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Abstract—In this paper, we consider optimal resource alloca-
tion for unmanned aerial vehicle (UAV)-assisted delay-sensitive
communications, where a UAV flies to deliver time-critical
messages to multiple ground users (GUs) as soon as possible.
However, the GUs’ locations cannot be perfectly known at the
UAV, which may jeopardize the timeliness of message delivery
to the GUs. To tackle this challenge, we consider a disk-based
fixed-rate transmission scheme at the UAV, which can exploit the
mobility of the UAV to facilitate timely communications despite
uncertain user locations. Consequently, the system performance
hinges on the UAV’s flight trajectory and the scheduling of
GUs, which are further optimized using a cost minimization
approach. Thereby, a general class of delay-aware cost functions,
referred to as the cost of delivery delay (CoDD), is defined
taking into account the diverse delay-sensitivity requirements
of the GUs, and we jointly optimize the user scheduling and
the UAV’s trajectory for minimization of the sum CoDD of
all GUs incurred before the UAV’s mission completes. The
formulated optimization problem is a nonconvex mixed-integer
nonlinear program. Exploiting the underlying structure of this
problem, we further propose two novel low-complexity solutions
based on approximate dynamic programming (DP). Simulation
results show that the proposed schemes can flexibly adjust the
UAV’s flight trajectory and resource allocation according to the
GUs’ individual delivery delays, delay tolerance, and location
uncertainty, which translates into significantly lower sum CoDD
for the GUs than several benchmark schemes.

I. INTRODUCTION

Recently, unmanned aerial vehicles (UAVs) have increas-
ingly been exploited for delay-sensitive wireless communi-
cations [1]–[4], such as for emergency communications in
aftermath of natural disasters, fires, and cyber/terror attacks,
as well as industrial and vehicular communications. Thereby,
UAVs with flexible mobility are sent to deliver delay-sensitive
messages about e.g. situational awareness, contingency plans
and decisions, etc. Due to the time-varying nature of the
situations, information carried in the given examples is most
valuable when promptly delivered to the destined users. To
this end, the authors of [1]–[4] either considered delays as
hard deadline constraints for resource allocation [1], [2] or
investigated minimization of the maximum and average delays
in UAV-assisted communications [3], [4]. However, in practical
systems, delivery delays may cause different costs/penalties to
individual users, which was not considered in [1]–[4]. Also,
the resulting costs may be nonlinear functions of individual de-
livery delays, rather than being linear as in [1]–[4]. Therefore,
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a general framework for optimizing UAV-aided delay-sensitive
communications is crucially needed.

On the other hand, joint optimization of the trajectory and
communication for UAV-assisted communications has usually
been considered as a key technique for e.g. maximization
of communication throughput [5], [6], minimization of the
mission completion time [7], or minimization of energy con-
sumption [1], [8]; see also [9] and references therein. However,
the existing literature [1], [5]–[7], [9] usually assumes that
the users’ locations are perfectly known at the UAV during
optimization. In practice, users’ locations may only be imper-
fectly known by the UAV due to localization errors, privacy
concerns, and/or unpredictable movement of the users [8].
This can further incur communication outages and jeopardize
the timeliness of UAV-assisted communication. Hence, for
the considered UAV-assisted delay-sensitive communications,
(i) ensuring timely communications against uncertain user
locations is of paramount importance but has rarely been
addressed in the literature. Moreover, (ii) how to capture
both the delay sensitivity and delivery delays of individual
users and (iii) how to improve the timeliness of UAV-assisted
communications via intelligent resource allocation remain as
new research challenges.

To address these challenges, in this paper, we propose a
generic framework based on cost minimization for optimizing
UAV-assisted delay-sensitive communications, where a UAV is
sent to disseminate messages to multiple ground users (GUs)
at uncertain locations. Our contributions are:

• We consider a disk-based fixed-rate transmission scheme
for UAV-assisted delay-sensitive communications, which
can exploit the mobility of the UAV to facilitate timely
communications despite GUs’ uncertain locations.

• We define a general class of delay-aware cost functions,
referred to as the cost of delivery delay (CoDD), to
characterize the impact of message delivery delay on
individual GUs that may have varying demands and
perceive different linear/nonlinear costs.

• We investigate the joint scheduling and trajectory opti-
mization for minimization of the sum CoDD of all GUs.
By deriving the optimality conditions and transforming
the problem into joint serving order and delivery delay
optimization, we further propose two low-complexity
suboptimal solutions based on approximate dynamic pro-
gramming (DP).

