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AbstractÐMobile crowdsensing (MCS) is a novel approach
to increase the coverage, lower the costs, and increase the
accuracy of sensing data. Its main idea is to collect sensor
data using mobile units (MUs). The sensing is controlled by a
mobile crowdsensing platform (MCSP) through the assignment
of delay-sensitive sensing tasks to the MUs. Although promising,
research effort in MCS is still needed to find task assignment
solutions that maximize the coverage while considering the
cost incurred by the MCSPs, the preferences of the MUs and
the limited communication resources available. Specifically, we
identify two main challenges: (i) A task assignment problem
which incorporates the MCSP’s utility and the preferences of
the MUs. (ii) An underlying communication resource allocation
problem formulating the requirement of the timely transmission
of sensing results given the limited communication resources.
To address these challenges, we propose a novel two-stage
matching algorithm. In the first stage, potential MU-task pairs
are constructed considering the preferences of the MUs and the
utility of the MCSP. In the second stage, the communication
resource allocation is done based on potential MU-task pairs
from the first stage. Through numerical simulations, we show that
our proposed approach outperforms state-of-the-art methods in
terms of the MCSP’s utility, coverage and MU’s satisfaction.

I. INTRODUCTION

Mobile Crowdsensing (MCS) refers to the collection of

sensor data by a group, or a ªcrowdº, of mobile units

(MUs) [1]. In recent years, MCS has increasingly gained the

attention of the research community and the industry due to the

advantages it brings over traditional wireless sensor networks,

i.e., larger coverage, lower costs and higher accuracy in the

sensed data [2]. Thanks to the heterogeneity of the available

mobile devices, MCS allows the collection of a diverse set

of sensor data such as, measurements of environmental pa-

rameters like temperature, humidity, air quality index; traffic

reports, or personal health-related data. As a consequence,

it can be used in many different application scenarios like

traffic monitoring and dynamic re-routing of the traffic (Waze,

Foursquare), environmental monitoring systems [3], landmark

reconnaissance and identification [4] and health-monitoring

using mobile health applications [5].

In a typical MCS system, the interaction between a data

requester and the MUs is done through a so-called Mobile

Crowdsensing Platform (MCSP). In practice, the data request

is treated by the MCSP as a sensing task which needs to be
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performed by a set of MUs. The MCSP uses a task assign-

ment policy to assign these sensing tasks to suitable MUs.

Selecting suitable MUs requires the consideration of available

communication resources and monetary costs for the MCSP. A

resource allocation is required for the limited communication

resources, e.g. bandwidth, enabling a timely transmission of

the sensed data. Monetary costs are caused by the necessity of

providing incentives to the MUs to participate in the sensing

task. As a result, the task assignment policy must solve the

challenging coverage maximization problem while considering

limited communication resources and monetary costs from the

MCSP’s perspective. Moreover, the MU’s preferences for task

execution should also be considered, as they play a crucial

role in the user participation and satisfaction.

Research efforts have been put to overcome these challenges

separately. In [3], the authors aim at maximizing the coverage

under a budget constraint. They show the problem is NP-hard

and proposed heuristic solutions that favor the allocation of

task according to their deadline or location. A similar problem

is considered in [4], where the authors consider the coverage

quality provided by each user in the selection decision. The

problem of energy minimization given a coverage constraint

is investigated in [6]. To this aim, a framework that saves

communication resources by combining the uploading of

sensor data with the user’s phone calls is proposed. In [7],

the minimization of the user selection cost under a coverage

constraint is studied. For this purpose, the authors consider a

grid map to represent the target sensing area and assume that

the user trajectories are known beforehand. In these works, the

goal is to maximize the coverage under a budget constraint at

the MCSP. However, the MU’s preferences are not included.

In [8], the authors consider a MCS budgeted coverage problem

in which the conflicting monetary interests of the service

requesters and MUs are studied. A bilateral preference-based

stable matching solution is proposed in order to satisfy both

entities. Although in [8] the interests of both, the requesters

and the MUs, are considered, the authors do not take into

account the communication cost associated to the sensing.

