
the requirements are rewarded with their desired payment.

In a budgeted MCS scenario, the MUs’ task participation
strategy greatly affects the performance of the system and the
MUs’ individual payments. For example, an MU participating
in a task whose requirements it cannot meet, causes unnec-
essary energy expenditure without any payment. There could
also be an MU which can potentially complete the task but
is not selected by the MCSP due to budget restrictions. Thus,
to make an optimal decision, the MUs theoretically require
non-causal knowledge about the tasks, as well as the battery
and channel conditions of all MUs in the MCS system.

In the literature, many works assume the availability of such
knowledge at the MCSP and optimize the task allocation de-
cision [12]–[14]. However, having such non-causal knowledge
is impractical and, due to the complexity of the problem, these
solutions are non-scalable. Nevertheless, such approaches pro-
vide an upper bound on the system performance. To achieve
scalability, some works propose game theoretic approaches
that also consider user preferences for the task allocation prob-
lems [15], [16]. However, these works assume static problem
formulations and cannot adapt to dynamic MCS scenarios.
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Fig. 1. System model with task execution steps

Moreover, they require private MU information at the MCSP
to make allocation decisions. To overcome this requirement,
some works employ deep reinforcement learning to improve
the task allocation decisions over time [10], [17]. However, the
scalability issue and lack of user preferences remains in these
works. To overcome this issue, [18] considers a multi-agent
reinforcement learning solution to the task selection problem.
However, the solution requires exchange of MU’s sensitive
information as well as MU task participation preferences in
the training phase which raises a privacy concern.

In this work, we model a decentralized task participation
problem in MCS, where the MUs propose to participate in
a task and decide their task execution efforts in terms of the
energy they are willing to spend. The MUs aim to maximize
the payments received from the MCSP (individual goal) while
maximizing the number of completed tasks (global goal) in
a limited time horizon, and under the constraints of deadline,
energy and budget. In such a complex scenario, the MUs must
learn when to propose for a task and when to back off such
that other MUs can potentially perform it.

To solve this problem, we propose a novel and scalable
federated deep reinforcement learning (FDRL-PPO) algorithm
based on a multi-agent reinforcement learning formulation.
Our proposed approach does not require perfect non-causal
knowledge regarding the amount of harvested energy, the
communication channel conditions, or the future tasks. The
proposed solution enables MUs to learn their own task partic-
ipation strategy based on their own information. Leveraging
our federated DRL approach, the MUs share their learned
task participation strategy with other MUs without sharing any
sensitive information. This helps the MUs to propose only to
suitable tasks and to maximize their individual as well as the
global goals. Moreover, the proposed approach is robust and
adapts to MU dropouts and new MU connections.

The rest of the paper is organized as follows: Section II
introduces the system model. In Section III we formulate
the problem to maximize the number of completed tasks in
a given time horizon. Section IV introduces the FDRL-PPO
approach. In Section V, we discuss the simulation parameters
and numerical evaluation and Section VI concludes the paper.

II. SYSTEM MODEL

The considered MCS system consists of an MCSP that
sequentially publishes sensing tasks, and multiple EH MUs.

We consider a time-slotted model in which time is divided
into discrete time steps with index t ∈ {0, 1, . . . , T − 1} of
duration τ int each, where T is the number of considered time
steps. We assume the MCSP publishes one task per time step
t. Consequently, the variable t can be used as time step index
as well as task index. The set K = {0, 1, . . . ,K−1} contains
the indices of the K = |K| available MUs.

A. MCSP

As shown in Fig.1, at the beginning of each time step t, the
MCSP publishes a new sensing task. A task t is characterized
by its requirements: ⟨Mt, τ

dl
t , Zt⟩, where Mt is the task result

size which the MUs have to send back to the MCSP after task
execution in bit, τ dl

t denotes the task deadline in s, and Zt is
the task specific budget in monetary units. The requirement
tuple characterizes the difficulty of task t. We define a task
difficulty weight as

Vt = ξM ′
t + ωτ dl’

t ,∀t, (1)

such that M ′
t is the normalized task size given by Mt

Mmax

and τ dl’
t is normalized task deadline given by 1 − (

τ dl
t

τ int ). The
variables η, ω ∈ [0, 1] are importance factors whose values
decide on the importance of the task size and deadline in
deciding the overall task difficulty. For a large task size Mt,
the MUs would need to spend more resources to complete the
task successfully. Therefore Vt increases as Mt increases. In
contrast to this, as the task deadline τ dl

t gets shorter, the task
completion becomes more difficult, and hence, Vt increases.
The task budget Zt is defined by the data requesters such that
Zt = ηVt, where η is the budget coefficient.