• Simulation results show that the proposed schemes can
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Fig. 1. System model for UAV-assisted delay-sensitive communications with
uncertain user locations.

flexibly adjust the user scheduling and the flight trajectory
according to the GUs’ individual cost functions and
location uncertainty, and hence, significantly lower the
sum CoDD of all GUs than several benchmark schemes.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a UAV-enabled downlink
communication system for information transmission to K
GUs. The GUs, indexed by k with k ∈ K = {1, · · · ,K},
cannot connect to the ground cellular networks due to e.g.
network congestion, malfunction, or sabotage by natural or
cyber attacks. Rather, time-critical information required by the
GUs is delivered with the help of the UAV [10]. To this end,
the UAV loaded with the required messages starts its mission
from a given position S ∈ R2×1 and flies toward the GUs
while keeping at a fixed altitude H . The UAV’s mission ends
when all required messages are delivered.

We consider a continuous-time system, where the time is
denoted by t. The horizontal location of GU k, k ∈ K is
denoted as Lk ∈ R2×1. However, the UAV can only know
the region where GU k may lie in, denoted as Lk, rather than
its exact location Lk. Note that Lk can be an arbitrary set in
this work, cf. Fig. 1. On the other hand, the UAV’s trajectory
U(t) ∈ R2×1, denotes the UAV’s time-varying locations when
projected on the ground and is a continuous function of time
to be calculated before the mission starts.

A. UAV-to-GU Communication Model

We assume that each GU and the UAV are equipped with
a single omnidirectional antenna. Moreover, the UAV serves
the GUs via time-division multiple access, where the UAV
completes serving the GUs one by one. Let qk(t) ∈ {0, 1}
be a binary variable, where qk(t) = 1 if GU k is scheduled
for communication at time t and qk(t) = 0 otherwise. In this
paper, we consider fixed-rate transmission at the UAV to lower
the signaling overhead and hardware cost of (de)modulation
and (de)coding at the UAV and/or the GUs. Thereby, the UAV
transmits to GU k with a fixed data rate Rk specified by the
GU and a fixed transmit power Ptx.

The UAV may experience both line-of-sight (LoS) and non-
LoS (NLoS) propagation during flight. By following [11], the
pathloss over the UAV-to-GU k link at time t is expressed as

PLk,t =
(
∥U(t)− Lk∥2 +H2

)
· ξ/ρ0, where ∥·∥ denotes the

Euclidean norm and ρ0 is the pathloss at the reference distance
of 1 m. Here,

(
∥U(t)− Lk∥2 +H2

)
/ρ0 denotes the attenua-

tion due to free space propagation, and ξ ∈ {ξLoS, ξNLoS} de-
notes the additional attenuation for LoS or NLoS propagation
over the UAV-to-GU k link. ξ is a Bernoulli random variable
with Pr(ξ = ξLoS) = PLoS

k,t and Pr(ξ = ξNLoS) = 1 − PLoS
k,t

[11], where Pr(·) is the probability operator. The value of PLoS
k,t

is usually modeled as PLoS
k,t = 1

1+α exp(−β(θk,t−α)) , where
θk,t = arctan(H/∥U(t) − Lk∥) is the elevation angle of the
UAV with respect to GU k. α and β are constant coefficients
specified for the given environment [11].

Consequently, when qk(t) = 1, the ergodic channel capacity
of the UAV-to-GU k link at time t is given as [12]

Rk,t = E[B log2(1 + γk,t)], (1)

where E[·] is the expectation operator, B is the bandwidth of
the communication signal, γk,t = Ptxρ0

Bσ2(∥U(t)−Lk∥2+H2)ξ is the
instantaneous receive signal-to-noise ratio (SNR) at GU k, and
σ2 is the power spectral density of additive white Gaussian
noise at the GU. Moreover, rate Rk is achievable if and
only if Rk ≤ Rk,t; otherwise, communication outage occurs.
However, as GU k’s location is only imperfectly known at
the UAV, the UAV is unaware of the potential communication
outages before transmission starts, resulting in performance
loss. To tackle this problem, we require Rk ≤ minLk∈Lk

Rk,t

such that rate Rk is always achievable at GU k irrespective
of its possible location in Lk. As will be shown in Lemma 1
of Sec. IV, this requires the UAV to first fly into a suitably
defined disk region and then communicate with GU k only
from this disk region. Consequently, the flexible movement of
the UAV is exploited to mitigate the impact of uncertain user
locations.

