
Mahdi Chehimi, Bernd Simon, Walid Saad, Anja Klein, Don Towsley and Mérouane Debbah
”Matching Game for Optimized Association in Quantum Communication Networks”, in
Proceedings of the IEEE Global Communications Conference - (IEEE GLOBECOM 2023),
December 2023.

©2023 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this works must be obtained from the IEEE.



Matching Game for Optimized Association in
Quantum Communication Networks

Mahdi Chehimi1, Bernd Simon3, Walid Saad1,2, Anja Klein3, Don Towsley4, Mérouane Debbah5
1Wireless@VT, Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA USA

2Cyber Security Systems and Applied AI Research Center, Lebanese American University, Lebanon
3Communication Engineering Lab, Technische Universität Darmstadt, Darmstadt, Germany

4College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, MA USA
5Electrical Engineering and Computer Science Department, Khalifa University of Science and Technology, Abu Dhabi, UAE
Emails: {mahdic,walids}@vt.edu, {b.simon, a.klein}@nt.tu-darmstadt.de, towsley@cs.umass.edu, merouane.debbah@ku.ac.ae

Abstract—Enabling quantum switches (QSs) to serve requests
submitted by quantum end nodes in quantum communica-
tion networks (QCNs) is a challenging problem due to the
heterogeneous fidelity requirements of the submitted requests
and the limited resources of the QCN. Effectively determining
which requests are served by a given QS is fundamental to
foster developments in practical QCN applications, like quantum
data centers. However, the state-of-the-art on QS operation has
overlooked this association problem, and it mainly focused on
QCNs with a single QS. In this paper, the request-QS association
problem in QCNs is formulated as a matching game that
captures the limited QCN resources, heterogeneous application-
specific fidelity requirements, and scheduling of the different
QS operations. To solve this game, a swap-stable request-QS
association (RQSA) algorithm is proposed while considering
partial QCN information availability. Extensive simulations are
conducted to validate the effectiveness of the proposed RQSA
algorithm. Simulation results show that the proposed RQSA
algorithm achieves a near-optimal (within 5%) performance in
terms of the percentage of served requests and overall achieved
fidelity, while outperforming benchmark greedy solutions by over
13%. Moreover, the proposed RQSA algorithm is shown to be
scalable and maintain its near-optimal performance even when
the size of the QCN increases.

I. INTRODUCTION

Quantum communication networks (QCNs) are seen as
a pillar of future communication technologies due to their
advantages in terms of security, sensing capabilities, and
computational powers. QCNs rely on the creation and distri-
bution of Einstein-Podolsky-Rosen (EPR) pairs of entangled
quantum states between distant QCN nodes [1]. Each EPR pair
consists of two inherently-correlated photons, each of which
is transferred to a QCN node to establish an end-to-end (e2e)
entangled connection. However, the fragile nature of entangled
photons results in exponential losses that increase with the
travelled distance over quantum channels, e.g., optical fiber.
As such, intermediate quantum repeater nodes are needed to
split long distances into shorter segments by performing en-
tanglement swapping on entangled photons to connect distant
QCN nodes [2]. When such repeaters share multiple EPR pairs
with several QCN nodes to create e2e connections, they are
called quantum switches (QSs).
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In practice, a QS has a limited-capacity quantum memory
for photon storage. A heralding station is responsible for
generating EPR pairs and distributing each pair between the
QS and other QCN nodes to create link-level connections
(LLCs). The fidelity, or quality, of an LLC can be enhanced
by performing entanglement distillation before swapping two
LLCs to establish an e2e connection [3]. Practical applications,
like quantum data centers and quantum cloud networks, en-
compass QCN setups with multiple QSs connecting several
end-node quantum devices. The design of such multiple-
QS QCNs requires overcoming many challenges such as
the limited storage capacity of QSs, imperfections associated
with EPR generation and transmission, the need to schedule
the different QS operations (i.e., entanglement swapping and
distillation), and the presence of heterogeneous application-
specific minimum fidelity requirements.

