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Abstract—The importance of vehicular communications has
grown significantly in recent years. Potential use cases of ve-
hicular communications are manifold and range from sharing
information for driver assistance to entertainment purposes.
This means that each connected vehicle has an individual data
requirement for the communication infrastructure. However, due
to the dynamic wireless environment, the simultaneous fulfillment
of such requirements cannot be guaranteed. Therefore, novel
solutions should not only consider the requirements of each user
but also the risk of not being able to fulfill them. In this paper,
we consider a vehicular communication scenario consisting of a
base station that serves the vehicles in its coverage area using
5G millimeter wave (mmWave) narrow beams. The problem boils
down to finding an optimal policy for the selection of the narrow
beams. This should be done carefully, as the choice of the used
beams greatly impacts the performance. For this purpose, we
propose a risk-aware contextual Multi-Armed Bandit (MAB)
online learning algorithm. Using this algorithm, the base station
autonomously learns its environment and selects the best set of
beams based on the vehicles located in its coverage area. In order
to achieve a large risk awareness, this work focuses on two pillars.
Firstly, the notion of risk is integrated in the proposed contextual
MAB algorithm by exploiting the concepts of Mean-Variance and
Conditional Value at Risk for the evaluation of the decisions
made by the algorithm. Secondly, we introduce mechanisms
that can detect non-stationarities and swiftly adapt to them in
order to make the proposed approach robust against volatile
environments that violate stationarity assumptions. By using
extensive simulations, the effectiveness of the aforementioned
approaches are proven numerically.

I. INTRODUCTION

In recent years, there has been a rapid increase of interest in
the field of vehicular communication. New cars are equipped
with a multiplicity of hardware that performs various tasks
ranging from convenience features, such as infotainment sys-
tems, to safety relevant functionalities, like driver assistance.
Furthermore, modern vehicles employ a large number of
sensors to measure different parameters, such as road condi-
tions or traffic patterns [1]. Sharing the information gathered
from the acquired sensor data can have many advantages,
as it can reduce the likelihood of accidents or increase the
traffic flow [2]. Nevertheless, the large scale acquisition and
exchange of sensor information puts high demands on the
communication infrastructure due to the high throughput it
requires. Furthermore, the exchange of information needs to
be rapid and almost in real time, which translates to a low
latency requirement. One potential candidate to serve those

high demands is 5G millimeter wave (mmWave) technology
[3], because it enables very high data rates and low latency
[4]. However, mmWave comes with its own unique drawbacks,
as it suffers from a higher path loss compared to older
technologies like 4G as well as larger losses due to shadowing
[5]. Nevertheless, the fact that in 5G mmWave, the radiated
energy is strongly concentrated in one direction can be used to
purposely steer the radiated energy into the desired direction
[6]. Moreover, the mmWave base stations can transmit using a
subset of these narrow beams simultaneously. Thus, mmWave
beam technology enables spatial multiplexing by design and
can therefore increase the throughput even further.

In this paper, the aforementioned 5G mmWave narrow
beams are used for the communication between vehicles and
a base station. The cars are assumed to have individual data
requirements, and a policy for the selection of a subset of
mmWave beams to be used, is proposed. The beam selection
problem is challenging because, due to the small width of
the beams, a misalignment between transmitter and receiver
can cause a severe degradation in performance [7]. Further-
more, due to the constantly changing environment, e.g., the
occurrence of obstructions or the continuously varying traffic
flow, the simultaneous fulfillment of the data requirements
cannot be guaranteed. Moreover, the environment may not
even be stationary in the probabilistic sense. To address these
challenges, in this work we aim at minimizing the likelihood
that the individual requirements of the vehicles are not fulfilled
and propose a risk-aware vehicular communication approach
capable of quickly learning and adapting to its environment,
even if stationarity assumptions are violated.