In this paper, we investigate the MCS coverage maximiza-

tion problem as an interdependent joint task assignment and

communication resource allocation problem. The considered

sensing tasks have task-specific sizes and deadlines. We in-

clude the MCSP’s and MU’s preferences and formulate a two-

staged matching problem to maximize the coverage. In the

considered reference schemes, authors focus on a spectrum



sensing scenario and propose heuristic approaches for task

assignment such that coverage will be maximized. Specifically,

in [9] a greedy algorithm is proposed in which the users

are selected based on their marginal contributions per cost

value. In [10], the authors use a genetic algorithm to solve

the task assignment problem. In contrast to these schemes,

our proposed algorithm maximizes the coverage, solving the

task assignment and resource allocation problem for deadline

sensitive tasks. The proposed two-stage matching algorithm

aims to find stable pairs of tasks and MUs that maximize the

MCSP utility, i.e. coverage, as well as the MUs utility by

considering their preferences. We consider a realistic scenario

in which communication resources at the access points of the

network are limited. The results of the numerical simulations

indicate that our proposed algorithm based on two-stage

matching outperforms these reference schemes.

The rest of the paper is structured as follows. Section II

introduces the considered system model. In Section III, the

MCP’s and MU’s perspectives are described and the coverage

maximization problem is formulated. The proposed two-stage

matching algorithm is explained in Section IV and the results

of the numerical evaluation are presented in Section V.

Finally, Section VI concludes the paper.

II. SYSTEM MODEL

This work considers the joint problem of task assignment

and wireless bandwidth allocation for coverage maximization

in a multi-task crowdsensing scenario. Two relevant stake-

holders are considered; the MUs and the MCSP. K MUs

are located in the area to be sensed, each equipped with

different sensors to complete sensing tasks. The set of all

K MUs is denoted by K = {1, . . . ,K}. The MCSP offers

N different sensing tasks. Each task n is assumed to require

a different sensor installed at the MUs. Examples of possi-

ble tasks are sensing the temperature, monitoring the traffic

density or discovering locally available network resources,

e.g. licensed or unlicensed spectrum. A sensing task can be

assigned to multiple MUs to measure at different locations in

the considered area. Therefore, the area to be sensed is divided

into two-dimensional grids Gn, one grid for each task n, with

cells gn(i, j) ∈ Gn with the horizontal and vertical indices

i, j ∈ N. To increase the location privacy of the participants,

all MUs only report their current location cell gn(i, j) of grid

Gn to the MCSP and not the exact location in the network. The

MCSP aims to maximize the coverage area of each sensing

task while satisfying a maximum time constraint for the arrival

of the results. For the transmission of the sensing results from

the MUs to the MCSP, M APs are located in the area with a

total bandwidth Bm available at each AP. An overview over

the system model is given in Figure 1.

The set of all sensing tasks is denoted by N . Each MU k

has a set of sensors installed, which enables it to participate

in a subset Nk ⊂ N of tasks. Each MU k can perform

one sensing task from the set Nk. A preference of the MU

k for a sensing task n is defined by a preference relation

⪰MU
k , i.e. if n′ ⪰MU

k n the MU k prefers task n′ over

Fig. 1. Overview of the system model.

task n. A list of all tasks n ∈ Nk ordered according to

the preference relation is called the preference list PLk of

MU k. The preference list PLk can be influenced by the

MCSP by using suitable incentive mechanisms. We consider

two incentive mechanisms: (i) Micropayments [11], where the

MCSP transfers ck,n monetary units, e.g. virtual currency, to

MU k as a reward for the completion of sensing task n. (ii) The

MU itself is a consumer of the crowdsensed data as proposed

in [12]. The MCSP transmits a relevant selection of the sensing

results in grid Gn to the MU as reward for the participation

in task n. In this case, we assume ck,n = 0.

The participation of MU k in task n is stored in a binary

variable xk,n. If MU k participates in task n, xk,n = 1.