Based on their task selection strategy, some MUs convey
their willingness to perform the task t along with their desired
payments Gk,t to the MCSP. The MCSP processes all these
proposals and selects the cheapest MUs for task execution
within the task budget Zt. The platform’s acceptance decision
xk,t ∈ {0, 1} is sent back to the MUs. xk,t = 1 denotes
that MU k’s participation request has been accepted by the
MCSP, and xk,t = 0 indicates that it has not been accepted.
If MU k transmits the sensing result fulfilling all of the task
requirements, then the MCSP awards it with the respective
desired payment Gk,t, otherwise not.

B. Mobile Units

Each MU k makes two consecutive decisions in each time
step t, namely, a task participation decision and a selection of
its transmit power. The task participation decision is denoted
by yk,t ∈ {0, 1} such that yk,t = 1 indicates MU k is willing
to perform the task t, and yk,t = 0 indicates that it is not.
The transmit power ptx

k,t is used by MU k for the transmission
of the task proposal message and the sensing result of task t.
ptx
k,t can take any value in the range [0, ptx

max] where ptx
max is the

maximum transmit power. By deciding the power ptx
k,t, MUs

have control over the transmission energy Etx
k,t = τ tx

k,tp
tx
k,t,



where τ tx
k,t is the transmission time required to communicate

Mt from MU k back to MCSP. τ tx
k,t is defined by,

τ tx
k,t =

Mt

W log2

(
1 +

ptx
k,t|hk,t|2

σ2

) , (2)

where W is the channel bandwidth in MHz, hk,t is the channel
coefficient for the link between the MCSP and MU k in time
step t and σ2 is the noise power. Additionally, the MUs also
spend energy while sensing. This sensing energy is denoted
by Es

k,t = τ s
k,tp

s
k,t, where τ s

k,t is the sensing time required to
generate the sensing data from MU k at time step t and ps

k,t

is the power required for sensing. The sensing time τ s is a
random variable with mean value τ̄ s. The actual sensing time
τ s
k,t for each MU k in time step t depends on the task size
Mt, the characteristics of the MU’s sensor and its conditions
in time step t. Similarly, the sensing power ps is a random
variable with mean value of p̄s. The actual sensing power ps

k,t

for MU k in time step t depends on the task size Mt, the
characteristics of the MU’s sensor and its conditions in time
step t. The total effort in terms of Eexec

k,t put in by MU k in time
step t is measured as, Eexec

k,t = Es
k,t + Ep

k,t + Etx
k,t. Similarly,

the total execution time required for MU k in t is denoted
by τ exec

k,t = τ s
k,t + τ tx

k,t. Since the task execution time starts
after getting accepted from the MCSP, τ p

k,t is not considered
in the task execution time. A payment request Gk,t is made
proportional to the effort Eexec

k,t by each MU k who is willing
to perform the task t such that, Gk,t = κEexec

k,t , where κ is a
factor in monetary units per Joule.

Each MU k harvests Eharv
k,t energy in Joules in every time

step t. This energy is stored in a battery with capacity Bmax
without any losses. The MUs update their battery status bk,t
at the end of time step t as,

bk,t = min{Bmax, bk,t−1 − Eexec
k,t + Eharv

k,t }, (3)

since the MUs’ battery capacity is Bmax. To ensure energy
causality, each MU k may only use the amount of energy
available in the battery at the beginning of each time step t.