Multiple prior works [4]–[10] attempted to address some of
the aforementioned challenges, and those works can be divided
into three main types. First, some works, like [4], considered
a QS-based multi-hop QCN and performed entanglement pro-
visioning and path selection to maximize throughput. Second,
prior works, such as [5], considered routing EPR pairs over
several QCN paths to create e2e connections. The last type,
which is the most relevant to our work, considered star-shaped
QCNs, where several nodes are connected to a single QS
through EPR pairs [6]–[10]. For instance, the work in [6] was
the first to consider aggregate QS capacity and analytically
analyze its stability. However, almost-perfect conditions were
assumed in [6]. Additionally, the work in [7] considered
a QCN with a QS serving requests having minimum fi-
delity constraints. However, entanglement distillation was not
considered in [7]. Meanwhile, the work in [8] studied QS
stability and swap scheduling. However, the authors in [8] did
not include entanglement distillation and assumed an infinite
lifetime of EPR pairs. Moreover, the work in [9] analyzed the
capacity regions and stability of a single QS and scheduled
swapping/distillation operations to satisfy minimum fidelity
requirements while considering noisy gates and measurements.
However, [9] considered a homogeneous fidelity for all link-
level EPR pairs. Finally, the authors in [10] proposed a
memory allocation policy for a constrained QS operation in a
star-shaped QCN. However, the model proposed in [10] did
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Fig. 1. Studied QCN model for the requests-QSs association problem.

not account for fidelity requirements of both link-level and e2e
connections and did not schedule distillation operations.

Furthermore, these prior works [6]–[10] focused on a single
QS handling all e2e requests and did not consider multiple QSs
connected to several end nodes with heterogeneous resources
and fidelity constraints. In such a QCN setup (see Fig. 1),
it is essential to associate each request with the QS that
optimizes its fidelity. This request-QS association problem,
which is essential for designing quantum data centers, has been
overlooked in prior works. Accordingly, there is a need for a
thorough investigation of the request-QS association problem
in QCNs with multiple QSs while taking into consideration
the scheduling of QS entanglement swapping/distillation op-
erations, memory limitations, and performance requirements.

The main contribution of this work is a novel matching-
based framework for optimizing request-QS association in
QCNs with multiple QSs, possessing heterogeneous resources,
that satisfy QCN users’ performance requirements while con-
sidering practical constraints of QCN elements. To the best of
our knowledge, this is the first work to explore this research
area, and therefore, we make the following key contributions:
• We propose the first holistic analysis of the request-

QS association problem in QCNs under limited resource
constraints and heterogeneous fidelity requirements.

• We formulate the request-QS association problem as
a matching game [11] where both requests and QSs
rank each other based on fidelity-maximizing preferences.
This novel matching approach enables us to solve the
considered association problem without requiring full
knowledge of QCN information.

• We propose a novel request-QS association (RQSA) al-
gorithm based on swap-matching [12] to solve the for-
mulated matching game while guaranteeing convergence
under partial QCN information availability.

• Simulation results show that our RQSA algorithm is
scalable and achieves a near-optimal performance within
5% of the optimal solution in terms of served requests
and overall served e2e fidelity.

II. SYSTEM MODEL

Consider a QCN composed of a set Q of Q QSs connected
to a set of end nodes through link-level EPR pairs. The end

nodes are split into transmitting (Tx) and receiving (Rx) nodes,
where requests for e2e connections are sent from Tx nodes to
the QSs (see Fig. 1). Moreover, K denotes the set of K Tx
nodes, and M the set of M Rx nodes.

The operation of the QCN occurs in a time-slotted manner.
Prior to each time slot, heralding stations installed between
QSs and end nodes attempt to create n link-level EPR pairs
to connect every QS q ∈ Q to every Tx (and Rx) node,
k ∈ K (and m ∈ M), respectively, with a probability of
success pk,q (and pq,m) for each pair that depends on the
corresponding link length. Accordingly, the link-level EPR
generation process between a QS and a Tx (or Rx) node
follows a binomial distribution with parameters n and pk,q
(or pq,m) [9]. Thus, each QS is connected to all Tx nodes
through NTx

k,q successfully-generated link-level EPR pairs each
having a fidelity of F Tx

k,q . Similarly, every QS is linked to each
Rx node through NRx

q,m successfully-generated link-level EPR
pairs each of fidelity FRx

q,m. The EPR pairs are then stored in
quantum memories at both the QSs and end nodes. Those pairs
are assumed to remain coherent and maintain their fidelities
for one time slot, before being discarded.