The subject of mmWave beam selection has been treated
in various works in the past. Most of the earlier approaches
are based on performing a search over the space of available
beams in order to find the optimal choices [8], [9]. Such
strategies can be computationally prohibitive and therefore
cause substantial latencies. In the context of vehicular com-
munications, large delay times can be critical. More recent
works tackle the problem of the beam selection by means
of reinforcement learning techniques. In particular, many ap-
proaches are based on Multi-Armed Bandit (MAB) theory.
The authors of [10] use a MAB framework and exploit
the correlation between beams. In addition to that, a priori
information about channel fluctuations is incorporated. In [11],



a MAB algorithm is used in conjunction with channel tracking
based on Bayesian learning and Kalman filtering. The authors
of [12] propose a contextual MAB algorithm for the beam
selection in a vehicular communication scenario. One common
shortcoming of all the aforementioned approaches is that they
fail to incorporate the notion of risk in the beam selection
process. These works mainly focus on maximizing the overall
performance without evaluating if the requirements of an
individual user are satisfied. Thus, in the context of vehicular
communications, their applicability is reduced.

Similarly to [12], in our work, the considered scenario
consists of a mmWave base station that serves multiple cars in
its coverage area. It is assumed that a fixed set of directional
beams is available and the goal is to select the best subset of
beams, depending on the environment and the vehicles located
in the coverage area. The main goal of this work is to achieve
a safe and reliable communication, which is achieved by the
following contributions of our paper:
• We include the risk that some vehicles are not able to

fulfill their communication requirements and consider
environments for which stationarity assumptions are vio-
lated.

• We propose a contextual MAB algorithm that aims for
risk-aware decisions.

• We introduce mechanisms that enable the MAB algorithm
to quickly adapt to non-stationary environments.

• We show that our proposed risk-aware algorithm outper-
forms risk-neutral formulations.

As it is generally very hard or even impossible to give
strict guarantees for the communication reliability, this work
tackles this challenge by integrating the risk awareness already
in the evaluation of the decisions made by the algorithm,
rather than by trying to satisfy some Quality-of-Service side
constraint. For this purpose, the concepts of Mean-Variance
and Conditional Value at Risk are exploited. In the field of
MABs, risk aversion has been treated by using Mean-Variance
[13], [14] and Conditional Value at Risk [15], [16]. However,
to the best of our knowledge, there is no work that treated the
subject of risk aversion in combination with contextual MABs.

In the following, Section II introduces the system model.
In Section III, the optimization problem is formulated and
concepts for a risk aware assessment of the performance
of the beams are explained. After that, in Section IV, the
risk aware contextual MAB algorithm is explained, including
the mechanisms that enable an adaptation for non-stationary
environments. A performance evaluation based on numerical
results is shown in Section V.

II. SYSTEM MODEL

In this section, the system model is introduced. For this
work, only the downlink case, i.e., the transmission from
the base station to the vehicles, is considered. However, all
principles described can also be applied to the uplink case
in a similar fashion. The considered scenario consists of a
mmWave base station and moving vehicles that are located
inside the coverage area of the base station, as shown in Figure
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Fig. 1. Exemplary vehicular communication scenario

1. For the communication with the vehicles, the mmWave
base station has a set B comprised of B = |B| orthogonal
directional beams available. For each time step t = 1, . . . , T
under the considered time horizon T , the mmWave base station
selects m ≤ B beams out of B, in dependence on the Vt
vehicles currently located in its coverage area. The number
of vehicles Vt ∈ N per time step t is upper bounded by
Vmax for every time step, i.e., Vt ≤ Vmax. Additionally,
vt,i, i = 1, . . . , Vt describes the Vt vehicles in the coverage
area during time step t and Vt = {vt,i}i=1,...,Vt

summarizes
them in one set. It is assumed that a beam is not directly
allocated to a certain vehicle. Instead, all m selected beams
can transmit to all Vt vehicles at the same time. In order
to achieve this, the mmWave base station may transmit a
combined message, which contains a superposition of all the
individual messages belonging to the different vehicles. The
vehicles can then extract their part of the combined message by
employing a decoding technique, e.g., successive interference
cancellation. Furthermore, every vehicle demands a certain
minimum amount of received data per time step, measured
in bits, represented by a Quality-of-Service constraint. Specif-
ically, for every time step t = 1, . . . , T , each of the vehicles
vt,i, i = 1, . . . , Vt that are in the coverage area during that
time step are assumed to require a certain minimum amount of
data rmin

t,i . This amount of data corresponds to the information
that the vehicle requests from the base station in time slot t.
This data can range from some driving related information,
such as the traffic, the road conditions or the weather, to
entertainment content, like a music or movie stream.

