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Abstract— Mobile edge computing based on cloudlets is an
emerging paradigm to improve service quality by bringing com-
putation and storage facilities closer to end users and reducing
operating cost for infrastructure providers (IPs) and service
providers (SPs). To maximize their individual benefits, IP and
SP have to reach an agreement about placing and executing
services on particular cloudlets. We show that a Nash Bargaining
Solution (NBS) yields the optimal solution with respect to social
cost and fairness if IP and SP have complete information about
the parameters of their mutual cost functions. However, IP and
SP might not be willing or able to share all information due to
business secrets or technical limitations. Therefore, we present
a novel iterative bargaining approach without complete mutual
information to achieve substantial cost reductions for both IP
and SP. Furthermore, we investigate how different degrees of
information sharing impact social cost and fairness of the differ-
ent approaches. Our evaluation based on the mobile augmented
reality game Ingress shows that our approach achieves up to
about 82% of the cost reduction that the NBS achieves and a
cost reduction of up to 147% compared to traditional Take-it-
or-Leave-it approaches, despite incomplete information.

Index Terms— Edge computing, cloudlets, service placement,
network economics.

I. INTRODUCTION

MOBILE Edge Computing (MEC), i.e., providing com-
putation and storage facilities at the edge of the Inter-

net, has emerged as a new computing paradigm to improve
latency-sensitive services like mobile augmented reality (AR)
games, autonomous driving or high-quality live streaming,
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where centralized cloud computing approaches may not pro-
vide sufficient service quality due to high latency or low
bandwidth [1], [2]. Apart from improving service quality,
MEC can also reduce operational cost of networks [3], since
the amount of communication from the edge through the
network core can be reduced, e.g., in online gaming contexts
up to 95% [3].

To achieve the goals of improved service quality and
reduced cost, the use of cloudlets has been proposed [4], which
are small-scale datacenters located at the edge of the Internet.
Cloudlets provide computing resources accessible by users
within a one-hop wireless connection. Services can be placed
on cloudlets in addition to the cloud to reduce the distance
between users and computing resources. By placing a service
on a cloudlet, the service on the cloudlet will handle requests
from connected users within a one-hop range. Otherwise, the
cloud handles all other requests.

We consider the following stakeholders of the Internet:
(i) infrastructure provider (IP), (ii) service provider (SP),
(iii) cloud provider, and (iv) users. The IP (e.g., AT&T,
Vodafone, etc.) owns and operates wireless access networks
consisting of base stations (BSs), the network backend, as well
as the MEC infrastructure such as cloudlets. The SP (e.g.,
Netflix, Niantic, etc.) offers a service, such as a mobile AR
game or a high-quality video stream, to users. The SP relies on
the availability of computational resources in the network, and
the amount of required computational resources is proportional
to the activity and the number of users. The cloud provider
offers computational resources located at the core of the
network. Users access the services provided by the SP that
are either placed on the IP’s cloudlets or the cloud provider’s
cloud.

Reducing network traffic is beneficial for both SP and IP,
since this reduction results in lower cost for cloud services for
the SP, and lower operational cost for the IP’s network. Hence,
for cost-optimal service placement, the SP and the IP are
equally important. It is essential to involve both stakeholders
to decide on which cloudlet a service should be deployed.
While traditional cost models like Take-it-or-Leave-it may be
suitable to optimize the cost of one stakeholder, cooperative
decisions between SP and IP are promising to achieve better
results in terms of social cost, i.e., the combined cost of both
stakeholders compared to non-cooperative approaches, which
in turn will improve the long-term cost reduction.

The question is how the IP should chose the cost for using
cloudlets if the IP has no information about the SP’s service
usage. If chosen too high, the SP will not deploy any service
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TABLE I

OVERVIEW OF RELATED WORK

on the IP’s cloudlets and the IP will miss out on possible cost
reductions through reduced network traffic and a potentially
better user experience for its customers. If chosen too low, the
IP’s deployment cost may exceed the potential cost reduction
by the network traffic reduction. However, while IPs and
SPs aim to reduce their individual cost, the parameters of
their corresponding cost functions differ and thus the service
placement on cloudlets depends on the individual stakeholder’s
perspective [21].

We propose a novel bargaining approach in which the IP and
SP bargain for cost-effective service placements. Furthermore,
both stakeholders have to incorporate incomplete information
about the other stakeholder in the bargaining, since they are
unwilling or not able to share all their information due to
business secrets or technical limitations.

The main contributions of the paper are as follows:
• We propose a novel solution to the service placement

problem in which SP and IP have to agree on the service
placement and a cost for placing a service.

• We model the cost functions of SP and IP as a basis for
finding a solution to the service placement problem.

• Using the proposed cost functions, we show for the
first time that a Nash Bargaining Solution (NBS) exists,
if both stakeholders have complete information about
their mutual cost functions.

• Since in reality the stakeholders do not know each other’s
cost functions, we present a novel iterative bargaining
approach to find a nearly optimal solution for both
stakeholders.

• We investigate how different degrees of information shar-
ing impact social cost reduction and fairness.

• We evaluate the proposed iterative bargaining approach
using a real world data set of the popular mobile AR
game Ingress. The results show that despite incomplete
information, our approach achieves, on the average, up to
82% of the optimal solution’s cost reduction, and about
two times more game actions are processed on cloudlets
compared to traditional Take-it-or-Leave-it models.

The remainder of the paper is organized as follows.
Section II reviews related work. In Section III, we introduce
our service placement scenario and system model. Section IV
analyzes the bargaining process with complete information,
and Section V presents our solution to the bargaining problem
with incomplete information including two variants to discuss
different scenarios of incomplete information. Experimental
results based on our collected real-world data set are provided
in Section VI. Finally, Section VII concludes the paper and
outlines areas for future research.

II. RELATED WORK

Service placement is considered in several publications,
where cloudlet-based MEC takes a large part in recent years,
but also other areas like placing services on data caches or
edge servers have been investigated.

Table I presents an overview of related work on service
placement and considers aspects of existing approaches com-
pared to our approach, such as whether the papers look at
both IP and SP, whether they handle incomplete information,
whether they present cost-aware solutions or try to optimize
other aspects, and finally whether they use real-world data sets
to evaluate their approaches.

Related work in the area of service placement often only
focuses on one stakeholder (e.g., only IP or SP), or focuses
only on the users. However, it is crucial to understand that
stakeholders have different cost and different information
about, e.g., the network, available resources or service usage.
Therefore, it is important to consider both stakeholders in
order to optimize social cost under realistic assumptions. The
very few papers that focus on both stakeholders, however,
do not handle incomplete information, but rely on complete
information sharing between the two players. For example, the
work of Gedeon et al. [5] requires all stakeholders not just
to know where possible cloudlet locations are, but also what
kind of hardware they use, how many resources are available,
and how many users are likely to use a particular cloudlet.
Similarly, in the work of Shih et al. [6], the SP shares its entire
knowledge about its users (e.g., numbers and locations) with
the IP, so that they can bargain for the price, even if stake-
holders in these markets are usually not willing or not able
to fully share information. The work of Cao et al. [18] seems
to offer a solution that incorporates multiple stakeholders and
incomplete information. However, the authors do not try to
optimize the cost for both stakeholders, but only for the IP,
while the SP has to either accept the IP’s decision or decline
it, but they do not interact with each other to find the best
solution for both.

The literature on handling incomplete information usually
does not take multiple stakeholders into account, but mainly
tries to solve problems from one perspective only. For exam-
ple, the work of Nguyen et al. [7] optimizes the IP’s net
profit and Zhan et al. [10] try to optimize the IP’s operational
cost in conjunction with a best achievable user experience.
Chen et al. [8] only incorporate collaboration between dif-
ferent IPs. Finally, Ouyang et al. [19] base their placement
strategy on information that is only available to the user.