At the beginning of each time slot, Tx nodes submit a set
R of R requests to the QSs. Each request is represented as a
tuple, ri,jl = (i, j, Fmin

i,j ), where l ∈ {1, 2, ..., R}, i ∈ K, and
j ∈ M. Here, rk,ml represents a request by Tx node k ∈ K to
establish a single e2e EPR pair with Rx node m ∈ M with a
minimum fidelity of Fmin

k,m. In addition, each submitted request
must be served, if feasible, during its submission time slot, or
be discarded. We assume that, during each time slot, every Tx
node may submit multiple repeated requests that are identical
and have exactly the same required minimum fidelity, since
they intend to serve the same application.

In our model, we consider that only partial QCN infor-
mation is available to the Tx nodes when submitting their
requests. In particular, each Tx node has access to only the
information related to its link-level EPR pairs with every QS.
Moreover, the QSs publicly announce information about their
link-level EPR pairs with every Rx node to the Tx nodes.

Each QS q ∈ Q can perform two distinct quantum oper-
ations: 1) entanglement swapping, to connect a Tx node to
an Rx node, and 2) entanglement distillation to enhance the
fidelity of link-level EPR pairs. Every link-level EPR pair is
represented by a Werner state ρ = W |ψ00⟩ ⟨ψ00| + 1−W

4 Π,
where W is the Werner parameter that directly affects the
fidelity of those pairs, which is given as: F = 3W+1

4 [13].
When a QS q ∈ Q swaps two link-level EPR pairs, one

with Tx node k ∈ K having fidelity F Tx
k,q , and the other with

Rx node m ∈ M having fidelity FRx
q,m, the resulting e2e EPR

pair has a fidelity given by [2]:

S(FTx
k,q , F

Rx
q,m) =

1

4
+

3

4

(
4FTx

k,q − 1

3

)(
4FRx

q,m − 1

3

)
. (1)

We adopt the Oxford entanglement distillation protocol [3]
for performing entanglement distillation of two link-level EPR
pairs. According to this protocol, two identical EPR pairs with
initial fidelity Finitial can be distilled into one EPR pair having



a higher fidelity given by [3]:

D(Finitial) =
(Finitial)

2 + ( 1−Finitial
3

)2

(Finitial)
2 + 2Finitial(

1−Finitial
3

) + 5( 1−Finitial
3

)2
. (2)

To simplify the analysis, a QS is assumed to perform
at most one distillation operation for each link-level EPR
pair. Also, if performed, distillation is considered to always
precede entanglement swapping [9]. Accordingly, there are
four possible actions regarding the scheduling of the en-
tanglement swapping/distillation operations to handle each
submitted request that every QS can take.1 The action choice
directly affects the fidelities of the resulting e2e EPR pairs
and the number of available link-level EPR pairs in quantum
memories. Here, we introduce αTx

j and αRx
j to denote the

number of utilized link-level EPR pairs from both Tx and Rx
nodes’ memories, respectively, as a result of each possible QS
action j ∈ {1, 2, 3, 4}. The four considered actions and their
corresponding impacts are:

1) Direct entanglement swapping: Swap one link-level
EPR pair connected to Tx node k ∈ K with one link-level EPR
pair connected to Rx node m ∈ M. When QS q ∈ Q performs
this action to serve request rk,ml , the fidelity of the resulting
e2e EPR pair will be F e2e

q,k,m,1 = S(F Tx
k,q, F

Rx
q,m). Consequently,

the number of link-level EPR pairs between QS q ∈ Q and
Tx node k ∈ K and Rx node m ∈ M, i.e., NTx

k,q and NRx
q,m,

respectively, are both reduced by 1. The number of utilized
link-level EPR pairs associated with the direct entanglement
swapping action are given by αTx

1 = αRx
1 = 1.