The beam selection aims for two goals: maximizing the
average received amount of data for all Vt vehicles and reduc-
ing the risk that some vehicles do not receive enough data.
In section III, mathematical concepts for metrics that capture
the aforementioned aspects are introduced. The m selected
beams in time step t are denoted by st,j , j = 1, . . . ,m and
St = {st,j}j=1,...,m ⊆ B describes the resulting subset of
selected beams. The number of beams m that the mmWave
base station selects per time step is limited by external factors
such as the channel characteristics, or restrictions imposed by
the used hardware. Furthermore, the selection of the beams



strongly depends on the environment in the coverage area, e.g.,
permanent blockages due to buildings or temporary obstruc-
tions resulting from moving objects, e.g., other vehicles. It is
assumed that the mmWave base station has no prior knowledge
about its environment. Thus, it has to learn and adapt to its
environment completely autonomously.

It is assumed that each vehicle vt,i is characterized by a
context vector xt,i. This context vector xt,i is taken from the
X-dimensional context space X = [0, 1]X , where X ∈ N.
Each context dimension reflects certain attributes that describe
the vehicles, which can be discrete or continuous quantities.
Examples for these attributes are the vehicle’s velocity, its
location, the direction towards it is moving or the type of
vehicle. Note that regardless of the type of quantity the context
dimension describes, it is always mapped to the interval [0, 1].

The quality of a beam is assessed by the amount of data
received by the vehicles. Let rt,j(xt,i, t) denote the actual
amount of data that vehicle vt,i with context xt,i has received
from the beam st,j ∈ B in time slot t. Note that rt,j(xt,i, t)
is not a deterministic quantity. The instantaneous received
amount of data rt,j(xt,i, t) depends on random occurrences
such as fluctuations of the channel or the sudden appearance
of temporary obstructions. Thus, the received amount of data
rt,j(xt,i, t) is a random variable. Specifically, rb(x) describes
how much data a vehicle with context x receives from beam
b ∈ B in a single time slot. It is assumed that the amount of
received data is upper bounded by Rmax, i.e., rb(x) ≤ Rmax.
Rmax depends on the environment and the length of one time
slot, as this determines the maximum contact time, i.e., the
time that a vehicle is served by a certain beam. Addition-
ally, Rmax is also influenced by additional factors, such as
the employed modulation scheme. Consequently, the random
variable rb(x) is confined to the interval [0, Rmax], since the
minimum amount of received data cannot be smaller than
zero. Finally, rb(x) is characterized by statistical quantities.
µb(x) = E[rb(x)] is the expected received amount of data
from beam b for a vehicle with context x, where E[·] is the ex-
pectation operator. Furthermore, σ2

b (x) = E[(rb(x)−µb(x))2]
is the variance of the received amount of data.

III. PROBLEM FORMULATION

This section treats the formal definition of the beam selec-
tion problem. At first, an optimization problem is formulated.
In the next step, two risk aware metrics for evaluating the
beam performance are introduced.

A. Optimization Problem

Our goal is to find a beam selection policy that maximizes
the received amount of data for all the vehicles connected to
the mmWave base station during each time step t. At the same
time, the risk of selecting beams that lead to poor performance
should be minimized. We consider a general function fb(x)
to assess the performance of beam b for a vehicle with
context x. The advantage of this general approach is that it
allows us to incorporate any relevant statistical property of the
random variables rb(x) into the beam performance assessment.

Specifically, fb(x) is used to evaluate the risk associated with
selecting a certain beam.