Otherwise, xk,n = 0. The sensing task allocation matrix

{xk,n} of all K MUs and N tasks is denoted by X. If MU k

participates in task n, it covers an area of at least one grid cell

gn(i, j). Depending on the sensing task n, a MU might also

cover multiple neighboring cells. A binary coverage variable

δk,n(i, j) is introduced to store the cells gn(i, j) covered in

grid Gn by MU k. δk,n(i, j) = 1 when the sensor of MU k

covers cell gn(i, j) and δk,n(i, j) = 0 if not. The coverage of

a cell gn(i, j) of sensing task n by at least one MU is

∆n(X, i, j) =

{

1, if
∑K

k=0 xk,nδk,n(i, j) > 0

0, else.
(1)

The number of all cells that are covered for sensing task n

can be written as total coverage

Cn(X) =
∑

gn(i,j)∈Gn

∆n(X, i, j). (2)

As not all the cells of the network have the same importance

to the MCSP [9], [10], we introduce a task and cell-specific

utility αn,i,j for each cell gn(i, j). This utility αn,i,j has the

same unit as the payments ck,n to the MUs, i.e. monetary

units. The weighted coverage is given as

Wn(X) =
∑

gn(i,j)∈Gn

αn,i,j ·∆n(X, i, j). (3)

In addition to the sensing task assignment, a communication

resource allocation has to be found. The bandwidth Bm of

each AP m is divided into LAP
m resource blocks with bandwidth



bm = Bm

LAP
m

. Each resource block can be assigned to only one

MU. We introduce the variable yk,m which is set to 1 if MU k

uses AP m and set to 0 otherwise. The AP assignment matrix

{yk,n} is denoted by Y. If MU k participates in sensing task

n, i.e. xk,n = 1, the result with size sn, measured in bits, needs

to be transmitted from the MU k via AP m to the MCSP. The

channel gain between MU k and AP m is denoted by |hk,m|2.

The number of bits transmitted from MU k to AP m is

Γk,m = log2

(

1 +
ptrans|hk,m|2

σ2

)

, (4)

where σ2 is the white Gaussian noise power. The time required

for transmitting the result of sensing task n to AP m is

τ tx
k,m,n =

sn

lk,m,n · bm · Γk,m

, (5)

where lk,m,n denotes the number of resource blocks assigned

to MU k at AP m. To fulfill the time constraint τmax
n for

reporting the result to the MCSP, each MU requires

lk,m,n =

⌈

sn

bm · Γk,m · τmax
n

⌉

(6)

communication resource blocks from the AP m.

The cost for the crowdsensing is the sum of all incentive

payments ck,n to the MUs. The total utility for the MCSP of

sensing task n for a task allocation X is given as

UMCSP
n (X) = Wn(X)−

K
∑

k=0

xk,nck,n. (7)

III. PROBLEM FORMULATION

In this section, we formulate the task assignment and

resource allocation problem considering the perspectives of

the MUs and the MCSP. To establish a beneficial situation

for all stakeholders, a stability condition is formulated. This

stability condition ensures that neither the MCSP nor the MUs

can improve by one-sided deviation from the stable outcome.

A. Different perspectives of the MCSP and the MUs

The MCSP aims to maximize the coverage of the crowd-

sensing. This problem can be written as

max
X,Y

N
∑

n=0

(

Wn(X)−
K
∑

k=0

xk,nck,n

)

. (8)

The objective function (8) is the sum of the utilities of all

sensing tasks n. Furthermore, the formulation in (7) can be

used to introduce a preference list for different task assign-

ments X,X′. The MCSP prefers an allocation X of MUs over

X
′ if the utility (7) is higher for X than for X

′. Formally,

X ⪰MCSP
n X

′ ⇐⇒ UMCSP
n (X) ≥ UMCSP

n (X′).
The sensing task selection of the MU depends on its indi-

vidual preferences. As introduced in Section II, each MU has

preferences ⪰MU
k ranking all sensing tasks n. The preference

list PLk of each MU is constructed as follows: the most

preferred task is a task for which the MU requires the data.

In this case the MU participates without a micropayment, i.e.

ck,n = 0. The remaining tasks are ranked according to the

micropayments ck,n paid by the MCSP. The objective of each

MU is to get a task which is on top of its preference list.

B. Formulation as matching problem

To incorporate the preferences of the MCSP and the MUs,

the problem is formulated as a stable matching problem. In

the following, the sensing task that is assigned to MU k is

denoted by µMU
Task(k), formally µMU

Task(k) = {n ∈ N |xk,n = 1}.