Furthermore, both stakeholders, IP and SP, do not only try
to improve their users’ service experience, but also try to
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Fig. 1. Overview of the system model.

minimize their operational cost. Thus, it is essential to model
the individual cost for both stakeholders and optimize the cost
reductions for both stakeholders at the same time. However,
most previous works mainly focus on optimizing the users’
service experience, like Jia et al. [15], Mukherjee et al. [16]
and Peng et al. [17], and do not include the stakeholders’
cost at all. Jia et al. [15] offload the workload from the
user’s device to a cloudlet, Mukherjee et al. [16] reduce power
consumption and latency, and Peng et al. [17] maximize the
number of served users per cloudlet. Apart from that, the
work of Liang et al. [9] tries to optimize the service placement
problem by optimizing the placement locations so that the IP’s
budget is not exceeded.

Finally, large parts of related work evaluate their approaches
based on synthetic data and assumptions that often are not
based on real-world data sets. For example, Liu et al. [11],
Ren et al. [13] and Yang et al. [14] use randomly generated
data within ranges that are not motivated by literature or other
sources. The work of Mondal et al. [12] models an average
Australian city, but not based on a real-world data set, but
on hypothetical assumptions. The same also applies to other
papers cited above, as shown in Table I. While evaluations
based on such data and assumptions are a good starting point
to show the general feasibility, evaluations using real-world
data sets help to underpin the practicality and applicability of
theoretical approaches.

III. SYSTEM MODEL

Fig. 1 provides an overview of our system model. In this
scenario, four stakeholders interact with each other: service
provider (SP), infrastructure provider (IP), cloud provider, and
users. However, we only consider IP and SP as active parts,
since only these two stakeholders have to jointly find suitable
cloudlets for placing services on them. Users initiate service
requests whenever they use a functionality of a service. Users
want a high Quality-of-Experience (QoE) of a service, which
is achieved by handling service requests on nearby cloudlets.
A cloud serves as the default service placement location, where

all service requests can be handled. Thus, users and the cloud
provider are not active parts in our system model.

The IP operates base stations (BS) and a network backend,
offers network access via its BSs, and deploys and operates
permanently available cloudlets. The cloud is accessible via
the IP’s network backend. Furthermore, BSs provide ubiqui-
tous radio coverage and network access for users, and multiple
users can be connected to one BS. By default, the service is
deployed in the cloud with sufficient capacity to handle the
requests of all of its users.

The SP may rent resources on the IP’s cloudlets and place
the service on them by paying a monetary compensation. The
service is placed on the cloudlet by offloading relevant parts
of the service from the cloud to the cloudlet. If the service
is not placed, e.g., because the SP and IP cannot agree on a
cost, it remains in the cloud.

Furthermore, we assume that the network can be divided
into a grid G of cells with one cloudlet per cell g ∈ G. For
each cell g ∈ G, we introduce an indicator variable γg , which
is 1 if the service is placed on the cloudlet in cell g and
0 otherwise. The goal is to place the service on particular
cloudlets that are advantageous for both IP and SP in terms
of cost reductions.

A. Service Provider

The SP provides a service to users which requires com-
putation and data transfer between the users and the cloud.
There are two different options how the service requests can
be handled, one of which is fixed for each cell g. First, the
service requests are handled by the cloud. After the service
requests arrive at the BS, the data of size d̃g data units is
transferred from the BS to the cloud. The computation is done
in the cloud, which requires pg processing units.

The second option is that the service requests are handled
by a cloudlet in cell g. After the service requests arrive at
the BS in cell g, they are handled by the cloudlet located
in cell g, which requires pg processing units on the cloudlet.
In addition to the cloudlet, the SP needs to use cloud resources
and the IP’s backbone network, e.g., in mobile AR games for
synchronizing local game states between the cloudlet and the
global state in the cloud. The required data transfer between
cloudlet and cloud is denoted as dg . The amount of processing
units required for this case in the cloud is reduced to p̃g < pg.

In the following, the cost models for the two options,
using cloud resources or service placement on cloudlets,
are introduced. The cost for providing the service on cloud
resources (γg = 0) in cell g consists of two parts: the cost for
data transfer and the cost for computing. First, the SP has to
pay a cost factor αSP

CP,g for utilizing the IP’s network for each
of the d̃g data units that need to be transmitted from the BS
to the cloud. Second, the SP has to pay a cost factor βSP

CP,g

to the cloud provider for the amount pg of processing units
required in the cloud, resulting in the following cost function:

κ̃SP
g = (1 − γg)

[
αSP

CP,gd̃g + βSP
CP,gpg

]
(1)

Note that the SP does not pay any cost for utilizing bandwidth
from the users’ devices to the BS, since these transmissions
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TABLE II

MATHEMATICAL NOTATIONS

need to be made regardless of whether cloudlets are used or
not. Therefore, this factor is not considered in our cost model.

The cost for providing the service placed on a
cloudlet (γg = 1) in cell g consists of three parts: the cost
for data transfer, the cost for computing resources in the
cloud, and the payment between SP and IP for the service
placement. The cost for data transfer contains the cost factor
αSP

CP,g ≥ 0 for every data unit dg that is transferred between
the cloudlet and cloud. The cost factor βSP

CP,g ≥ 0 denotes
the cost of each processing unit in the cloud. The payment
between SP and IP for the service placement on a cloudlet
is denoted by κSP

IP,g. κSP
IP,g consists of multiple parts, e.g., the

cost incurred for placing a service initially on a cloudlet as
well as the processing and data transfer to the cloudlet.

The bargaining between the IP and the SP to agree on the
payment κSP

IP,g is discussed in Sections IV and V. The resulting
cost function κSP

g of the SP in cases where the service is placed
on a cloudlet in cell g is

κSP
g = γg

[
κSP

IP,g + αSP
CP,gdg + βSP

CP,gp̃g

]
. (2)

The cost function of the SP for providing the service in the
whole grid G consists of two parts: (i) the cost for cells where
the service is placed on a cloudlet and (ii) the cost for cells
running the service in the cloud. Overall, the cost function κSP

of the SP for the whole grid G is as follows:

κSP =
∑
g∈G

[
κSP

g + κ̃SP
g

]
. (3)

The SP aims to reduce its cost κSP by placing the service
on suitable cloudlets [22]. However, only cells where the cost
for running the service on a cloudlet is lower than the cost for
using the cloud should be used [20]. The SP’s cost reduction is
a result of the fact that less data has to be sent through the IP’s
network backend from the BS to the cloud, since the service
request will be handled directly at the cloudlet. By optimized
selection of the cells where the services are placed, the cost
given by Eq. (3) is lower than the cost that the SP has to pay
to the cloud provider in the case without any cloudlet due to
less network usage in the IP’s backend.

B. Infrastructure Provider

Cloudlets contribute to the IP’s goal of reducing its cost [22]
by reducing the network traffic in its network backend, since
large parts of the service usage are handled directly by the
cloudlet. However, the parameters of the IP’s cost function
differ from the parameters of the SP’s cost function. While
the SP has to pay the cloud provider or the IP, depending on
using the cloud or cloudlets, the IP has to pay for establishing
and maintaining the network. Cloudlets reduce this cost by
adding computing and storage resources at the edge network
and reducing the traffic in the core network, which leads to a
cost reduction for the IP. To reduce as much cost as possible,
a cloudlet should serve many users, otherwise the deployment
cost could be higher than the cost reduction from the decreased
network usage.

We distinguish between three components in the cost of
the IP: The fixed cost, which is required for operating the
infrastructure for deployment and maintenance of the service,
the cost for processing on the cloudlet, and the cost for
transferring data over the IP’s backend network.

The fixed cost φIP
g of the IP related to cell g contains

all the infrastructure cost associated with deployment and
maintenance of a service, which is assumed to be independent
of the number of service requests in cell g. The cost for
deploying the service, i.e., transferring the required data from
the cloud to the cloudlet over the backend, only has to be
paid if the service is not already deployed on the cloudlet
in cell g. We do not consider service migration between
different cloudlets, but we assume that a service is always
offloaded from the cloud to the cloudlet. The maintenance
of a service, e.g., regular updates and monitoring, incurs a
cost for processing and data transfer for the IP (although less
compared to cells where the service is not deployed), even if
the service is already deployed on the cloudlet in cell g.