In order to formulate the problem, firstly, consider the
optimization variable yt,b, which is a binary decision variable
that represents the beam selection. If beam b is selected in time
slot t, then yt,b = 1, otherwise it is defined to be zero. The
objective function of the optimization problem (1) is defined
as the expected cumulative beam performance. The summation
is done over all vehicles and all time steps in the considered
time horizon T . For each time step t, the optimum is achieved
by selecting the m beams {st,j}j=1,...,m that maximize the
sum of the expected beam performances. Note that the beam
selection can be made independently for each time step, since
for every t, a new subset of beams is selected. The resulting
optimization problem is given by

max
{yt,b}b∈B, t=1,...,T

T∑
t=1

∑
b∈B

yt,b

Vt∑
i=1

fb(xt,i) (1)

subject to
|St|∑
j=1

rt,j(xt,i, t) ≥ rmin
t,i , ∀ t, ∀ i (2)∑

b∈B

yt,b ≤ m, ∀ t (3)

yt,b ∈ {0, 1}, ∀ b, ∀t. (4)

where (2) corresponds to the Quality-of-Service constraint,
i.e., the minimum required amount of data. Constraint (3)
ensures that no more than m beams are selected for each
time step t. At the optimum, this inequality is fulfilled with
equality, since more selected beams will always increase the
received amount of data further and we neglected any possible
interference between the beams. Finally, the binarity of the
decision variable yt,b is enforced by constraint (4).

In order to satisfy constraint (2), for every time step t, per-
fect knowledge about the received amount of data rt,j(xt,i, t)
is required prior to solving the optimization problem. However,
this information can never be accessed in advance. Thus,
the optimization problem cannot be solved optimally, as it
is impossible to give a strict guarantee for the satisfaction
of constraint (2). Therefore, we propose an online learning
approach that assesses and selects the beams in a risk-aware
fashion, such that the risk of not fulfilling constraint (2) is
reduced. In this context, it is important to choose the beam
assessment function fb(x) in such a way, that it incorporates
the risk associated with selecting a certain beam.

B. Risk Aware Beam Assessment

In the following, two choices for the general beam perfor-
mance assessment function fb(x) are discussed, the Mean-
Variance and the Conditional Value at Risk. As already men-
tioned, fb(x) should encourage a risk averse behavior, i.e.,
beams that have a high likelihood of providing small amounts
of received data should be avoided.

1) Mean-Variance: The idea behind the Mean Variance is
very intuitive. From a risk averse perspective, not only the
average performance, i.e, the statistical mean, is important, but



also the likelihood of deviations from it. This is expressed by
utilizing the variance of the random variable in the sense that
the larger the variance, the higher the uncertainty of a certain
beam. Thus, the higher the risk for a very small amount of
received data. Hence, the Mean-Variance combines both, the
expectation and the variance. Formally, the Mean-Variance of
the beam performance for a beam b and a vehicle with context
x can be defined similarly to [17] as

fb(x) = MVb(x) = µb(x)− ρσb(x), ρ ≥ 0. (5)

Ideally, a beam with a low risk has a large expected received
amount of data µb(x) and only a small variance σb(x), i.e.,
a low uncertainty. Hence, from a risk aware perspective, the
larger the Mean-Variance of a beam, the better. The parameter
ρ models the trade-off between the focus on high average
performance and low uncertainty. Thus, it determines the risk
tolerance. The larger ρ, the more risk averse the behavior and
vice versa. The special case of ρ = 0 corresponds to the risk
neutral case. Furthermore, it should be noted that very large
values of ρ might not be reasonable, since in this case, there
would not be any attention paid to the average performance.