Additionally, all MUs that are assigned to sensing task n are

denoted by µMCSP
Task (n) = {k ∈ K |xk,n = 1}.

We define stability as the absence of a blocking pair [13]:

Definition 1 (Blocking pair). A task assignment X is blocked

by a set of MUs C ⊆ K and a sensing task n ∈ N , if all of

the following conditions hold:

(i) C \ µMCSP
Task (n) ̸= ∅, meaning that not all MUs in C are

already assigned to the sensing task n.

(ii) C ≻MCSP
n µMCSP

Task (n), meaning that sensing task n prefers

the set C over its currently assigned MUs µMCSP
Task (n).

(iii) m ≻MU
k µMU

Task(k), ∀k ∈ C, meaning that all MUs in

C prefer the sensing task n over their current assigned

sensing task µMU
Task(k).

If a blocking pair exists, the MUs in C could change to

their preferred task n and the MCSP’s utility of task n would

increase. Therefore a solution where a blocking pair exists is

considered unstable. The stable matching problem is given by

Find a stable task assignment X (9)

s.t.

K
∑

k=0

N
∑

n=0

xk,myk,mlk,m,n ≤ LAP
m ∀m (9a)

N
∑

n=0

xk,n ≤ 1,

M
∑

m=0

yk,m ≤ 1 ∀k (9b)

M
∑

m=0

yk,m =

N
∑

n=0

xk,n ∀k (9c)

xk,n, yk,m ∈ {0, 1} (9d)

Constraint (9a) considers the limited number of available

communication resource blocks at each AP m. The fact that

each MU can be matched to at most one task and one AP,

is formulated in constraint (9b). Constraint (9c) includes the

requirement that MU k is allocated to an AP if it participates

in sensing task n.

Note that there are 2|K| solutions for C, and |N | combina-

tions to chose n. An exhaustive search algorithm enumerating

all blocking pairs and successively removing them from the

matching has a complexity of O(|N | · 2|K|), which makes it

infeasible for practical applications. For example, if |K| = 200
and |N | = 4, there are over 6.4 · 1060 possible blocking pairs.

Motivated by this high complexity, we propose a two-stage

matching solution in the next section.



Algorithm 1 Proposed Two-Stage Matching

Require: Set of MUs K, sensing tasks N and APs M.

1: Create initial preference lists PL
(0)
k

, i← 0.
2: repeat

3: % Stage 1: Stable Task Assignment (STA)

4: µ
(i)
Task
← STA(K, N , PL

(i)
k

) ▷ Alg. 2

5: K
(i)
Task
← Set of MUs that are matched to a task in µ

(i)
Task

.
6: % Stage 2: Communication Resource Assignment (CRA) for KTask

7: µ
(i)
AP ← CRA(KTask, M, w) ▷ Alg. 3

8: K
(i)
AP ← Set of MUs that are matched to an AP in µ

(i)
AP .

9: PL
(i+1)
k

= PL
(i)
k

▷ Update the preferences
10: for all k ∈ KTask \ KAP do

11: PL
(i+1)
k

← PL
(i)
k
\ µ

(i)
Task

(k)
12: end for

13: i← i+ 1
14: until K

(i)
Task

= K
(i)
AP ▷ Constraint (9c)

15: return µ
(i)
Task

, µ
(i)
AP

IV. TWO-STAGE MATCHING ALGORITHM

A. Two-stage matching

Our proposed algorithm consists of two matching stages:

The stable task assignment and the communication resource

allocation. As both problems are interdependent, they cannot

be solved independently. The intuition for the proposed al-

gorithm is the following. In the first stage the task assign-

ment X is calculated considering the MU’s and the MCSP’s

preferences under the assumption of unlimited communication

resources. This yields the best-case task assignment, which is

infeasible because of the communication constraint (9a). The

next stage solves the association between MUs, which have a

task assigned from stage 1, and APs. MUs which are found

to be suboptimal in stage 2 are removed, and the assigned

task is removed from the respective preference list. In the

next iteration the matching is performed with the updated

preferences. This algorithm is performed iteratively until each

MU which is assigned to a task in stage 1 also is allocated to

communication resources in stage 2.