2) Tx distillation, then entanglement swapping: Distill two
link-level EPR pairs connected to the Tx node k ∈ K, then
swap the distilled pair with an EPR pair connected to the Rx
node m ∈ M. When QS q ∈ Q performs this action to serve
a request rk,ml , the fidelity of the resulting e2e EPR pair is
F e2e
q,k,m,2 = S(D(F Tx

k,q), F
Rx
q,m). Consequently, the number of

link-level EPR pairs between QS q ∈ Q and Tx node k ∈ K
is reduced by 2, while the number of link-level EPR pairs
between QS q ∈ Q and Rx node m ∈ M is reduced by
1, as the entanglement distillation utilizes two link-level EPR
pairs. The number of utilized link-level EPR pairs associated
with the Tx distillation, then entanglement swapping action
are αTx

2 = 2, and αRx
2 = 1.

3) Rx distillation, then entanglement swapping: Distill two
link-level EPR pairs connected to Rx node m ∈ M, then
swap the distilled pair with an EPR pair connected to Tx
node k ∈ K. When QS q ∈ Q performs this action to serve
request rk,ml , the fidelity of the resulting e2e EPR pair is
F e2e
q,k,m,3 = S(F Tx

k,q, D(FRx
q,m)). Consequently, the number of

link-level EPR pairs between QS q and Tx node k is reduced
by 1, while the number of link-level EPR pairs between QS
q ∈ Q and Rx node m is reduced by 2. The number of utilized
link-level EPR pairs associated with the Rx distillation, then
entanglement swapping action are αTx

3 = 1, and αRx
3 = 2.

4) Tx & Rx distillation, then entanglement swapping:
Distill two link-level EPR pairs connected to Tx node k ∈ K,
and simultaneously distill two EPR pairs connected to Rx node

1A higher number of possible actions can be easily integrated into our
model by allowing QSs to perform more distillation operations.

m ∈ M, then swap the two distilled pairs. When QS q ∈ Q
performs this action to serve request rk,ml , the fidelity of the
resulting e2e EPR pair is F e2e

q,k,m,4 = S(D(F Tx
k,q), D(FRx

q,m)).
Consequently, the number of link-level EPR pairs between QS
q and Tx node k and Rx node m are both reduced by 2. The
numbers of utilized link-level EPR pairs associated with the
Tx & Rx distillation, then entanglement swapping action are
αTx
4 = αRx

4 = 2.
To simplify notation, we introduce the vectors αTx =

[1, 2, 1, 2]T and αRx = [1, 1, 2, 2]T of utilized link-level EPR
pairs that result from the four possible QS actions. Next, we
formulate the request-QS association problem and propose a
matching game formulation [14].

III. REQUEST-QS ASSOCIATION AS A MATCHING GAME

A. Request-QS Association Problem
In the request-QS association problem, a submitted request

rk,ml ∈ R must be associated, if feasible, with at most one
QS q ∈ Q, or be discarded. This QS performs one of the
four aforementioned actions to serve the request during a time
slot. We define matching η as an association between QSs and
requests. The association between a submitted request rk,ml

and a QS q is denoted as (rk,ml , q) ∈ η. Each QS q ∈ Q
can serve multiple requests. We define Rη

q ⊆ R as the set
of requests associated with QS q in matching η. As multiple
requests are associated with each QS, we have a many-to-one
matching problem.

Each submitted request must be served with the highest
fidelity possible. Therefore, we define the utility of a submitted
request rk,ml ∈ R when associated with QS q ∈ Q as the
fidelity of its generated e2e EPR pair:

Ul(q) = F e2e
q,k,m,1 = S(F Tx

k,q, F
Rx
q,m), (3)

where k ∈ K and m ∈ M are the corresponding Tx/Rx
nodes, respectively, in rk,ml = (k,m, Fmin

k,m). (3) considers
the worst case for QS q, which corresponds to taking the
direct entanglement swap action without any distillation, since
that action yields the lowest fidelity of the resulting e2e EPR
pair. This worst-case assumption stems from the fact that the
request (i.e., the end node) does not know which action will
be taken by its prospective QS q.