III. PROBLEM FORMULATION

A. Centralized task allocation problem

To obtain an upper bound on the performance of the MCS
system in terms of number of completed tasks in a finite
number of time steps, we initially consider the problem from
the MCSP’s perspective. In this case, we assume that the
MCSP has perfect non-causal knowledge about the battery
statuses, amounts of harvested energy, communication channel
conditions and future tasks. With this knowledge, the MCSP
optimally decides which MU to choose for each task and
how much transmit power this MU should select to maximize
the average weighted number of completed tasks. Thus, for
this problem formulation, MUs do not have any preference,
on the contrary, the MCSP decides for each MU k. This
problem is NP-hard and grows exponentially as the number
of MUs increase [19]. The two decisions, task allocation and
transmit power selection, are stored in the matrices Y and

Ptx respectively, such that Y = (y1, y2, . . . , yT ), where yt =
(y1,t, y2,t, . . . , yK,t)

T . Similarly, Ptx = (ptx
1 , p

tx
2 , . . . , p

tx
T ),

where ptx
t = (ptx

1,t, p
tx
2,t, . . . , p

tx
K,t)

T .
A deadline constraint for each task t has to be fulfilled by

every MU k which is selected for task execution, i.e.,

τ exec
k,t yk,t ≤ τ dl

t ,∀k ∈ Kt,∀t. (4)

For this, the MCSP decides the transmit power ptx
k,t which

follows (4). Moreover, due to the optimality, one MU is
sufficient to complete the task, i.e.,

K−1∑
k=0

yk,t ≤ 1, ∀k, ∀t. (5)

Note that the MCSP may choose not to perform a sensing task
by allocating no MUs to it , and thus save the MUs’ resources
for more difficult future tasks. The budget constraint is given
by the equation,

K−1∑
k=0

Gk,tyk,t ≤ Z task
t , ∀t. (6)

The energy causality constraint given by,
J∑

j=1

Eexec
k,j yk,t ≤

J−1∑
j=0

Eharv
k,j ,∀k, J = 1, . . . , T, (7)

guarantees that MU k does not spend more energy than bk,t
in time step t. Moreover, the MUs cannot spend Eharv

k,t in time
step t itself. The overflow constraint given by,

J−1∑
j=0

Eharv
k,j −

J∑
j=1

Eexec
k,j yk,t ≤ Bmax,∀k, ∀t,∀J. (8)

ensures that the maximum value of energy that can be stored
in the battery is Bmax. The optimization problem from the
perspective of MCSP to maximize the average weighted sum
of completed tasks is given as follows,

argmax
{yk,t,p

tx
k,t}

T−1∑
t=0

Vt

K−1∑
k=0

yk,t

subject to (4), (5), (6), (7), (8).

(9)

Note that these constraints are inter-dependent and non-
convex. To fairly handle different tasks with different require-
ments, we maximize the average weighted sum of completed
tasks denoted by (9) instead of simply maximizing the number
of completed tasks. Our proposed FDRL-PPO algorithm over-
comes the requirement of non-causal knowledge and learns
better task participation decisions over time.

B. Reformulation as Markov Game

The optimization problem in (9) is formulated from the
perspective of the MCSP to fulfil the assumption that one
entity in the MCS scenario has the perfect non-causal knowl-
edge about all the MUs and future tasks. This assumption is
unrealistic to fulfill, and the MU task preferences are ignored
in this approach. Additionally, this approach is not scalable.



To overcome these drawbacks, we formulate the task selection
problem from the perspective of the MUs.

Each MU k makes decisions about the task participation in
time step t, i.e., yk,t, and the transmit power ptx

k,t to determine
the energy efforts to put in executing the task, if selected. Such
decision making problems where multiple entities, in our case,
the MUs, decide about their actions based on their observations
can be formulated using a Markov Game (MG). An MG is
characterized by a tuple ⟨S,A,P,R⟩. S is the set of states
each MU can observe. The state St ∈ S helps MU k to take
action At ∈ Ak in time step t. A1,A2, . . . ,AK is collection
of action sets of all MUs from set K. The set P contains
transition probabilities P (St+1|St, Ak,t), i.e., the probability
of visiting state St+1 ∈ S given the current state of the agent
is St ∈ S and it takes action Ak,t ∈ Ak. The reward set R
contains all the possible rewards that the learning agent can
receive after taking some action Ak,t ∈ Ak in state St ∈ S.