The two-stage matching procedure is formalized in Algo-

rithm 1. The algorithm requires the set of MUs K, the tasks

N and the APs M. For each MU the preference for each task

is initialized (line 1). The set of MUs and tasks is then given

to the stable task assignment, described in the next section.

B. Stable Task Assignment

The Stable Task Assignment (STA) is presented in Algo-

rithm 2. The procedure is based on a generalized many-to-one

deferred-acceptance algorithm [13]. Each MU k proposes to

participate in the most preferred task on their preference list

PLk (line 2). The set of all the MUs proposing to participate

in task n is denoted by σn. Firstly, for each task, the marginal

contribution to the MCSP’s utility (8) of all proposing MUs

in σn is calculated as

wk,n = UMCSP
n (µMCSP

Task (n) ∪ k)− UMCSP
n (µMCSP

Task (n)) (10)

The MU with the highest wk,n is selected (line 5), and is

assigned to the sensing task if wk,n is positive (line 7-9). Next,

Algorithm 2 Stable Task Assignment STA(K, N , PLk)

Require: Set of MUs K, sensing tasks N and preference lists PLk

1: for i = 0, . . . , |N | do

2: Every unmatched MU k proposes to the task n∗ on top of PLk and
is added to the set of proposing users σn∗ .

3: for j = 0, . . . , |N | do

4: while σj ̸= {} do

5: k∗ = maxk∈σj
UMCSP
n (µMCSP

Task
(j) ∪ k)− UMCSP

n (µMCSP
Task

(j))

6: wk∗ = UMCSP
n (µMCSP

Task
(j) ∪ k∗)− UMCSP

n (µMCSP
Task

(j))
7: if wk∗ > 0 then

8: µMCSP
Task

(j)← µMCSP
Task

(j) ∪ k∗

9: end if

10: PLk∗ ← PLk∗ \ j ▷ Remove preference
11: σj ← σj \ k∗ ▷ Remove k∗ from the proposing MUs
12: end while

13: end for

14: end for

15: return µTask, {wk,n} ▷ Task assignment & marginal contributions

Algorithm 3 Comm. Resource Allocation CRA(K,M, w)

Require: Set of MUs K, APs M and marginal contribution w
1: Construct a list PLAP

k
for each MU for the APs according to |hk,m|

2: for i = 0, . . . , |M| do

3: Every unmatched MU k proposes to the AP m∗ on top of PLAP
k

and
is added to the set of proposing users σm.

4: for j = 0, . . . , |M| do

5: PLAP
k∗ ← PLAP

k∗ \ j

6:
µAP(j)←KNAPSACK(σj ,CAPACITY = LAP

m , . . .

WEIGHTS = lk,m,n,VALUES = wk)
7: end for

8: end for

9: return µAP ▷ Communication resource allocation

this MU is removed from σn (line 10 and 11). This procedure

is repeated until all proposing MUs are either accepted or

deferred. After all MUs are either accepted by a sensing

task or deferred by each task, the stable task allocation is

finished. The next stage is that all MUs in KTask with a sensing

task assigned are passed to the Communication Resource

Assignment algorithm, which is described in the next section.

C. Communication Resource Allocation

The Communication Resource Allocation (CRA) is shown

in Algorithm 3. The input of this algorithm is the set K
of MUs, the set N of APs and the marginal contributions

wk,n of each MU to the assigned task. In line 1 each MU

creates a preference list containing each AP, which is ordered

according to the absolute value of the channel coefficient

|hk,m|. Then each MU proposes to connect to the AP on top

of its preference list. After each AP received all proposals,

the AP decides which MUs are accepted. To approximate the

optimal allocation of the LAP
m resource blocks, we model the

allocation problem as a knapsack problem [14]. The capacity

of the knapsack is given by the LAP
m resource blocks. Each

MU requires lk,m,n resource blocks (6) and contributes with

wk,n to the utility of the MCSP. Algorithm 1 terminates when

all MUs that are matched to one task are also assigned to an

AP.