Similarly, each QS aims to serve each request with the
highest fidelity possible. In matching η, for each individual
request rk,ml ∈ R served by QS q ∈ Q, the respective QS
utility for that request is the resulting e2e EPR pair’s fidelity:

Ũq(r
k,m
l ) =

{
F e2e
q,k,m,jq,k,m(η), if F e2e

q,k,m,jq,k,m(η) ≥ Fmin
k,m

−∞, else.
(4)

In (4), jq,k,m(η) captures the fact that the fidelity of the
resulting e2e EPR pair depends on the action taken by the
QS. For instance, jq,k,m(η) ∈ {1, 2, 3, 4} represents the action
taken by the QS to serve request rk,ml based on matching η.
The second case in the above expression corresponds to the
situation when the QS cannot serve the request because it
cannot provide the request’s minimum fidelity requirement.

Each QS q ∈ Q must decide on the actions that maximize
the fidelity for its associated requests, i.e., maximize (4) for



each request. After the optimal actions are identified, the
overall utility of QS q ∈ Q for its associated set of requests
Rη

q in matching η is the sum of the individual request utilities:

Uq(Rη
q ) =

∑
rk,m
l ∈Rη

q

Ũq(r
k,m
l ), (5)

which captures the fact that the goal of each QS q ∈ Q is
to maximize the overall delivered e2e fidelities for the set of
associated requests Rη

q .
The process of selecting the actions to serve the associ-

ated requests in Rη
q by QS q ∈ Q can be formulated as

an optimization problem. To do so, we define Aq as the
actions matrix for QS q, which includes all possible actions
for all its associated requests rk,ml ∈ Rη

q . In particular,
Aq = [a1,a2,a3,a4], where each vector aj is of dimension∣∣Rη

q

∣∣× 1, and each entry al,j of aj , given l ∈ {1, 2, ...,
∣∣Rη

q

∣∣}
and j ∈ {1, 2, 3, 4}, corresponds to a request rk,ml ∈ Rη

q . Each
element al,j is binary, where it takes a value of one when
action j is performed to serve request rk,ml . The dimension of
Aq is

∣∣Rη
q

∣∣×4. Accordingly, the action-selection optimization
problem for QS q ∈ Q is:

P1 : max
Aq

∑
r
k,m
l

∈Rη
q

Uq(r
k,m
l ) (6a)

s.t.
∑

i:ri=r
k,m
i ,∀m∈Mq

Aq ·αTx ≤ NTx
k,q, ∀k ∈ Kq, (6b)

∑
i:ri=r

k,m
i ,∀k∈Kq

Aq ·αRx ≤ NRx
q,m, ∀m ∈ Mq, (6c)

where the objective function corresponds to the overall utility
achieved by QS q ∈ Q from all its associated requests Rη

q .
Constraint (6b) ensures that the number of used link-level EPR
pairs between the QS and Tx node k ∈ Kq does not exceed
the number of available link-level EPR pairs between them,
NTx

k,q , ∀k, q ∈ Kq,Q. Similarly, constraint (6c) ensures that the
number of consumed link-level EPR pairs between the the QS
and Rx node m ∈ Mq does not exceed the number of available
link-level EPR pairs between them, NRx

q,m, ∀q,m ∈ Q,Mq .
Solving the request-QS association problem is challenging,

because it must factor in the limited number of available
link-level EPR pairs of the Tx and Rx nodes and the QSs.
Also, each QS must schedule its actions such that the max-
imum number of submitted requests in the QCN is served
during each time step. Solving the request-QS association
problem using classical optimization techniques is impractical
because the number of possible combinations of associated
requests per QS is 2R, i.e., the complexity grows exponentially
with R. Accordingly, we propose a computationally efficient,
decentralized approach that accounts for the partial QCN
information availability.
B. Matching Game Formulation

Matching theory [14] is a powerful tool that has been
adopted to solve several complex communication network
problems [15]. Here, we leverage matching theory to formulate
the request-QS association problem as a matching game so
as to overcome its exponentially growing complexity. Note

that our formulation differs from prior works on matching
games for classical wireless systems [16] in the fact that
we have to consider quantum-specific constraints regarding
the fidelity of EPR pairs, limited quantum memory, and
heterogeneous minimum fidelity requirements. Formally, the
proposed matching game is defined as follows.