The second component of the cost, the cost for processing
on the cloudlet, is modeled in each cell g by the cost factor βIP

g

per processing unit. The total cost for processing is given by
the cost factor βIP

g multiplied by the number pg of processing
units required on the cloudlet in the given cell g.
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The third component of the cost is the cost for transferring
data over the IP’s backend network. For each data unit
transmitted over the backend network, a cost factor for αIP

g

is incurred. The total cost for data transfer is given by the
number of data units dg multiplied with the cost factor αIP

g .
To make service placement on cloudlets profitable for the

IP, the IP has to receive a payment by the SP, which is larger
than the aforementioned cost. The SP pays κSP

IP,g to the IP
for placing the service on the cloudlet in cell g. How the
payment κSP

IP,g is determined such that is acceptable for both
the IP and the SP, is the central problem discussed in the
remainder of this work.

Combining all the components of the cost and the payment
of the SP, results in the following cost for the IP if a cloudlet
is used in g ∈ G:

κIP
g = γg

[
φIP

g + βIP
g pg + αIP

g dg − κSP
IP,g

]
(4)

If no cloudlet is used in cell g (i.e., γg = 0), the IP only
has the cost factor αIP

g for utilizing the backend network to
transfer each of the d̃g data units from the cloudlet to the
cloud, leading to the following cost function:

κ̃IP
g = (1 − γg)

[
αIP

g d̃g

]
(5)

This results in the following cost for the IP for the grid G:

κIP =
∑
g∈G

[
κIP

g + κ̃IP
g

]
(6)

Note that the IP does not have to pay the cost given in Eq. (6)
directly to any stakeholder, but indirectly, e.g., through higher
investments into the network to handle the amount of data from
all services, which can be summarized as operating expenses.
The cost for deploying a cloudlet and letting SPs place services
on it will be paid by the SP to the IP to some degree, which
results in a cost reduction.

Table II summarizes the mathematical notation and gives an
overview of the used symbols.

C. Resource Limitations and Competition

We assume that sufficient resources are available at each
cloudlet to serve the SP’s demand for processing units pg in
cell g. In cases where the computational demand of the service
would exceed the resources of the cloudlet, we assume that
φIP

g (i.e., the cost for placing a service on a cloudlet incurred
to the IP due to the initial data transfer) contains additional
cost to scale the provided hardware in cell g accordingly.

This implies that although either a single SP may offer
multiple services or multiple SPs may exist, our approach pre-
sented in Section V can be applied to each service separately,
since the IP can handle unlimited services without causing
conflict situations between SPs. Thus, we do not consider
multiple SPs explicitly in the remainder of this paper.

Finally, each cell g may have cloudlets from different IPs.
However, we consider only a single IP in the remainder of
the paper without loss of generality, since our approach is
applicable to each IP in a cell separately to find the IP with
the highest cost reduction per cell. If multiple cloudlets from
different IPs are available in one cell, the cost function applies

to each IP. Furthermore, the SP may also opt to place the
service on cloudlets of different IPs in one cell if the calculated
cost reduction exceeds the cost in the cloud for that cell.

D. Problem Formulation

For each cell g ∈ G, the SP and IP need to come to
an agreement whether the service should be placed on the
cloudlet in cell g (i.e., γg = 1) or not (i.e., γg = 0). In the
first case, they also need to agree on a cost κSP

IP,g to be paid
by the SP to the IP. If they disagree, no service is placed
in cell g (i.e., γg = 0, κSP

IP,g = 0). To reach an agreement,
a bargaining solution is needed that satisfies the following
properties: (i) no participant of the bargaining should have
disadvantages by participating in the bargaining (individual
rationality) and (ii) the cost reduction caused by a service
placement on cloudlets should be shared equally between the
IP and SP (fairness). This gives a strong incentive for both
the SP and the IP to participate in a bargaining for service
placement. In the following, we derive a solution for service
placement and the associated cost.

IV. BARGAINING WITH COMPLETE INFORMATION

In this section, we present our solution to the problem stated
in Section III-D under the assumption that both the IP and
SP know all parameters of their own cost function and the
cost function of the other stakeholder. In this case, a Nash
Bargaining Solution (NBS) can be used to find an optimal
agreement between IP and SP.

Nash bargaining is a two-person bargaining framework [23],
where two stakeholders either reach an agreement a from a
set A of alternatives or fail to reach an agreement, in which
case the bargaining ends at a disagreement point d. Each
stakeholder i ∈ {1, 2} has a utility function Ui over the set
of agreements and the disagreement point. Nash showed that
under mild technical conditions, there exists a unique bargain-
ing solution, called Nash Bargaining Solution (NBS), which
satisfies a set of four axioms that any plausible bargaining
solution should satisfy [23]. It can be shown [6], [23], [24]
that an agreement a ∈ A is a NBS if it solves the following
optimization problem:

max
a∈A

(U1(a) − U1(d)) · (U2(a) − U2(d))

s.t. U1(a) ≥ U1(d), U2(a) ≥ U2(d). (7)

Hence, the NBS maximizes the product of both stakeholders’
utility gains compared to the disagreement outcome. In the
following, for each fixed cell g, we compute the NBS for the
problem stated in Section III-D.

A. Agreement Set and Disagreement Point

The set Ag of possible agreements between the IP and the
SP in cell g is defined by

Ag :=
{(

γg, κ
SP
IP,g

) |γg = 1, κSP
IP,g ∈ (−∞,∞)

}
(8)

Note that the price κSP
IP,g may also be negative, since if placing

the service in the cell is more profitable for the IP than the
SP, the IP may have to pay the SP to reach an agreement.
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If IP and SP do not come to an agreement for cell g,
no service is placed in cell g. A disagreement in cell g is
described by the following disagreement point:(

γg, κ
SP
IP,g

)
= (0, 0) (9)

B. Utilities of SP and IP

In Nash bargaining, each stakeholder has a utility function
over the agreement set and the disagreement point. In our case,
the utility functions per cell correspond to the negative cost
functions per cell. Hence, according to Eq. (1) and Eq. (2),
the utility of the SP for cell g is given by

USP
g

(
γg, κ

SP
IP,g

)
:= γg

[
− κSP

IP,g − αSP
CP,gdg − βSP

CP,gp̃g

]

+(1 − γg)
[
− αSP

CP,gd̃g − βSP
CP,gpg

]
(10)

and, according to Eq. (4) and Eq. (5), the utility of the IP for
cell g is given by

U IP
g

(
γg, κ

SP
IP,g

)
:= γg

[
− φIP

g − αIP
g dg − βIP

g pg + κSP
IP,g

]

+(1 − γg)
[
− αIP

g d̃g

]
. (11)

C. Disagreement Outcome

The disagreement outcome is given by the utilities of the
SP and IP, if they choose the disagreement point:
(
USP

g (0, 0), U IP
g (0, 0)

)
=

(
−αSP

CP,g d̃g − βSP
CP,gpg,−αIP

g d̃g

)
(12)

D. Feasible Agreement Points

The IP and SP will only accept an agreement
(
1, κSP

IP,g

) ∈
Ag if, for both of them, the agreement is better than the
disagreement outcome.

An agreement
(
1, κSP

IP,g

) ∈ Ag is better for the SP than the
disagreement outcome, if USP

g

(
1, κSP

IP,g

) ≥ USP
g (0, 0) holds,

which by Eq. (10) and Eq. (12) is equivalent to

κSP
IP,g ≤ αSP

CP,g(d̃g − dg) + βSP
CP,g(pg − p̃g) =: LSP

g (13)

Hence, LSP
g ≥ 0 gives an upper limit on the price that the SP

would accept. The value LSP
g corresponds to the cost reduction

for the SP when a service is placed in cell g.
An agreement

(
1, κSP

IP,g

) ∈ Ag is better for the IP than the
disagreement outcome, if U IP

g

(
1, κSP

IP,g

) ≥ U IP
g (0, 0) holds,

which by Eq. (11) and Eq. (12) is equivalent to

κSP
IP,g ≥ φIP

g + αIP
g (dg − d̃g) + βIP

g pg =: lIPg (14)

Hence, lIPg gives a lower limit on the cost to be paid by the
SP such that the IP would accept the agreement. The value lIPg
corresponds to the cost increase that the IP experiences when
the service is placed in cell g. Note that lIPg can also be
negative (lIPg < 0) if the IP has a cost reduction by placing
the service in cell g even without a payment by the SP.