2) Conditional Value at Risk: The intuition behind the
Conditional Value at Risk is to take into account only those
values of the random variable that are below a certain quantile
of the distribution. In particular, the expectation below that
quantile is considered. Thus, the Conditional Value at Risk
can be seen as a measure for the likelihood of obtaining small
samples from a random variable. Formally, the Conditional
Value at Risk CVaRb(x) of beam b for a vehicle with context
x is defined as follows,

fb(x) = CVaRb(x) = E[rb(x)|rb(x) < VaRb(x)] (6)

where,

P[rb(x) ≤ VaRb(x)] = α and α ∈ (0, 1]. (7)

In this definition, the Value at Risk VaRb(x) is equal to the α-
quantile of the distribution. The larger the Conditional Value at
Risk, the smaller the risk of receiving a small amount of data.
That is because in that case, the expected amount of received
data in the α×% worst cases is large. The parameter α can be
understood as a risk tolerance parameter. The smaller α, the
higher the risk awareness and vice versa. Hence, for α = 1,
the risk neutral case is reached.

IV. PROPOSED ALGORITHM

In this section, the proposed online learning algorithm for
the beam selection is explained. To this aim, the Fast Machine
Learning (FML) algorithm from [12] is used as a basis. We
then include the notion of risk, using the concepts shown
in Section III, and augment the algorithm by giving it the
capability to quickly adapt to non-stationary environments.

A. Overview

The proposed algorithm is based on a MAB framework.
In this context, the multiple arms are the set of available
beams B. Furthermore, the reward feedback is given by

the instantaneous amount of received data rt,j(xt,i, t) that
the vehicles inform the mmWave base station about after
each time step. The beams are selected either by means of
exploration or exploitation actions. During an exploration step,
the MAB algorithm randomly selects beams that have not been
used sufficiently many times in previous time steps. For the
exploitation, the beams that have performed best in previous
time steps are selected.

As explained in Section III, it is impossible to guarantee that
the Quality-of-Service constraint (2) is always fulfilled when
perfect knowledge is not available. Therefore, our proposed al-
gorithm uses risk-aware metrics for evaluating the performance
of the beams and makings its decisions. The intuition behind
this is that these metrics already encourage a beam selection
policy that reduces the risk of not satisfying constraint (2).

The vehicle context is incorporated by partitioning the
context space into a discrete set of hypercubes and estimating
the beam performance for each hypercube separately. This
can be understood as a sampling of the context space under
the assumption that similar contexts will have similar beam
performances [18]. The algorithm starts with the partitioning
of the context space X = [0, 1]X . For that sake, each di-
mension of X is subdivided into pT smaller fractions of equal
length 1

pT
, where pT is an input parameter of the algorithm. In

total, (pT )X separate hypercubes are obtained. The resulting
partition containing these hypercubes is denoted as PT .

In contrast to [12], our algorithm keeps track of two
different counters. The external counter N ex

b,h(t) counts how
many times a certain beam b was used in combination with the
context hypercube h ∈ PT . It is needed for the control of the
exploration phases. The internal counter N in

b,h(t) keeps track of
the number of samples used to calculate the beam performance
estimates f̂b,h(t), i.e., the last N in

b,h(t) reward samples.
For every time step t, the exploration is done by first finding

the set of underexplored beams, which contains beams that
have not been used often enough in previous time steps. The
set of underexplored beams is denoted by Bue

Ht
(t), where Ht =

{ht,i}i=1,...,Vt
denotes a set that contains all the hypercubes,

inside which the contexts of the vehicles in time step t are
located. Bue

Ht
(t) is given by

Bue
Ht

(t) :=

Vt⋃
i=1

{b ∈ B : N ex
b,ht,i

(t) ≤ K(t)}, (8)

where K(t) is a control function, which controls the trade-
off between exploration and exploitation. It is given to the
algorithm as an input. Note that we use the external counter
N ex
b,ht,i

for the determination of underexplored beams. If
Bue
Ht

(t) is not empty, up to m beams are drawn randomly
from this set in time step t, depending on how many beams
it contains. If Bue

Ht
(t) contains less than m beams, then the

remaining m − |Bue
Ht

(t)| beams are chosen by means of an
exploitation step, i.e., they are selected according to

b̂j,Ht
(t) ∈ argmax

b∈B\(Bue
Ht

(t)
⋃j−1

k=1{b̂k,Ht (t)})

Vt∑
i=1

f̂b,ht,i
(t). (9)