Definition 1 (Matching game). A matching game is defined
by two sets of matching parties (R,Q) and two preference re-
lations ≻Req

r , ≻QS
q allowing each submitted request rk,ml ∈ R

to rank the QSs and each QS q ∈ Q to rank sets of associated
requests.

For any request rk,ml , a preference relation ≻Req
r is defined

over the set of QSs Q such that, for any two QSs, q, q′ ∈ Q,
we have:

q ≻Req
r q′ ⇔ Ul(q) > Ul(q

′), (7)
which means that request rk,ml prefers QS q ∈ Q over QS
q′ ∈ Q whenever the utility (3) associated with q ∈ Q is
higher than the utility associated with q′.

Similar to the case of requests, for any QS q ∈ Q, we
define a preference relation ≻QS

q over the set of associated
requests Rη

q . For any two matchings η, η′, the QS ranks the
corresponding sets of associated requests Rη

q in matching η

and Rη′

q in matching η′ as follows:

Rη
q ≻QS

q Rη′

q ⇔ Uq(Rη
q ) > Uq(Rη′

q ), (8)
which means that the QS q ∈ Q prefers the set Rη

q of
associated requests in matching η over the set Rη′

q in matching
η′ whenever the overall utility (5) associated with Rη

q is higher
than the overall utility associated with Rη′

q .

C. Proposed Solution and Algorithm
In this section we propose an algorithm to find a stable

matching η. Classical definitions of stability [11], [14] in
matching games, which rely on preferences of individual
matching parties, cannot be applied to our proposed match-
ing formulation. This is because the preference relations (8)
require QSs to rank sets of associated requests instead of
individual requests. To overcome this challenge, we adopt
the definition of swap stability [12], which means that no
submitted request or QS can increase its utility by swapping
its current matching partner.2 The foundation for the analysis
of swap stability is a swap matching, which simply results
from two requests r and r′ exchanging their respective as-
sociated QSs q and q′ in η. Formally, given a matching η,
two submitted requests r, r′ ∈ R and two QSs q, q′ ∈ Q
with (r, q), (r′, q′) ∈ η, a swap matching is defined as
ηqr,r′ = η \ {(r, q), (r′, q′)} ∪ {(r′, q), (r, q′)}. Accordingly,
swap stability is defined as:

Definition 2 (Swap stability). A matching η is said to be swap
stable if no swap matching η′ = ηqr,r′ exists such that:
(i) Request r and r′ prefer the QSs associated in swap
matching η′ over the QSs associated in η. Formally, both prefer
to swap their respective QSs q′ ≻Req

r q and q ≻Req
r′ q′, and

2Note that swap stability is not to be confused with the entanglement swap
operation that a QS can perform on two link-level EPR pairs.



Algorithm 1 Request-QS Association (RQSA)
Require: Set of requests R, set of QSs Q.

Phase 1: Initialization Phase
1: Each request rk,m

l determines its worst-case fidelities from (7)
2: Match each request rk,m

l to the QS q with the highest worst-case fidelity as long
as constraints (6b) and (6c) are satisfied.
Phase 2: Swap Matching Phase

3: repeat
4: for all r ∈ R do
5: Select a QS q′ that yields a higher utility then the currently matched QS q
6: for all Requests r′ matched to QS q′, i.e., r′ ∈ Rη

q′ do
7: QS q′ identifies a request r′ that shares the same Tx or Rx node with

request r which is not matched to q′

8: if q ≻Req
r′ q′ and q′ ≻Req

r q then
9: Construct the swap matching η′ ← ηq

r,r′

10: if Rη′
q ≻

QS
q Rη

q and Rη′

q′ ≻
QS

q′ R
η

q′ and (6b),(6c) are satisfied
then

11: The swap of r′ and r is approved, i.e., η ← η′

12: else
13: The swap of r′ and r is denied.
14: end if
15: end if
16: end for
17: end for
18: until no more pairs of requests r, r′ to swap are found
19: All QSs q ∈ Q solve P1 from (6a) to determine the action for each request