A feasible agreement point is an agreement
(
1, κSP

IP,g

) ∈ Ag

that satisfies Eq. (13) and Eq. (14). Such feasible agreement
points do not necessarily exist. In detail, if LSP

g < lIPg holds,

i.e., the SP’s upper cost limit LSP
g is lower than the IP’s

lower cost limit lIPg , by Eq. (13) and Eq. (14), no feasible
agreement point exists. In this case, the IP and SP will choose
the disagreement option γg = 0.

However, if LSP
g ≥ lIPg , each cost κSP

IP,g in the interval[
lIPg , LSP

g

]
leads to a feasible agreement.

E. Nash Bargaining Solution

We now formulate the optimization problem according to
Eq. (7) to compute the NBS. If feasible agreement points exist,
i.e., if LSP

g ≥ lIPg holds, the NBS is the optimal solution of
the following problem:

max
κSP
IP,g

f(κSP
IP,g)

s.t. κSP
IP,g ∈ [lIPg , LSP

g ] (15)

where

f(κSP
IP,g) :=

(
USP

g

(
1, κSP

IP,g

) − USP
g (0, 0)

)
· (U IP

g

(
1, κSP

IP,g

) − U IP
g (0, 0)

)
= − (

κSP
IP,g

)2
+ κSP

IP,g(l
IP
g + LSP

g ) − lIPg LSP
g (16)

To compute the NBS, we set the derivative to zero, i.e.,

0 = f ′(κSP
IP,g,NBS) = −2κSP

IP,g,NBS + lIPg + LSP
g , (17)

we get

κSP
IP,g,NBS =

1
2

(
lIPg + LSP

g

)
(18)

and since f ′′(κSP
IP,g,NBS) = −2 < 0, and κSP

IP,g,NBS ∈
[lIPg , LSP

g ], the result in Eq. (18) gives the optimal solution of
Eq. (15). Hence, if LSP

g ≥ lIPg holds, according to the NBS,
SP and IP will agree on the price κSP

IP,g,NBS in Eq. (18), which
is the average of LSP

g and lIPg . Intuitively, SP and IP equal out
their cost, so that after the payment, both benefit from the
same cost reduction.

V. ITERATIVE BARGAINING WITH INCOMPLETE

INFORMATION

In Section IV, we have presented the NBS solution for
the case that the SP and the IP have complete information
about their own cost function and the cost function of the
bargaining partner. In this section, we consider two types
of incomplete information in the system model: incomplete
information about the cost factors of the bargaining partner
and incomplete information about the service usage. Further-
more, we propose a novel iterative bargaining approach under
incomplete information to overcome the challenges imposed
by the incomplete information.

A. Nash Bargaining With Incomplete Information

We extend the Nash bargaining problem from Section IV to
incorporate incomplete information for each stakeholder. The
first type of incomplete information is concerning the cost
factors of the bargaining partner. The IP does not know the
cost factor αSP

CP,g for transferring data in the cloud and the
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cost factor βSP
CP,g for processing in the cloud. The SP does

not know the cost φIP
g for placing a service, the cost factor

αIP
g for transferring data over the network and the cost factor

βIP
g for processing on the cloudlet. This type of information is

relevant to predict the potential cost savings of the bargaining
partner in case of an agreement. The SP and IP typically do
not want to share this private information with each other,
therefore we need to consider this information as incomplete
in the bargaining procedure.

The second type of incomplete information is concerning
the service usage in the cell g. The IP has no information about
the SP’s users activity and context. Therefore, the prediction
of service usage from the IP’s perspective can only be based
on other information. The service usage directly affects the
cost function κIP of the IP. In particular, the change lIPg in the
cost function by a service placement is not known by the IP.

To incorporate incomplete information about the service
usage we present two different approaches: No Information
Sharing (NIS) uses individual service usage predictions by the
IP and the SP, and Partial Information Sharing (PIS), where
the SP shares its service usage predictions with the IP.

B. Pre-Bargaining Information Acquisition and Sharing

1) Cost Factor Predictions: Before the bargaining proce-
dure starts, the IP and the SP acquire information about the
bargaining partner. It is possible to obtain predictions of the
bargaining partner’s cost factors within a range of possible
values from publicly available sources, e.g., from price lists of
competitors. Although some information about the bargaining
partner can be obtained using publicly available sources, the
available information on both sides is still incomplete, hence
IP and SP cannot simply apply the NBS from Section IV.

The SP has to predict lIPg (Eq. (14)), which is the minimum
price the IP would accept for placing the service on the
cloudlet in cell g. We model the incomplete information as
the uncertainty of the SP in lIPg . For this uncertainty from
the perspective of the SP, we introduce a probability density
function (PDF) of lIPg , which will be denoted as plIPg

(lIPg ).
We assume no further knowledge about the IP exists, leading
to the assumption of a uniform distribution between a lower
bound lIPg,n,min and an upper bound lIPg,n,max, resulting in the
PDF

plIPg
(lIPg )=

⎧⎨
⎩

1
lIPg,n,max−lIPg,n,min

, lIPg ∈ [lIPg,n,min, lIPg,n,max]

0, else.
(19)

The SP can obtain a lower bound lIPg,n,min, e.g., by predicting
the cost for the additional hardware and energy of the IP for
service placement [25], and an upper bound lIPg,n,max, e.g., by
using public price lists for service placement [26].

The IP has to predict LSP
g (Eq. (13)), which is the upper

limit on the price that the SP would accept. Analogously to
the cost factor prediction of the SP, we introduce for this
uncertainty of the IP a PDF of LSP

g , which will be denoted as
pLSP

g
(LSP

g ). Furthermore, we assume that the IP can determine

an interval for LSP
g described by a lower bound LSP

g,n,min and
an upper bound LSP

g,n,max, resulting in the PDF

pLSP
g

(LSP
g )

=

⎧⎨
⎩

1
LSP

g,n,max − LSP
g,n,min

, LSP
g ∈ [LSP

g,n,min, L
SP
g,n,max]

0, else.

(20)

The IP can obtain the lower bound LSP
g,n,min by predicting

the reduction in cloud and backhaul cost of the SP (e.g., [27]),
and the upper bound LSP

g,n,max by using public price lists of
cloud providers (e.g., [28], [29]). In the next step, the IP and
the SP predict the service usage in each cell g of the grid G.

2) Service Usage Prediction: The SP can predict the service
usage based on measurements of the users’ activity, users’
context and general information like weather conditions and
population densities. The exact service prediction procedure
of the SP will not be further discussed in this paper, since
there are several proposals in the literature (e.g., [30], [31]).
We model the result of the SP’s prediction of the service
processing requirements pg and data dg as

p̂SP
g = pg + np,SP

g , d̂SP
g = dg + nd,SP

g (21)

where np,SP
g (nd,SP

g ) is a Gaussian distributed random variable
with a standard deviation of σ

p,SP
g (σd,SP

g ). The accuracy of the
prediction, which is given by σp,SP

g and σd,SP
g , depends on the

cell g. The remaining data d̃g and service processing requests
p̃g to the cloud are predicted analogously.

The IP has no information about the SP’s users and therefore
relies on contextual information in each cell g, such as
weather conditions and population densities. We model the
IP’s prediction of the service processing requirements pg and
data dg as

p̂IP
g = pg + np,IP

g , d̂IP
g = dg + nd,IP

g (22)

where np,IP
g (nd,IP

g ) is a Gaussian distributed random variable
with a standard deviation of σp,IP

g (σd,IP
g ). Note that σp,IP

g

and σd,IP
g may be substantially larger than σp,SP

g and σd,SP
g

respectively, since the IP has no information about the SP’s
users. The prediction of the remaining data d̃g and service
processing requests p̃g to the cloud are modelled analogously
to Eq. (22).

In the next section, the sharing of the service usage predic-
tions is discussed. For this procedure, two alternatives will be
presented. The first one is without any information sharing
between the stakeholders, whereas in the second one both
stakeholders share their service usage prediction with each
other.