D. Stability of the task allocation

In the following, we show that the output of the proposed

algorithm is stable according to Definition 1. The following

cases may occur for each MU k ∈ K after Algorithm 1:

(1) MU k is assigned to task n at the top of PLk. As it is

already the best outcome for MU k, no other sensing task

leads to an improvement. (2) MU k is assigned to a task

n′ not at the top of its PLk. This means, k has proposed

in some iteration i < I to participate in sensing task n in

stage 1 and was rejected. If k was rejected by n then the

marginal contribution wk,n to task n is negative. In this case

the MU prefers task n over its current task n′, but the MCSP’s

utility would decrease if MU k changes the task. (3) MU

k is unmatched because it was removed in stage 1 because

of one of the following reasons: Either MU k prefers not to

contribute to the crowdsensing, and therefore never proposed

to contribute to a task, or the marginal contribution wk,n of

MU k to all sensing tasks is negative, e.g. due to a high cost

ck,n to incentivize the MU, and therefore it would be irrational

for the MCSP to accept the proposal of MU k. (4) MU k is

unmatched because it was removed in stage 2: In this case,

both the MCSP and the MU k agreed on a task allocation

in stage 1, but no communication resources are available to

transmit the sensing results before the deadline τmax
n .

In all the presented cases it is not possible for both stake-

holders, the MCSP and the MU, simultaneously to improve

the task allocation to a more preferred one. Therefore, the

proposed algorithm is said to have a stable outcome.

V. NUMERICAL EVALUATION

A. Simulation setup

In this section, numerical results for the evaluation of the

proposed two-stage matching algorithm are presented. The

MCSP has N = 4 different sensing tasks with different result

sizes. Two tasks of small size sn = 300 kbit and two tasks

of large size sn = 600 kbit are considered. The deadline for

the arrival of the sensing data is τmax
n = 100ms. The sensors

of MU k are assumed to cover all cells within a rn = 100m
radius, i.e. δk,n(i, j) = 1 for all cells within this circle. The

MU’s locations are generated by a homogeneous Poisson Point

Process. The MCSP has a utility coefficient αn,i,j for task n in

cell gn(i, j) which is uniformly distributed in the interval [0, 5]
in each cell. We assume that 10% of the MUs contribute to a

sensing task because they want to retrieve the sensing results

from the MCSP, i.e., ck,n = 0. The remaining MUs only

contribute in exchange of a micropayment ck,n, determined

by the MCSP. Table I summarizes the considered parameters.

As reference, two state-of-the-art algorithms from the litera-

ture are considered: Cell-wise greedy algorithm: comparable to

the approach in [9], for each MU and sensing task pair (k, n)
in a cell, the marginal contribution wk,n (10) is calculated. The

MU-task pair with the highest non-negative wk,n is selected.

The sensing result is transmitted to the AP which minimizes

the resource demand lk,m,n (6). Afterwards, the algorithm

calculates the marginal contributions for the remaining MUs

TABLE I
EVALUATION PARAMETERS

Parameter Value

Size of simulated grid Gn 1 km2

Size of each quadratic cell gn(i, j) 25m · 25m

Density of MUs [0, 500] km−2

Density of APs 6 km−2

Total Bandwidth Bm per AP m 10MHz

Bandwidth bm per resource block 200 kHz

Noise power σ2 10−13 W

Transmit power pk of MU k 200mW

Channel gain |hk,m|
2 ∼ d−3 (Urban scenario)

Number of sensing tasks N 4 (2 small, 2 large)

Size sn of the sensing task result Small: 300 kbit

Large: 600 kbit

Deadline τmax
n of the sensing task result 100ms

Weight αn,i,j for a cell gn(i, j) Uniform in [0, 5]

Micropayment ck,n for MU k for task n 1
2

∑
i,j αn,i,jδk,n(i, j)

Radius rn of sensing area 100m

in the cell and selects the next MU greedily. This procedure

is repeated until all MUs have a task assigned in each cell, or

the remaining MUs have a negative marginal contribution.