Stage 3: e2e EPR Pair Generation Phase
20: Each QS performs its respective actions to create e2e EPR pairs according to η

(ii) QS q ∈ Q and q′ prefer the requests associated in
swap matching η′ over the requests associated in η. Formally,
Rη′

q ≻QS
q Rη

q and Rη′

q ≻QS
q′ Rη

q′ .

To solve the proposed matching game, i.e. finding a swap
stable matching η, a key challenge is that the preferences (8)
of the QSs do not rank individual requests, but rather sets of
requests. Accordingly, a QS q ∈ Q cannot decide whether
to accept or defer an individual request. Instead, the QS has
to consider all its other associated requests in Rη

q . Further-
more, instead of having a fixed quota at each QS, we must
consider the limited quantum memory of each QS given by
constraints (6b) and (6c). Therefore, the well-known deferred
acceptance algorithm [14] cannot be applied to this game.

To overcome these challenges, we propose a novel request-
QS association (RQSA) swap matching algorithm, which is
shown in Algorithm 1. The matching is initialized by a greedy
strategy, i.e., all submitted requests are matched to QSs with
the highest request utility (3) as long as constraints (6b)
and (6c) are satisfied for each QS (lines 1 and 2). After
initialization, the swap matching phase begins. The preference
list of each request r is calculated and a more preferred QS
q′ than its currently matched QS q is identified (line 5). QS q′

identifies a request r′ from its associated requests that shares
the same Tx or Rx node with another request r not associated
to q′ (line 7). Then swap matching ηqr,r′ is considered, wherein
r will be served by q′ instead of q ∈ Q and r′ will be served
by q ∈ Q instead of q′ (line 8). The swap is performed when
the requests r and r′ and QSs q and q′ prefer the swap, with at
least one participant strictly preferring the swap matching over
its current matching (line 7-16). This procedure is repeated
until no more swaps can be found in the network (line 17). In
the last stage, the e2e EPR pair generation phase, the QSs solve
optimization problem P1, identify and perform the actions to
serve their associated requests (lines 18 and 19). The stability

of the resulting matching η follows from:
Lemma 1. Upon convergence, RQSA reaches a swap stable
matching according to Definition 2.

Proof: To prove swap stability upon convergence, we have
to show that no pair of submitted requests r and r′ exists with
their associated QSs q and q′, such that a swap of r and r′ is
preferred by the submitted requests and QSs. RQSA checks for
all combinations of r, r′, q and q′, whether a swap is preferred
by all requests and QSs. If such a combination of r, r′, q and
q′ is found, the swap is performed. This procedure is repeated
until no more swaps are performed. Therefore, after the swap
matching phase, the resulting matching η is swap stable as no
more pairs of submitted requests remain that would prefer to
be served by another QS.3

IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, we define the following default setup
QCN parameters: 1) The number of Tx nodes is K = 5,
the number of Rx nodes is M = 5, while the number of
QSs is Q = 3; 2) Heralding stations perform n = 10
link-level EPR pair generation attempts, and the numbers of
successfully-generated pairs in every time slot are binomial
random variables NTx

k,q ∼ B(n = 10, p = pk,q) and NRx
q,m ∼

B(n = 10, p = pq,m) (see Sec. II). The probability of success
is pk,q = e−dk,q/L0 , for links between a QS q ∈ Q and a
Tx node k ∈ K, where L0 = 0.54 km is the optical fiber’s
attenuation coefficient [17], and dk,q is the length of those
links. Similarly, pq,m = e−dq,m/L0 for links between a QS
q and an Rx node m ∈ M. The lengths dk,q and dq,m are
sampled from a uniform distribution between 100m and 1 km,
U(0.1, 1); 3) Each request has a different minimum required fi-
delity Fmin

k,m based on its intended quantum application.4 Thus,
we randomly sample such values from a uniform distribution
U(0.5, 0.8); 4) Initial fidelities FTx

k,q and FRx
q,m of link-level

EPR pairs depend on the hardware, so they are sampled from
a uniform distribution U(0.83, 0.99) [17]; 5) The number of
submitted requests lies in the range R ∈ [0, 40]. We perform
100 independent simulation runs wherein all aforementioned
random variables are drawn from their respective distributions.
Each run analyzes a single time slot where Tx nodes submit
a set of requests, that we solve the request-QS association
problem for. Unless stated otherwise, these default parameters
are used in all simulation experiments.