3) No Information Sharing (NIS): This approach does not
involve any information sharing between IP and SP before
the bargaining procedure. Therefore, both stakeholders use a
different service usage prediction to forecast their resulting
cost of a service placement. To predict the IP’s cost lIPg in
case of a service placement in cell g, the IP considers the
service usage prediction using Eq. (22). Since the IP knows
its own cost factors, the IP can calculate lIPg by Eq. (14). The
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SP can predict its potential cost savings LSP
g (Eq. (13)) in

case of a service placement with its service usage prediction
according to Eq. (21).

4) Partial Information Sharing (PIS): In this approach, both
stakeholders report their service usage predictions for cell g to
the bargaining partner. In cases where the SP has no experience
with deploying the service in cell g, the prediction of the IP
could be more accurate. In cells with high service usage in the
past, the prediction of the SP could be more accurate. Sharing
the service usage predictions does not introduce negative
consequences for both, since both can measure the service
usage anyway. Both the IP and SP will use the more accurate
prediction to calculate their own cost functions lIPg , LSP

g .
Note that using the PIS variant for the upcoming iterative

bargaining approach, one of the stakeholders, or both, could
lie about the predicted service usage, whereas using the NIS
variant, this is not possible. To prevent stakeholders from
abusing wrong predictions of service usages, there are several
mechanisms to enforce truthfulness in repeated games, e.g.,
reputation-based methods [32], so that we will not further
investigate it in this paper. The remaining structure of our iter-
ative bargaining approach is the same, regardless of whether
NIS or PIS is used to acquire all required information and
compute the IP’s and SP’s cost functions.

Using either its own prediction of dg , d̃g and pg or the
values it got from the SP, the IP can predict the minimum
price lIPg that should be paid by the SP. However, the IP has
limited knowledge about the valuation LSP

g , i.e., how profitable
a service placement is for the SP. The SP, on the other hand,
computes the maximum cost LSP

g that it would accept for using
the cloudlet. However, the SP has limited knowledge about
the valuation lIPg , i.e., how profitable or expensive a service
placement on a cloudlet in cell g is for the IP.

C. Iterative Bargaining

Our solution is an iterative bargaining approach with sealed
offers, as shown in Fig. 2. The value n indicates the index of
the current iteration.

1) Offering Phase: The SP offers a maximum acceptable
cost oSP

g,n to pay for using the cloudlet, whereas the IP offers a
minimum acceptable cost oIP

g,n for using the cloudlet. The SP
and the IP update their offers according to their corresponding
information in round n, i.e., the cost oSP

g,n and oIP
g,n may not

correspond to their actual true valuations LSP
g and lIPg .

2) Revealing Phase: Both offers are revealed simultane-
ously. If the SP’s offer is higher than the offer of the IP
oSP

g,n > oIP
g,n the bargaining is finished. The final cost is

calculated as

κSP
IP,g =

1
2
· (oSP

g,n + oIP
g,n). (23)

Choosing the final cost as the average of the two offers has
been shown to maximize the social cost [33]. If oSP

g,n < oIP
g,n

the bargaining will continue, since the SP’s offer is lower
than the minimum acceptable cost of the IP. If both repeat a
previous offer, i.e. oSP

g,n = oSP
g,n−1, and oIP

g,n = oIP
g,n−1, neither

SP nor IP are willing to give an offer closer to the acceptable
region. They will disagree, the bargaining procedure will stop,

Fig. 2. The iterative bargaining procedure.

and the service will not be placed in this cell. Furthermore,
we set a limit N for the number of iterations, such that the
disagreement outcome is chosen if n > N .

3) Update Phase: After seeing the offer of the other stake-
holder, both stakeholders update their knowledge about the
valuation of the other stakeholder. Then, the next round n+1 of
the bargaining process starts.

SP and IP only have access to incomplete information
regarding the valuation of the other stakeholder and conse-
quently do not know the worst case of the other stakeholder.
Therefore, we derive an optimal bidding strategy for SP and IP
under incomplete information. The expected profit of the SP
considering the incomplete information about lIPg depending
on its offer oSP

g,n in cell g is

πg,SP(oSP
g,n) = ElIPg

(LSP
g − κSP

IP,g)

=

oSP
g,n∫

−∞

(
LSP

g − 1
2

(
oSP

g,n + s

))
· plIPg

(s) ds. (24)

Three edge cases for oSP
g,n can be distinguished: (i) oSP

g,n <
lIPg,n,min: the offer of the SP is smaller than the predicted
lower bound for the cost of the IP, i.e., the expected profit
(Eq. (24)) is zero, since the probability of an agreement is
zero; (ii) oSP

g,n > LSP
g : the offer of the SP is higher than its own

benefit from an agreement, i.e., the expected profit (Eq. (24))
may be negative; (iii) oSP

g,n > lIPg,n,max: the SP’s offer is higher
than the maximum predicted cost lIPg,n,max of the IP, i.e., this
offer leads to the probability of an agreement of 1.0, but is
clearly suboptimal for the expected profit of the SP. The SP
could decrease its offer and increase its expected profit.
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We assume that the SP and the IP are risk-neutral, meaning
that they maximize their individual expected utility. Further-
more, we assume individual rationality, i.e., a stakeholder only
gives an offer if the expected utility is positive. The optimal
offer oSP

g,n for the SP in cell g is

o
∗,(t)
g,SP = max

oSP
g,n

πg,SP(oSP
g,n)

=

⎧⎪⎨
⎪⎩

2
3
· (LSP

g +
1
2
lIPg,n,min) LSP

g <
3
2
lIPg,n,min

LSP
g , LSP

g >
3
2
lIPg,n,min

(25)

The expected profit of the IP considering the incomplete
information about LSP

g depending on its offer oIP
g,n in cell g is

πg,IP(oIP
g,n) = ELSP

g
(κSP

IP,g − lIPg )

=

∞∫
oIP

g,n

(
1
2

(
oSP

g,n + s

)
− lIPg

)
· pLSP

g
(s) ds. (26)

Three edge cases for oIP
g,n can be distinguished: (i) oIP

g,n < lIPg :
the offer of the IP is smaller than its own cost induced by the
service placement, i.e., the expected profit (Eq. (26)) may be
negative; (ii) oIP

g,n < LSP
g,n,min: in this case, the probability of

an agreement is 1.0, since the IP offers less than the minimum
predicted cost reduction of the SP, i.e., this type of offer is
suboptimal, since the IP could increase oIP

g,n and increase its
expected profit; (iii) oIP

g,n > LSP
g,n,max: the offer of the IP

is higher than the expected cost reduction at the SP, i.e.,
the expected profit (Eq. (26)) is zero, since the probability
of an agreement is zero. The optimal offer oSP

g,n for the IP
in cell g is

o
∗,(t)
g,IP = max

oSP
g,n

πg,SP(oSP
g,n)

=

⎧⎪⎨
⎪⎩

lIPg , lIPg >
3
2
LSP

g,n,max

2
3
· (lIPg +

1
2
LSP

g,n,max) lIPg <
3
2
LSP

g,n,max.
(27)

After seeing the offers of the other stakeholder, both decide
to update their information about the valuation of the other
stakeholder. For this update, we choose a sequential linear
estimator with the adjustment rates λSP, λIP based on the
observation of the offer of the other stakeholder:

lIPg,n+1,min = lIPg,n,min + λSP · (oSP
g,n − lIPg,n,min) (28)

LSP
g,n+1,max = LSP

g,n,max + λIP · (oIP
g,n − LSP

g,n,max). (29)

In case of complete information (both sides know the cost
function of the other stakeholder), the proposed algorithm
yields the NBS, as computed in Section IV, in the first
iteration. The final cost is the same as in the NBS:

κSP
IP,g =

1
2
· (oSP

g,n + oIP
g,n)

=
1
2
·
(

2
3
·
(

LSP
g +

1
2
lIPg

)
+

2
3
·
(

lIPg +
1
2
LSP

g

))

=
1
2

(
lIPg + LSP

g

)
= κSP

IP,g,NBS . (30)

However, IP and SP typically do not exchange their cost
functions and private valuations. This incomplete information
can lead to inefficiencies compared to the NBS with complete
information [34]. For every cell g ∈ G, the resulting κSP

g and
κIP

g may not result in the minimum cost for both stakeholders,
but if both agree on a cost, it will be lower than κ̃SP

g and
κ̃IP

g would be. This entire procedure is repeated for every cell
g ∈ G, resulting in κSP and κIP, respectively.