For the estimates for the beam performance f̂b,ht,i
(t), we use

one of the two risk-aware performance metrics introduced in
Section III, namely, either the Mean-Variance or the Condi-
tional Value of Risk. Estimates for the Mean-Variance can be
obtained by using the consistent estimators sample mean and
sample variance for the expectation and standard deviation,
respectively. According to [19], a consistent estimator for the
Conditional Value at Risk for beam b and vehicle context
hypercube h is given by

ˆCVaRb,h(t) =
1

dαN in
b,h(t)e

dαN in
b,h(t)e∑
τ=1

r̃τb,h, (10)

where r̃1b,h ≤ . . . ≤ r̃
N in

b,h(t)

b,h denote the last N in
b,h(t) received

rewards for beam hypercube combination b and h until time
slot t ordered in an increasing fashion.

B. Adaptation to Non-Stationary Environments

The added mechanisms for increasing the adaptation speed
are based on the idea of comparing the short-term behavior of
the beam performance with its long-term behavior. We refer to
long-term memory as the last N in

b,h(t) samples of the rewards,
which are also used to compute the estimates f̂b,h(t) of the
beam performance. The short-term memory only considers
the last tst samples, where tst is an input parameter for the
algorithm that models the sensitivity to track non-stationarities.
In order to track sudden changes in the statistical properties
of the beam performance, we compare estimates of the long-
term standard deviation σ̂b,h(t) with the short-term standard
deviation σ̂st

b,h(t), computed with respect to the long-term
mean. Specifically, if the short-term standard deviation σ̂st

b,h(t)
is significantly larger than the long-term standard deviation
σ̂b,h(t), an adaptation step is triggered. This is expressed
by the condition σ̂st

b,h(t) ≥ δσ̂b,h(t), where δ > 0 is an
input parameter that tunes the adaptation-sensitivity. In case
an adaptation step is triggered, the beam performance estimate
f̂b,h(t) is updated only taking into account the reward samples
in the short-term memory and the internal counter is set to
the short-term memory size, i.e., N in

b,h = tst. Furthermore, the
external counter is set to N ex

b,h = dK(t)e. This avoids that
beam b gets re-explored in many succeeding time steps. This is
especially important if it has undergone a change in statistical
properties that caused a severe performance degradation. We
name our algorithm Adaptive Risk-Aware FML Algorithm
(ARA-FML) and summarize it in Algorithm 1.

V. NUMERICAL RESULTS

A. Simulation Setup

The scenario consists of a mmWave base station that is
assumed to be positioned at 50 meters distance centered
to a 250 meter long road-stretch, that is located inside its
coverage area. The base station can choose from B = 8 beams
and selects m = 2 per time step. The carrier frequency of
the system is set to 28 GHz and the system bandwidth is
assumed to be 1 GHz. Additionally, the mmWave base station

Algorithm 1 ARA-FML Algorithm
1: Input Parameters: T , pT , K(t), tst and δ
2: Create partition PT of context space X
3: Internal counter initialization: N in

b,h = 0, ∀ b, ∀ h
4: External counter initialization: N ex

b,h = 0, ∀ b, ∀ h
5: Estimate initialization: µ̂b,h = 0, ∀ b, ∀ h
6: for each t = 1, . . . , T do
7: Receive vehicle contexts xt,i, i = 1, . . . , Vt

8: Find set of hypercubes Ht = {ht,i}i=1,...,Vt that matches vehicle contexts,
i.e., xt,i ∈ ht,i ∈ PT , ∀ i

9: Find set of underexplored beams Bue
Ht

(t) according to (8)
10: if Bue

Ht
(t) 6= ∅ then

11: Set u = |Bue
Ht

(t)|
12: if u ≥ m then
13: Exploration: Choosem beams st,1, . . . , st,m at random from Bue

Ht
(t)

14: else
15: Exploration: Choose u beams st,1, . . . , st,u at random from Bue

Ht
(t)

16: Exploitation: Choose (m− u) beams st,u+1, . . . , st,m according to
(9)