In our scenario, the state Sk,t ∈ S of MU k in time
step t is Sk,t = ⟨bk,t, h̄k,t,Mt, τ

dl
t , Zt⟩, where h̄k,t is the

average channel coefficient calculated from the past observed
coefficients since causal knowledge of hk,t is difficult to
obtain. Similarly, each MU k takes action Ak,t = {yk,t, ptx

k,t},
Ak,t ∈ A, in each time step t. Since the transmit power ptx

k,t

is continuous in range [0, ptx
max], the set A has infinitely many

possible actions. We assume that P is unknown since the MUs
do not have a perfect non-causal knowledge about the other
MUs, their actions, and also the future tasks. Finally, each MU
k receives its desired payment Gk,t as a reward Rk,t ∈ R for
taking action Ak,t in state Sk,t for task t. Rk,t = Gk,t if the
constraints (4)-(8) are fulfilled, else Rk,t = 0.

Each MU k aims to maximize long-term discounted reward
R =

∑∞
t=0 γ

tRk,t, where γ ∈ [0, 1] is the discount factor,
by finding a task selection policy πk which maps the state
Ak,t to the action Sk,t. Given the infinite number of states in
our problem, the policy is modeled using an artificial neural
network, termed policy network, with parameters θk, such that
Ak,t = πk(Sk,t; θ

k). To evaluate how good or bad is a policy
πk, a value function V πk

is defined. Similar to the policy,
V πk

is modeled using an artificial neural network, termed
value network, with parameters ϕk, such that V πk

(Sk,t;ϕ
k).

All the MUs optimize their policies πk over time with an
aim to converge to the optimal policy π∗ that maximizes the
payment Gk for each MU k.

IV. REINFORCEMENT LEARNING SOLUTION

A. PPO-based task selection strategy

In our proposed solution, each MU k implements a deep
reinforcement learning approach called Proximal Policy Op-
timization (PPO) [20]. PPO is an actor-critic policy gradient
method consisting of two networks, the actor, or policy net-
work, and the critic, or value network. The actor decides which
action Ak,t should be taken in a given state Sk,t based on MU
k’s policy πk(Ak,t|Sk,t; θ

k). The critic informs the actor how
good or bad was this action Ak,t in reality and how it should
be adjusted by computing the value function V πk

(Sk,t;ϕ
k).

Algorithm 1 FDRL-PPO

1: Initialization:
2: Initialize a global model with weights Ω(0) at the MCS platform.
3: Each MU k initializes a local model Ωk(0), ∀k ∈ K and sets it with:

Ωk(0) = Ω(0).
4: for each round r = 0, 1, . . . , rmax − 1 do
5: for each MU k = 0, 1, . . . ,K − 1 do
6: Download global model Ω(r) from the platform and set Ωk(r) =

Ω(r).
7: Train the model locally using weights Ω(r). ▷ Section IV-A
8: Upload weights after training to the MCS platform.
9: end for

10: At the MCS platform:
11: Collect all weight updates from all MUs.
12: Compute federated averaging to obtain Ω(r + 1)
13: Distribute updated weights to all MUs
14: end for

To train our proposed approach, multiple training episodes
are considered. A training episode i consists of T time steps
in which each MU observes its own states, takes its individual
actions and observes the individual rewards. The observed
states, selected actions and rewards within one training episode
i are termed trajectory Dk

i . At the beginning of the first
training episode i = 1, each MU k initializes its policy
parameters θk and value function parameters ϕk. These pa-
rameters are updated in each subsequent training episode using
the observed trajectories Dk

i . Specifically, at the end of each
training episode, the policy network (i.e. the actor) updates
the parameters θk in the direction that maximizes the average
long term rewards via stochastic gradient ascent algorithm.
Similarly, the value network (i.e. the critic) updates ϕk by
minimizing the loss function which represents the gap between
the expected long term rewards and the actual rewards using
stochastic gradient descent algorithm. The same procedure is
repeated until convergence is achieved.