D. Complexity Analysis

To discuss the complexity of the proposed approach, the
update parameters have to be discussed first, since they play
a crucial role with respect to how long the bargaining will
take. The selection of the maximum iteration count N and
the adjustment rates λ{IP,SP} of the SP’s and IP’s offer are
interdependent. A small adjustment rate λ{IP,SP} leads to a
high number of iterations until SP and IP either agree or finally
disagree by repeating a previous offer. Choosing N too small
will lead to more cells without an agreement, although it might
be profitable for both to reach an agreement. A high value
of λ{IP,SP} is undesirable for the SP and IP, respectively,
since the offer is corrected too much in favor of the other
stakeholder.

We assume that both stakeholders agree on a maximum
number of iterations, e.g., N = 10, due to time constraints,
i.e., the bargaining should not take too much time compared
to the duration of service placement. Each stakeholder can
tune its adjustment rate λ{IP,SP} individually, e.g., based on
heuristics.

The bargaining procedure results in one of the two cases in
each cell g: (i) the stakeholders agree on a cost or (ii) they
disagree. In both cases, the number of iterations is bounded
by N , since the bargaining is stopped after N rounds without
agreement. The iterative bargaining is repeated for every cell
g ∈ G. Thus, our iterative bargaining approach will converge
at the latest after N · |G| iterations in the worst case. In the
case of complete information, iterative bargaining yields the
NBS, thus both stakeholders will agree on the payment stated
in Eq. (30) for a particular cloudlet during the first iteration,
which yields 1 · |G| iterations in the best case.

VI. EXPERIMENTAL EVALUATION

A. Case Study and Data Set

As discussed in Section I, cloudlets are especially suitable
for processing latency-sensitive applications like mobile AR
games. Therefore, our evaluation uses a real-world data set
that we collected from Niantic’s AR game Ingress, which was
empirically investigated by Felka et al. [31] and is available
on request for scientific purposes. In this game, players visit
so-called portals that are linked to real points of interest and
try to capture them, leading to continuous player movements in
the real world. The data set contains the user’s service requests
including the location of a request, which will be called game
actions in the following. One game action is one interaction
between a player and a portal by either trying to capture or
defend it.
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Fig. 3. Data preprocessing for every day.

TABLE III

MATHEMATICAL NOTATION AND THEIR VALUES FOR THE

TAKE-IT-OR-LEAVE-IT APPROACH

The data set was collected over a time period starting on 1st

of January 2016 until the 31st of May 2017 (i.e., almost 1.5
years), but we focus on the data collected for the year 2016.
The data for this period is almost complete, except for a 5-day
maintenance period (from 2016/09/20 to 2016/09/24). In the
considered period of time, about 21, 250 users of the game
have made over 17 ·106 game actions at 53, 259 portals in the
observation area. The data set covers urban, metropolitan, and
rural areas with a total area of 25 200 k2m. We divided the
area into cells of 1 km × 1 km each, since 5G base stations
approximately have a radius of about 500 m, depending on
the selected frequency and antenna. Subsequently, we assigned
the game actions to the corresponding cells of the grid and
summed all game actions on a daily basis within a cell to
determine the total daily number of service requests of a cell.
This process is visualized in Fig. 3. In our case study, the SP
deploys the parts of the game (i.e., the service) relevant for
the spatial area of the grid to cloudlets, while the IP owns
the infrastructure, represented by the 25, 200 cells. In our
scenario, each cell represents a possible deployment point for
the services. The data set contains the number of in-game
actions for each cell, representing the geographical service
usage of Ingress.

B. Experimental Setup

Besides our iterative bargaining approach with two alter-
natives (PIS and NIS), we also include two additional cost
models: a traditional Take-it-or-Leave-it approach and the
NBS.

1) Take-It-or-Leave-It: The Take-it-or-Leave-it (ToL)
approach represents a typical cost-based model. Here, the IP
independently selects the prices in the cost functions in the
following manner: First, placing a service in cell g incurs a
fixed cost φSP

IP,g ≥ 0 that the SP has to pay to the IP. This is
the cost of the IP for placing the service on the cloudlet, i.e.,
transferring the required data from the cloud to the particular

TABLE IV

EVALUATION PARAMETERS

cloudlet or maintaining a service on a cloudlet. This implies
that if in a previous bargaining the service was already placed
on the cloudlet in cell g, φIP

g and thus φSP
IP,g is only a fraction

of the original cost, since the deployment cost is no longer
included (the composition of φIP

g is explained at the end of
Section VI-B on page 1833). Hence, the fixed cost φSP

IP,g

depends on the specific cell g. Second, the SP has to pay a
cost factor βSP

IP,g ≥ 0 to the IP for each of the pg processing
units required on the cloudlet in cell g, resulting in:

κSP
IP,g = φSP

IP,g + βSP
IP,gpg (31)
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Table III summarizes the variables required for the ToL
approach for this evaluation.

To place a service, the SP has to pay the price the IP
asks for. The SP exclusively makes the placement decision.
Only if the SP can reduce its cost by using a cloudlet, the
SP performs a placement in the specific cell. This approach
represents a lower-bound scenario in our evaluation, since the
two stakeholders do not cooperate in any respect to achieve
joint benefits.

2) Nash Bargaining: The second approach represents the
optimal solution, i.e., the case where both stakeholders coop-
erate, have complete information about each other’s cost, and
achieve minimal social cost according to Section IV.

3) Iterative Bargaining: The third approach includes the
two variants of our iterative bargaining approach. In the first
variant, both stakeholders do not exchange any information.
In contrast, in the second variant, information is partly shared
between the stakeholders, e.g., the SP provides service usage
predictions to the IP (see Section V).

The data set consists of in-game actions that reflect the
service usage of the game but are not technical measures that
we can directly use in our simulation. We therefore need to
translate the in-game actions into technical measures such as
the network traffic or the required processing power in a cell to
conduct a meaningful simulation. In the following, we describe
this process in more detail and present an overview of the
evaluated parameters in Table IV.

Regarding network traffic, one hour of play in Ingress
causes about 28 MB of traffic on a mobile device of one
player, while a player performs an average of 14.56 game
actions per hour. By dividing the network traffic of one-hour
gameplay by the average number of game actions per hour,
we get a value of 2 MB per game action. While 2 MB per game
action seems like a lot, it includes all unrecorded activities,
which also generate traffic (view the map or photos of the
portals) and can thus generate traffic without performing any
logged game action. Therefore, we consider an average of
2 MB per game action to be realistic. However, to avoid
being specific for the game Ingress, we vary this parameter
in our evaluation to match the network traffic of other popular
AR games [35]. Thus, we assume that mobile AR games
can generate data units DU ranging from 1 MB to 8 MB.
If there is no placement of a service in cell g, we assume
that the entire data has to be sent to the cloud, resulting in
d̃g = actionsg · DU . Based on the results of a study by
Wang et al. [3], we assume an average reduction of 92% in
network traffic to the cloud and a remaining overhead traffic
of 8%, if there is a service placement on a cloudlet in a
particular cell, thus dg = d̃g · (1 − 0.92).

As already explained for the data units, we also vary
the processing units to represent AR games with different
processing requirements, which is based on required CPU
cycles. Based on the works of Al-Shuwaili and Simeone [36],
Liu et al. [37] and Dinh et al. [38], applications processed
on cloudlets or similar edge computing resources require
between 3 · 108 CPU cycles for simple applications and
20 · 1010 CPU cycles for long-running applications. Based on
the performance of modern CPUs, we assume an average of

2.5 GHz processing speed, resulting in 0.125 s and 8.3 s exe-
cution time, respectively. As a third service type we introduce
an execution time of 2.5 s, resulting in PU = [0.125, 2.5, 8.3].
For processing one game action in the cloud (i.e., no cloudlet is
used), we define pg = actionsg ·PU . Furthermore, according
to Wang et al., 8% − 12% of requests need to be forwarded
from the edge to the cloud server [3]. Therefore, we assume
that 10% of all game actions require one additional processing
unit in the cloud (e.g., to synchronize the game state), resulting
in p̃g = pg · 0.1.