17: end if
18: else
19: Exploitation: Choose m beams st,1, . . . , st,m according to (9)
20: end if
21: Obtain information about amount of data rj,i that each vehicle vt,i, i =

1, . . . , Vt received from each selected beam st,j , j = 1, . . . ,m
22: for i = 1, . . . , Vt do
23: for j = 1, . . . ,m do
24: Update long-term variance σ̂2

st,j ,ht,i
(t)

25: Update short-term variance
(
σ̂st
st,j ,ht,i

(t)
)2

26: if σ̂st
st,j ,ht,i

(t) ≥ δσ̂st,j ,ht,i
(t) AND N in

st,j ,ht,i
≥ tst then

27: Update estimate f̂st,j ,ht,i
only based on the previous tst samples

28: Discard all samples for beam hypercube combination st,j , ht,i expect
the last tst samples

29: Reset internal counter to tst: N in
st,j ,ht,i

= tst

30: Reset external counter to dK(t)e: N ex
st,j ,ht,i

= dK(t)e
31: else
32: Update estimate: f̂st,j ,ht,i

33: Update internal counter: N in
st,j ,ht,i

= N in
st,j ,ht,i

+ 1

34: Update external counter: N ex
st,j ,ht,i

= N ex
st,j ,ht,i

+ 1

35: end if
36: end for
37: end for
38: end for

transmits with a power of 30 dBm and the considered noise
power density is −204 dBm

Hz according to [12]. Furthermore, the
vehicle speed is assumed to be on average between 30 and 70
kilometers per hour. The maximum number of vehicles per
time step is set to Vmax = 10. The vehicle context space X
is assumed to be discrete and one-dimensional. This single
dimension describes the approximate location of the vehicle
on the road stretch at the beginning of a time step. For that
sake, the road is divided into four sections of equal length and
the center of that section is used as the approximate location
of the respective vehicle. The context is drawn at random for
every vehicle at each time step. The time horizon is set to
T = 400 time steps, where each time step has a duration
of 10 seconds. In order to model the random variables that
describe the random amount of received data, we use truncated
Gaussian distributions. The aim of this choice is to capture the
various dynamics that can occur in a vehicular communication
scenario, such as random blockages or varying vehicle speeds.
The expectations of the Gaussian distributions are calculated
with Shannon’s channel capacity formula, where the channel
gain is determined using the path loss model. The variances
of the distributions are drawn randomly for every simulation.

As a performance benchmark, we compare our proposed
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constraint
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Fig. 3. Conditional Value at Risk: Average
percentage of vehicles that violate their

Quality-of-Service constraint
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Fig. 4. Conditional Value at Risk: Average
amount of received data per vehicle

ARA-FML algorithm to the risk neutral FML algorithm from
[12], which does not account for the risk that the vehicles do
not fulfill their communication requirements. Additionally, we
show the oracle solution. The oracle is an optimal solution
because it is an omniscient entity that has perfect knowledge
about the statistical properties of the random processes.

B. Risk-Aversion

At first, the effectiveness with respect to the risk-aversion
is evaluated. For that sake, the average percentage of vehicles
that violate their Quality-of-Service constraint (2) per time
step is shown. The averaging of the percentage of vehicles that
do not satisfy their Quality-of-Service constraint is performed
over all time steps and simulation realizations. Fig. 2 displays
the average percentage of vehicles that violate the Quality-of-
Service constraint as a function of the risk trade-off parameter
ρ if the Mean-Variance is used for the risk-aware assessment
of the beam performance. One observes that our proposed
risk-aware algorithm ARA-FML is capable of reducing the
percentage of vehicles that do not receive enough data from
3.5% to 2.2% compared to the risk-neutral algorithm from
[12], for a risk trade-off parameter of ρ = 1. Furthermore,
ρ should be chosen carefully, as it has a great impact on
the performance. For too large values of ρ, the performance
degrades, as there is less attention paid to the expectation part
of the Mean-Variance. Moreover, our ARA-FML is capable of
achieving a performance close to the optimal oracle solution,
without having the unrealistic advantage of perfect knowledge
about the statistical properties of the beam performance. The
performance gap of roughly 23% is caused by the fact that
ARA-FML additionally has to perform exploration steps,
where it randomly selects suboptimal beams.