Centralized genetic algorithm: as in [10], a genetic algorithm

is used to find the task and AP allocation for the MUs. We

define a chromosome as the combination of task allocation X

and AP allocation Y, where xk,n and yk,m are the genes in the

chromosome. As usually done in genetic algorithms, the mu-

tation, crossover and selection steps are iteratively performed

to the whole population of chromosomes P = (X,Y). The

algorithm terminates after a fixed number of iterations and

returns the chromosome (X,Y) with the highest utility of

the MCSP (8). In this case, the mutation and the crossover

probabilities are set to 4
K

, so that in each mutation and

crossover phase an average of 4 MUs change the task or AP.

We set |P| = 10 and the number of iterations to
|K|·|M|·|N |

|P| .

B. Numerical results

For the evaluation, we consider the MCSP’s utility, the

coverage achieved for the sensing tasks and the satisfaction of

the MUs with the task assignment. The utility of the MCSP (8)

for a varying number of MUs is shown in Figure 2. For

K < 200 MUs, all algorithms achieve approximately the

same utility for the MCSP, as the communication resources

are sufficient to enable the transmission of all completed

task results from the MUs to the MCSP. With an increasing

number of MUs K > 200, the proposed approach results

in a higher MCSP’s utility compared to the greedy or the

genetic algorithm. With limited communication resources it

is beneficial, in some cases, to assign multiple smaller tasks

with less utility per task to MUs instead of one large task.

The proposed algorithm takes this into account by solving a

knapsack problem in the communication resource allocation.

The greedy algorithm, however, assigns tasks only based on

the MCSP’s utility. This is a near-optimal strategy when

sufficient communication resources are available [9], but it

will lead to a depletion of communication resources without

considering smaller tasks.
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Fig. 2. Utility of the MCSP
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Fig. 3. Average coverage of sensing tasks
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Fig. 4. Position of the assigned task on the
preference list for K = 200 MUs

A larger number of MUs increases the difficulty of the task

assignment and resource allocation problems. The probability

of randomly selecting feasible solutions decreases when more

MUs participate. This explains the decreasing performance

of the genetic algorithm, as many mutations are not feasi-

ble solutions. The proposed algorithm avoids this pitfall by

discarding infeasible MU-task pairs successively in stage 2,

which reduces the number of potential MU-task pairs in each

iteration. Tasks which could not be timely transmitted to the

MCSP are removed from the respective preference list PL
(i)
k in

each iteration i. Therefore, the knowledge of infeasible tasks is

available at each MU. As MUs only propose to tasks on PL
(i)
k ,

the communication overhead reduces with each iteration.

The average coverage of all sensing tasks is shown in

Figure 3. There are two reasons why the coverage cannot be

increased to 100%, even with a large number of MUs. The first

reason is that the limited communication resources constrains

the number of MUs contributing to each task. Furthermore, if

the micropayment ck,n to the MU k is higher than its marginal

contribution wk,n to sensing task n, then it would be irrational

for the MCSP to accept MU k.

To evaluate the satisfaction of the MUs with the task assign-

ment, the position on the preference list of the task assignment

is shown in Figure 4. In the task assignment of the proposed

algorithm 87 MUs are assigned to their most preferred task,

whereas only 63 and 38 MUs get their most preferred task with

the greedy and genetic algorithms, respectively. The proposed

matching approach explicitly considers the MUs preferences

for tasks in stage 1, including the incentives required for

the MU, and therefore the satisfaction of the MUs with

the task assignment is higher compared to the benchmark

algorithms. The proposed algorithm has two unmatched MUs

more than the greedy algorithm, since either the MUs have low

preferences for the given sensing tasks or the MCSP would

achieve a low utility from the MU’s contribution.

VI. CONCLUSION

In this work, a coverage maximization problem for mobile

crowdsensing with delay-sensitive sensing tasks is studied.

Furthermore, two different incentives are considered: Micro-

payments by the MCSP or the sharing of the sensing results

with the MUs. A stable task assignment problem incorporating

the preferences of the MUs and a communication resource

allocation problem is formulated. To solve the task assignment

and communication resource allocation, a novel two-stage

matching algorithm is proposed, and it is shown that the out-

come of the proposed algorithm is stable. Through numerical

simulations we show that the proposed method yields 27%
more utility for the MCSP, 12% higher coverage of sensing

and 40% more MUs get their first choice of tasks compared

to state-of-the-art schemes.
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