We benchmark the proposed RQSA algorithm against the
following baselines: 1) Optimal, which formulates the request-
QS association problem as an integer optimization problem
solved using an advanced solver [18]. This requires complete
QCN information that is impractical due to classical commu-
nication delay, 2) Greedy algorithm, which selects the QS with
the highest worst-case fidelity to serve a request, and when it
lacks enough link-level EPR pairs, the next-best QS is chosen,
and 3) Random algorithm, which randomly associates each
request with a QS. We discuss the experimental results next.

3Regarding the proof of convergence, we refer the reader to a general proof
for swap matching algorithms in [12] due to space limitations.

4Particularly, distillation protocols require a minimum fidelity of 0.5, while
0.8 is a typical value for quantum key distribution applications [9].
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1) Impact of Number of Requests on Served Requests: First,
we analyze, the performance as the number R of submitted
requests varies, and compare the percentage of served requests
by the different algorithms. Corresponding results are shown
in Fig. 2, where we observe that RQSA is within 5% of the
optimal solution in terms of served requests. Moreover, RQSA
achieves superior performance compared to both greedy and
random algorithms, and the performance gap between the
algorithms increases as the number of requests increases. For
instance, when the number of submitted requests is 40, RQSA
serves around 13% and 22% more requests than the greedy and
random algorithms, respectively. From Fig. 2, we also observe
that the optimal percentage of served requests decreases as
the number of requests increases. This is due to limited QCN
resources, namely link-level Tx/Rx EPR pairs, which leads to
many submitted requests becoming infeasible as more requests
are submitted.

2) Impact of Number of Requests on Overall QS Utility:
Next, we show the effect of R on the overall achieved QSs’
utility, i.e., sum of served e2e fidelities, in Fig. 3. We observe
from Fig. 3 that RQSA achieves near-optimal performance,
even for large R, e.g., R = 40. In such cases, RQSA achieves
a performance within 5% of the optimal overall utility, unlike
the greedy and random algorithms that start to diverge from
the optimal solution as R becomes large. Note that, in contrast
to the optimal solution algorithm, RQSA requires significantly
smaller run time, and does not require full QCN information
availability while being scalable.

3) Impact of QCN Size on Performance: Finally, in Fig. 4,
we analyze the scalability of RQSA by showing the percentage
of served requests as R varies while considering three different
QCN sizes. In particular, we consider the cases in which K >
M , K = M , and K < M for a fixed number of QSs Q =
3. From Fig. 4, for small QCNs, e.g., K = 3, we observe
that a small number of Tx nodes imposes a bottleneck on
the maximum number of served requests, since the number of
available link-level EPR pairs becomes insufficient to satisfy
the increased number of requests. Additionally, we observe
from Fig. 4 that RQSA is scalable across different (small and
large) QCN sizes, and it achieves a near-optimal performance,
that is within 4% of the optimal solution.

V. CONCLUSION

In this paper, we have studied the problem of requests-QSs
association in QCNs with multiple QSs, which is crucial for

QCN applications like quantum data centers. To develop a
practical solution and overcome the challenges of partial in-
formation and the combinatorial complexity of the association
problem, we have formulated the problem as a matching game.
The proposed formulation takes into account practical QCN
considerations such as limited memory capacity, heteroge-
neous fidelity requirements, and scheduling of QS operations.
Moreover, we have developed a novel swap-matching based
RQSA algorithm to solve the matching game while achieving
stability. Simulation results show that the proposed approach
is scalable and achieves a near-optimal performance.
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