As discussed in Section V-D, each stakeholder can tune
its adjustment rate λ{IP,SP} individually. Therefore, we select
three values for λ{IP,SP} and simulate all combinations of
these three values between both stakeholders.

Now that the various service types have been defined,
the following result emerges with regard to the number of
simulations: for each combination of PU , DU , λSP and λIP,
we simulate the four different bargaining approaches. Each
simulation run simulates the placement behavior on a daily
basis. This results in 311,040 simulations:

|Placement approaches| · |PU | · |DU |
·|λIP| · |λSP| · |days|

= 4 · 3 · 8 · 3 · 3 · 360 = 311, 040 (32)

Finally, we select and specify the parameters for the cost
functions for the simulation. For data transmission cost factor
to the cloud (αSP

CP,g), we use public price lists of Amazon AWS
Lambda [28] and Google Cloud Functions [29] and derive the
cost the SP has to pay to the cloud provider per MB. Further-
more, based on Amazon Lambda@Edge [26], we derived that
data transmission to edge resources (i.e., αIP

g ) costs about half
of the data transmission to the cloud. Using the same approach,
i.e., consulting public price lists of Amazon AWS and Google
Cloud, we also could derive that one second of execution in the
cloud costs about 0.000029 cents, while processing on edge
resources is about three times more expensive. This results in
βSP

CP,g = 0.000029 and βIP
g = 0.000087.

Accuracy in predicting service usage and accuracy in
predicting the bargaining partner’s cost factors characterize
incomplete information. We assume that both stakeholders
can predict each cost factor of the corresponding bargaining
partner, in an interval of ±10% around the true value (see
the predicted cost factors from public sources in Table IV).
The accuracy of the prediction of service usage is assumed to
be σp,SP

g = 0.5σcell
g , σd,SP

g = 0.5σcell
g for the SP and σp,IP

g =
1.5σcell

g , σd,IP
g = 1.5σcell

g for the IP, whereas σcell
g is a cell

specific standard deviation given by the dataset. Therefore, the
accuracy of service usage prediction varies between different
cells.

To evaluate the ToL approach, the IP has to assign a cost
factor the SP has to pay for processing on cloudlets (i.e., βSP

IP,g

and the initial placement of a service (i.e., φSP
IP,g). As indicated

above, data transmission to the cloud is two times more
expensive than data transmission to the cloudlet. Therefore,
we assign the cost factor βSP

IP,g as a random value between
βIP

g and 4 · βIP
g , which corresponds to twice the price on the

average. We use the same approach to predict a value for φSP
IP,g
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Fig. 4. Monthly accumulated cost reduction over one year for all approaches.

as unif [φIP
g , 4 ·φIP

g ], where φIP
g is defined as 128 MB ·αSP

CP,g

because 128 MB is the smallest amount that can be used
on AWS Lambda@Edge or Google Cloud Functions. Finally,
maintenance cost is usually considered to amount to about
10% of the deployment cost [29], [39], which we also use as
a reference in our evaluation.

C. Results

To evaluate the performance of our approach, we analyze
the cost reduction, number of cloudlets used, and percentage of
game actions processed on cloudlets. Since the cost reductions
can vary in size between both stakeholders, i.e., distributed
unequally between the two stakeholders, one stakeholder could
benefit more than the other. Therefore, we also evaluate and
compare the fairness of the approaches in a final step.

Since placing a service on a cloudlet incurs a fix cost φIP
g

for the IP and φSP
IP,g for the SP, there is a trade-off between

the number of service placements and the number of game
actions covered within that time period. Therefore, we simulate
every single day by calculating every approach’s placement
decisions and the associated cost, network traffic, etc. This
means that the stakeholders bargain every day. Since our
iterative bargaining approach with partial information sharing
(PIS) requires the SP to predict the service usage in advance,
we add a slight variance based on a half daily standard
deviation to the data in our data set to simulate inaccuracies
in SP’s prediction. In the case of iterative bargaining with no
sharing of information (NIS), the IP performs the prediction.
However, since the IP does not have internal information about
the service, the IP can only roughly predict service usage.
Therefore, the IP’s prediction is not as good as the SP’s
prediction. To simulate the inaccuracies of the IP’s prediction,
we add one and a half standard deviation variance to the data
to simulate the IP’s prediction, which is an increase of one
standard deviation compared to the SP’s prediction of the PIS
variant.

1) Cost Reduction: Fig. 4 shows the accumulated cost
reductions of all approaches for each stakeholder over one
year, where each box shows the accumulated cost reductions at
the end of each month. The term “accumulated cost reduction”
refers to the amount of money that IP and SP are saving (in our
case per month) when using cloudlets compared to a purely

cloud-based environment. In essence, it means

Accumulated cost reduction =
∑
g∈G

[
κ̃{SP,IP}

g

]
− κ{SP,IP}

(33)

Starting with the SP’s perspective, the results show that the
lower and upper quartiles of the ToL approach (blue boxes) are
significantly lower compared to both variants of our iterative
bargaining approach (red boxes for PIS, yellow boxes for NIS).
However, rare cases exist where the ToL approach performs
better than our iterative bargaining (e.g., if the service usage
predictions for the iterative approach deviate significantly from
the real values). On the average, both iterative bargaining
variants lead to higher cost reductions. Furthermore, our PIS
variant is quite close to the NBS. From the IP’s perspective,
the results are comparable. Similar to the previous perspective,
our NIS and PIS bargaining approach perform better than
the ToL approach and get close to the NBS solution. The
mean savings are slightly lower for the PIS variant than for
the NBS, but the variance of the cost reduction is larger for
the NBS. Furthermore, in some rare cases both graphs show
that the PIS and NIS approaches can also achieve negative
cost reductions. In other words, both approaches may cause
additional cost and do not reduce cost. The explanation for this
effect is that both approaches perform their bargaining with
the predicted service usage. In some rare cases, the predicted
service usage may differ from the actual value in a way that the
placement becomes unprofitable, causing additional cost. More
specifically, if such a case occurred and additional monthly
costs were generated, they ranged, on the average, from $1.96
(NIS) to $6.01 (PIS) for the SP and from $2.88 (PIS) to $17.01
(NIS) for the IP. In considering the average monthly savings of
both approaches, the comparatively low cost that could occur
in such an unusual case are rather marginal and negligible.

On the average, the SP achieves about 12% higher cost
reduction with the NIS variant than with the ToL approach,
while the IP achieves about 16% higher cost reduction if the
IP also chooses the NIS variant of our iterative bargaining
approach over the ToL approach. When considering the mean
values of the PIS variant, the SP achieves about 44% higher
cost reduction compared to the ToL approach, while the
IP reaches about 47% higher cost reduction if the IP also
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Fig. 5. The number of placed services on cloudlets for all approaches.

chooses the PIS variant of our iterative bargaining approach
over the ToL approach. The differences in cost reduction are
statistically significant (unpaired T-test, p < 0.01).

The cost reductions of the NBS (green boxes) are clearly
higher than the cost reductions of the ToL approach, as shown
by the blue boxes. Using the NBS, the IP can reduce the cost
by an additional 78% compared to the ToL approach. The SP
can reduce its cost up to about 117% compared to the ToL
approach. Since both stakeholders share their cost reductions
in the NBS, the cost reductions are identical for both. However,
comparing the results of iterative bargaining with the results
of the NBS solution, our NIS variant achieves 52% of the
possible cost reductions for the SP and 65% of the possible
cost reductions for the IP. In contrast, our PIS variant achieves
66% of the possible cost reductions for the SP and 83% of
the possible cost reductions for the IP.

All in all, our approach performs better than the ToL
cost-based approach in terms of cost reduction and comes
close to the optimal solution under complete information.