A similar behavior can be seen if the Conditional Value
at Risk is chosen for the beam performance assessment. This
is shown in Fig. 3, which shows the average percentage of
vehicles that violate their Quality-of-Service constraint as a
function of the risk trade-off parameter α. Note that the poor
performance for the oracle solution for small values of the risk
trade-off parameter α stems from the fact that in this case,
only the expected amount of received data for very unlikely
edge cases is considered in the beam performance assessment.

This degrades the performance, as the beams are selected for
extreme situations that almost never occur. The ARA-FML
algorithm outperforms the oracle in these instances, as it does
not have sufficiently many samples for a reliable estimation.

Our proposed risk-aversion strategies come with some per-
formance penalty. This is illustrated in Fig. 4, which shows the
average received amount of data per vehicle with respect to the
risk trade-off parameter α for the Conditional Value at Risk.
As the ARA-FML algorithm aims for avoiding potentially poor
performing beams, it sacrifices some average performance.
However, in Fig. 4, it can be seen that that this loss in average
performance compared to risk-neutral FML is at worst 9% for
α =. In proportion to the gains in terms of risk-aversion, this
is small. A similar behavior can be observed for the Mean-
Variance, but is not shown here due to space constraints.

C. Adaptation Speed

In the following, the adaptation behavior for non-stationary
environments is examined. For this purpose, at t = 200, two
of the beams undergo an abrupt change of their statistical
properties. Specifically, the two beams with the highest mean
received amount of data are assumed to suffer from a 70%
drop of their expected average amount of received data.
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Fig. 5. Average amount of received data per vehicle in dependence of the
time step t for the Conditional Value at Risk with α = 0.4.

Fig. 5 shows how the average amount of received data per



vehicle evolves over time in case the Conditional Value at
Risk with α = 0.4 is used to assess the beam performance.
In the figure, we compare the oracle solution, our proposed
ARA-FML algorithm with a short-term memory size of tst = 5
and tst = 10, as well as the ARA-FML algorithm without the
adaptation mechanisms. It can be observed that at t = 200, due
to the sudden change in the statistical properties, the average
amount of received data for the optimal oracle solutions drops
significantly. Our proposed ARA-FML algorithm is capable of
following this change very quickly, as convergence is reached
in approximately the same time as for the initial start of the
considered time horizon. Moreover, one observes slight advan-
tages if a smaller short-time memory size is used. Compared
to the non-adaptive version of the algorithm, the ARA-FML
shows a significantly better behavior, as the initial drop in
performance is roughly 50% smaller and the convergence back
to the oracle solution happens in about 25% of the time steps
needed as compared to the case that the non-adaptive version
of the algorithm is used. This can be explained by the fact that
the non-adaptive version does not discard outdated samples
from before the abrupt performance degradation at t = 200.
Thus, since it incorporates outdated information for the beam
performance estimation, it needs more time to recognize that
the performance of the two beams has degraded.

VI. CONCLUSION

A vehicular communication scenario was considered, in
which a 5G mmWave base station serves vehicles with
mmWave narrow beams. The problem boils down to finding
a policy for the optimal selection of the beams. Our goal was
to make the communication reliable and reduce the risk that
the individual requirements of the vehicles get not fulfilled. To
this aim, we introduced risk-aware metrics for the assessment
of the quality of the narrow beams and integrated them into a
contextual MAB algorithm. Furthermore, our proposed ARA-
FML algorithm is equipped with mechanisms that allow a
swift adaptation if the environment is non-stationary. Nu-
merical simulations show that our risk-aversion approach is
capable of reducing the likelihood that a vehicle does not
receive enough data compared to risk-neutral formulations.
Moreover, we show that our proposed algorithm exhibits a
high adaptation speed in case of non-stationary environments.
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