B. Federated Deep Reinforcement Learning using PPO

In the previous section, we explained the PPO algorithm.
This algorithm is implemented on each MU k and is trained
based on the observed trajectories Dk

i . In the considered MCS
scenario, each MU should ideally learn to which tasks it should
propose and to which tasks it should not propose and let
other, potentially capable MUs, participate. However, with no
communication between the MUs, this is difficult to learn.
Since the considered MCS scenario is a mixed cooperative
and competitive, there has to be some cooperation between the
MUs. By cooperating with each other, MUs can collectively
learn to maximize their own payments and also maximize
the average weighted sum of completed tasks in a finite time
horizon. This cooperation is achieved by sharing their learnt
models, i.e., θk and ϕk. This knowledge sharing also helps the
newly associated MUs in the MCS system because they can
take advantage of the already learned models of other MUs.
Note that by sharing the learning parameters, the MU’s private
and sensitive data is preserved and not shared.

Our proposed approach enables this sharing by exploiting
a federated learning algorithm to distributively train the MUs



using PPO. In FDRL-PPO, an aggregator node (in our case the
MCSP) maintains a global model Ω(r). This model consists
the policy and critic network parameters θ and ϕ, respectively.
We divide each training episode i into T fed federation rounds
indexed by r, such that each federation round r is formed
by T/T fed time steps. At the beginning of federation round
r, each MU k downloads the global model and trains this
model locally based on its own decisions and experience. At
the end of round r, each MU k transmits this trained local
model Ωk(r) to the MCSP. The MCSP combines the received
parameters based on the individual rewards of each agent as,

Ω(r + 1) =

K−1∑
k=0

Rk,r∑
k Rk,r

Ωk(r) (10)

This way, the aggregated model Ω(r + 1) is more similar to
the best performing MU. After this, the MUs download the
updated global model Ω(r+1) and again train this model based
on their local data. The process repeats until convergence.

V. NUMERICAL EVALUATION

In this section, we present and discuss the simulation results
to evaluate the performance of the proposed FDRL-PPO
algorithm in comparison with the reference schemes. These
results are averaged over I = 1000 independent realizations.
In each realization, we consider T = 100 time steps and as
a result, same number of tasks. Each task size Mt of task t
can take any value in the range [1, 7] Mbit. The MUs are in
an area where the maximum distance between an MU and the
MCSP is 1 km. The communication channel between MU k
and the MCSP is modelled as a Rayleigh fading channel with
path loss exponent of three. The MUs can move freely in the
area with a maximum average speed of 10 km/h. We set ξ and
ω to one to promote fair task completion. Table I provides the
list of simulation parameters.

For the proposed FDRL-PPO approach, we use a discount
factor γ = 0.99. For the policy and value network, we use
an artificial neural network with 2 hidden layers each with
64 nodes. Moreover, we use a learning rate lr = 1e−6. A
training batch size of 1024 is used with a mini-batch size
128 to compute the stochastic gradient descent in the learning
process. We consider the following reference schemes for the
performance comparison.
Optimal task allocation (OTA): As described in Section
III-A, this is a centralized task allocation scheme which
assumes perfect non-causal knowledge about the amount of
harvested energy, communication channel conditions and the
future tasks and their requirements. Although unrealistic in
practice, this scheme provides the performance upper bound.
Myopically optimal task participation (MOTP): This ap-
proach assumes that each MU has the perfect causal knowl-
edge about the communication channel coefficients. Based
on this, each MU k makes an informed decision on task
proposal and transmit power selection. Thus, this scheme
makes myopically optimal decisions for the respective time
step without any concern about future consequences.

Always participating scheme (APS): In this scheme, each
MU k proposes to all the tasks. The MUs only focus on
maximizing the short term payments without focusing on the
long term consequences.
Reinforcement Learning with Independent Agents (RLIA):
This is a DRL scheme based on PPO where each MU k
improves its own task selection policy without sharing any
knowledge with other MUs.