2) Number of Placed Services: Fig. 5 shows the num-
ber of services placed on cloudlets for all four approaches
over one year on a daily basis, grouped by month. The
NBS represents the best case with an average number of
624.5 placed services on cloudlets, the ToL approach only
achieves about 15% of this result with 94.9 placed services.
Using our proposed approach in the NIS variant results in
an average number of 248.5 placed services, 39.8% of the
best case, leading to 2.6 more placed services compared to
the ToL approach. The PIS variant results in an average
number of 339.6 placed services, which is 54% of the best
case, leading to 3.6 times more placed services compared
to the ToL approach. The gaps between the NBS solution
and PIS or NIS approaches appear to be quite significant.
However, it is worth mentioning that the NBS approach has a
100% prediction accuracy, which results in a large number
of placements that are on the verge of profitability. How-
ever, considering the number of placed services alone is less
meaningful, since a high number of placed services does not
necessarily lead to an improvement in the network, e.g., in case
of a bad placement. Therefore, in the following we consider
the average number of game actions performed by the placed
services.

Fig. 6. Percentage of game actions processed on cloudlets for all approaches.

3) Game Actions Processed by Cloudlets: Fig. 6 shows the
ratio of game actions processed directly by cloudlets to the
total number of game actions. The number of game actions
processed by cloudlets can be considered as an indicator for
better QoE, since users experience a lower latency. With an
average of 94.9 placed services, the ToL approach covers an
average of 30% of all game actions, i.e., cloudlets compute
30% of all game actions.

While the NBS approach places 6.6 times more services on
cloudlets, only 2.5 times more actions are covered (or 76%
of all game actions). This is because service usage is not
evenly distributed, with a few cells having high utilization.
The majority of them have medium to low numbers of game
actions. Therefore, a 6.6 times increase in cloudlets does
not necessarily cover 6.6 times more actions. At this point,
it is important to note that 76% coverage of game actions
of the NBS approach is the optimal solution, where the joint
savings are the highest. A coverage of 100% would also be
theoretically possible. However, in our case study, it would
not make sense economically, since additional placements
would have to take place, causing additional cost and reduce
the achieved savings. Both variants of our approach achieve
between 48% (NIS) and 58% (PIS) of the covered game
actions, while the ToL approach only achieves about 30%.

The figure also clearly shows that the lower quartiles of
the ToL approach are significantly lower and close to zero
compared to other approaches. The reason for this is that in
the ToL approach, there are cells where a placement is only
advantageous for the IP, e.g., if the price of the IP is too
high. However, since the SP decides on the placement, it does
not happen since the SP has no advantage. Our approach
attempts to reduce cost across all stakeholders and achieves
significantly better results than the ToL approach in terms of
placed cloudlets and processed game actions.

Overall, the results show that cooperation is beneficial
for both stakeholders. The IP can reduce the load in its
infrastructure to reduce cost. If the IP also shares its cost
reductions cooperatively with the SP, the SP deploys more
services, leading to further cost reductions for the IP. The SP
also benefits from the cooperative behavior by reducing the
cost in the cloud. In total, the number of service placements
on cloudlets is higher, which leads to more actions covered
by cloudlets and a better quality of service, which in turn is
beneficial for the customers of the IP and the SP.
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Fig. 7. Measured fairness of all approaches.

However, full cooperation between SP and IP is rather
unrealistic, because it requires a full exchange of information
between both stakeholders. Our novel iterative bargaining
approach requires a minimum level of cooperation (e.g.,
exchange of predicted service usage) and yields a solution that
comes close to a cooperation with complete information, with-
out requiring the stakeholders to disclose their cost functions
or further business-relevant internal details.

4) Fairness Comparison: If the IP shares its cost reductions
cooperatively with the SP, the SP is able to deploy more
services and further reduces the cost for the IP. This reflects
a certain fairness from which both stakeholders can benefit.
More precisely, the ratio between the savings of the IP and
the SP reflects the fairness of the approaches. In the ideal
case, both parties can achieve equal savings, resulting in a
high fairness. To measure fairness, we use the well-recognized
max-min fairness [40]. It is calculated of each approach using
the accumulated savings once at the end of the simulation.

Fig. 7 contains a violin plot showing the distribution of
the fairness for each approach. Starting with the NBS, the
savings are identical for both stakeholders, resulting in a
perfect fairness of 100%. Comparing the fairness of the ToL
approach with the fairness of both variants of the presented
approach, the fairness of the ToL approach is substantially
lower and often below 50%. The reason for this is that in
the ToL approach, the IP sets the price, which allows the IP
to achieve a relatively high savings, as opposed to the SP.
This leads to less fairness between both stakeholders. The
distribution of fairness of the NIS and PIS variants are similar.
As described in the previous section, the average accumulated
savings differ between the two approaches. However, the ratio
of accumulated savings between both stakeholders is balanced,
which leads to a high fairness of both variants, with some
cases, e.g., due to wrong service usage predictions, where the
fairness can drop below 50%.

5) Impact of Incomplete Information: The results presented
in the previous subsections show that different aspects of
incomplete information yield different outcomes in terms of
cost savings per stakeholder and fairness of the results. In the
evaluation, we showed three different amounts of shared
information. Using the NBS, both stakeholders have to share
all information they have, whereas using the NIS variant of
our approach no information is shared at all. Finally, in our
approach using the PIS variant only the SP has to share little
information about the service usage, which does not introduce
any negative consequences, since the real service usage can

be monitored by the IP anyway. These degrees of incomplete
information are also reflected in the results. The accumulated
cost reductions of SP (Fig. 4a) and IP (Fig. 4b) indicate
that the more information is shared between the stakeholders,
the more cost reductions both can achieve, resulting in NIS
giving the least cost reductions and NBS the most, although
even the NIS variant achieves better results compared to the
traditional ToL approach. This is also visible in the number
of placed services (Fig. 5) and game actions processed by
cloudlets (Fig. 6), since these parameters directly influence the
cost reductions. The different degrees of information sharing
also impact the fairness of the bargaining (Fig. 7). The NBS,
i.e., complete information sharing, always yields an absolutely
fair outcome. The less information is shared, however, the
more unfair the results will become. In summary, however,
the bargaining approach with the lowest level of fairness and
with the least cost reduction is still better with respect to
all evaluated parameters than the ToL approach, where also
no information is shared, but where additionally both stake-
holders are not bargaining. This leads to the conclusion that
stakeholders should cooperate and share at least a minimum
amount of information. This way, they achieve near-optimal
results in terms of cost savings, but without having to fully
share all information, including private information, which is
also reflected in the presented results for the PIS approach.
Finally, the PIS approach seems more desirable as it yields
better results across all evaluated parameters, but it must be
taken into account that in the PIS approach the IP has to trust
the SP. The SP could lie about the service usage prediction in
its own favor. In scenarios where the SP is not trusted, the NIS
variant offers an alternative. Furthermore, it is also possible to
extend the PIS variant by a mechanism to enforce truthfulness,
such as reputation-based methods [32].

VII. CONCLUSION

In this paper, we proposed a novel iterative bargaining
approach between SP and IP for nearly optimal service
placement in edge computing scenarios with respect to social
cost despite incomplete information. We first introduced a
cost model for SP and IP with relevant cost parameters,
such as hardware deployment, service placement, processing,
and data transfer. Assuming that both stakeholders share full
information with each other, we derived the NBS as an optimal
solution for both stakeholders, since social cost can be mini-
mized. Since in practice it is unlikely that both stakeholders
will share all of their information, we presented an iterative
bargaining approach with two variants: (i) no information has
to be shared at all, and (ii) minimum information is shared
between IP and SP. Our approach finds a nearly optimal
solution of about 83% of the NBS’s cost reduction by sharing
only service usage predictions and up to 65% of the optimal
solution if no information is shared. Our case study based on
the mobile AR game Ingress showed that despite incomplete
information, our approach can achieve up to two times higher
game action coverage on cloudlets than a traditional ToL
cost model, which increases the users’ QoE. Finally, we also
showed how different degrees of incomplete information affect
the outcome of our bargaining approach.
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There are several areas of future work. For example, the
cloud provider could be modeled as an active stakeholder in
our game. Furthermore, the resource constraints of cloudlets
should be considered. Finally, the proposed approach should
be extended by a mechanism to enforce truthfulness between
the stakeholders, such as reputation-based methods [32].
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