In Fig. 2, we compare the performance in terms of average
weighted sum of completed tasks of our proposed solution
with the above mentioned reference schemes. Since OTA is
a centralized task allocation scheme, it provides the upper
bound by performing 58.55 weighted tasks on average. In
comparison, MOTP performs on 44.57 weighted tasks. Our
proposed FDRL-PPO scheme performs 42.44 weighted tasks
which is approx. 95.22% of the MOTP performance and
approx. 72.48% of the OTA performance. Note that the FDRL-
PPO has no requirement of causal or non-causal knowledge
about the amounts of harvested energy, communication chan-
nel conditions and future tasks. The RLIA performs 28.57
weighted tasks on average and finally APS performs 16.81
weighted tasks on average. With this, FDRL-PPO outperforms
RLIA and APS by at least 48.54% and 152.46% , respectively.
This is because with FDRL-PPO, each MU learns about its
task participation decision the efforts required to perform the
task. It also learns about the consequences of the current task
participation decisions on future states.

In Fig. 3, the performance in terms of average weighted sum
of completed tasks of the FDRL-PPO is compared with the
referenced schemes by varying the number of associated MUs
in the MCS scenario. We omit the OTA in this study since
it is not scalable for higher number of MUs. For the rest of
the schemes, we see improvement in the performance as the
number of MUs increase. This is expected since now there are
more MUs who can potentially perform the tasks with different
difficulties. The only limiting factor is the budget. Due to this,
the MCSP only selects the MUs according to (6). However,
it is important to note that as K increases, the performance
of the FDRL-PPO converges to the performance of MOTP.
For K = 15, the FDRL-PPO performs only 1% lower than
the MOTP. This shows that the FDRL-PPO is robust and is
scalable to higher number of MUs.

In Fig. 4, we compare the performances in terms of average
weighted sum of completed tasks of the considered schemes
by varying the task budget coefficient η. Due to this, the task
budget Z also varies. The performance of OTA increases with
increase in task budget Z, because it has more budget to
also incorporate expensive MUs and perform tasks. On the
contrary, MOTP and APS exhibit similar downward trend in
performance as Z increases. This is because more MUs can
be selected to perform tasks and they eventually exhaust their
batteries by performing tasks. However, FDRL-PPO improves
its performance slightly as the budget increases which show
trend similar to that of OTA. For higher budget, FDRL-PPO
performs only 5.76% lower than the MOTP.
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Fig. 4. Average weighted sum of completed tasks
vs. task budget coefficient η

TABLE I
SIMULATION PARAMETERS

Parameter Value
Total time steps T 100 time steps
Duration of one time step t = τ int 1 s

Number of available MUs K [5, 15]
MU distances to MCSP [dmin, dmax] [200, 1000]m

Battery capacity Bmax 800mWs

Maximum harvested energy Eharv
max per t 5% of Bmax

Total Bandwidth W per MU k 1MHz

Noise power σ2 10−16 W

Transmit power ptxmax of sensor k 200mW

Channel gain |hk,t|2 ∼ d−3 (Urban scenario)
Sensing task size M [1− 7] Mbit

Deadline τdl Uniform in [ τ
int

2
, τ int]s

Task Budget Z ηV

VI. CONCLUSION

In this work, we studied the task participation problem in
an budgeted and EH MCS scenario to maximize the average
weighted sum of completed tasks in a finite time horizon.
By considering their own preferences, the MUs make task
participation decisions, i.e., they decide whether or not to
propose to participate in a task and select their transmit power,
which ultimately reflects in their task execution efforts. We
showed that optimization-based approaches require at least
causal knowledge about the amount of harvested energy,
wireless communication channel conditions and future tasks’
requirements. However, it is unrealistic to assume the availabil-
ity of such knowledge at the MCSP in practical MCS systems.
To this aim, we proposed a FDRL-PPO approach to solve
the task participation problem from the MU’s perspective and
without this (non)-causal knowledge. By utilizing federated
learning, FDRL-PPO improves the collective performance of
all MUs. Specifically, the MUs share their learnt models
about their own task participation strategies. As a result,
the MCS system becomes robust to MU dropouts and new
connections. Simulation results showed that FDRL-PPO per-
forms only 4.78% lower than the myopically optimal strat-
egy which has un-realistic causal knowledge about the MCS
system. Moreover, FDRL-PPO outperforms traditional multi-
agent reinforcement learning-based schemes with independent
agents and the always participating scheme by 48.54% and
152.46%, respectively. In a nutshell, this work presented a
scalable, privacy-preserving, and adaptable solution for the

decentralized task participation problem in MCS, contributing
to the advancement of efficient and effective MCS systems.
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