B. Delivery Delay and Incurred Cost

For the considered communication scenario, we assume that
the UAV will deliver one message for each GU. The message
intended for GU k ∈ K has a size of Mk bits. Moreover, let
Γk be the delivery delay of GU k, which is the time duration
from the start of the UAV mission till GU k’s message is
successfully delivered. To capture the importance of delay-
sensitive information encoded within the messages, we define
the CoDD for serving GU k as

Ck = fk(Γk). (2)

Here, Ck represents the devaluation of the importance, i.e., the
cost/penalty of the message intended for GU k or, equivalently,
the dissatisfaction of GU k within the delivery delay. fk(·) can
be an arbitrary function satisfying the following properties:

i) (Non-negativity) fk(x) ≥ 0, as we focus on evaluating
the adverse effects of delayed messages.

ii) (Monotonicity) fk(x1) ≥ fk(x2), ∀x1 ≥ x2, as delayed
messages become less valuable and relevant over time for
the considered applications.

iii) (Convexity) fk(αx1 + (1 − α)x2) ≤ αfk(x1) + (1 −
α)fk(x2), ∀α ∈ [0, 1],∀x1, x2 ≥ 0, i.e., the rate of



devaluation, or the marginal cost, of each message is non-
decreasing with Γk.

We note that such CoDD functions are general enough to also
model delay-intolerant and delay-insensitive message trans-
missions by assigning an infinite delivery cost for violating
the deadline and a constant cost for any delivery delays,
respectively. An example of the CoDD function is

Ck = Γλk

k · ωk, (3)

where ωk > 0 denotes a factor of preference of GU k to
the incurred delay and λk ≥ 1 represents the urgency of the
carried information.

III. PROBLEM FORMULATION

To improve the timeliness of the UAV-assisted fly-and-
communicate systems, we further consider joint optimization
of the UAV’s flight trajectory and communication link schedul-
ing for minimizing the sum CoDD of the GUs incurred before
the UAV’s mission completes. The resulting optimization
problem is formulated as

P1 : minimize
U(t),qk(t),Γk

∑
k∈K

fk(Γk) (4)

s.t. C1 : U(0) = S

C2 : ∥U(t+∆)−U(t)∥/∆ ≤ Vmax, 0 ≤ t ≤ T

C3 : qk(t) ∈ {0, 1}, ∀k ∈ K, 0 ≤ t ≤ T

C4 :
∑

k∈K
qk(t) ≤ 1, 0 ≤ t ≤ T

C5 :

∫ Γk

0

qk(t)·Rk ·I{Rk≤minLk∈Lk
Rk,t}dt = Mk,∀k ∈ K

C6 : Γk ≤ T, ∀k ∈ K,

where I{x} is the indicator function; we have I{x} = 1 if x
is true, and I{x} = 0 otherwise. In problem P1, constraints
C1 and C2 specify the starting point and the maximum flying
speed of the UAV to be S and Vmax, respectively, where ∆ is
an infinitesimal time difference. C3 and C4 indicate that the
UAV transmits to at most one GU at a time. C5 ensures that
the UAV can complete data transmission to each GU in the
worst case, despite the uncertainty in GUs’ locations. Finally,
C6 ensures that all GUs are served within time T , due to the
limited available energy of the UAV or the requirement of the
overall mission.

Problem P1 is a mixed-integer nonlinear program as it
requires joint optimization of the trajectory U(t) of the UAV,
which consists of continuous variables, and the GU link
scheduling qk(t), which is a binary variable. Moreover, as
the delivery delays Γk are also optimization variables, the
trajectory U(t) is actually an unknown continuous-time func-
tion to be optimized over an infinite-dimensional functional
space [10], [13]. Finally, due to the indicator function, C5 is a
semi-infinite nonconvex constraint, which further complicates
the problem solution. Therefore, it is generally difficult to
optimally solve problem P1 within polynomial time.

IV. PROPOSED SOLUTIONS

In this section, we first characterize the properties of the
optimal solution for problem P1. Based on this, we then
transform the problem and solve it using approximate DP.

A. Necessary Optimality Conditions

Lemma 1. Let g(x) ≜ maxy∈Lk
∥y − x∥ be the maximum

distance from point x to region Lk, which is a convex function.
Define the center of region Lk as Ok ∈ argminx∈R2×1g(x),
which minimizes the distance function g(x), with dk = g(Ok).
Then, for minimization of the sum CoDD, the optimal user
scheduling, denoted as q∗k(t), has to satisfy

q∗k(t) · ∥U(t)∗ −Ok∥ ≤ Dk, (5)

i.e., the UAV should serve GU k only when it is in a disk
centered at Ok with radius Dk, such that

Eξ

[
Blog2

(
1 + Ptxρ0

Bσ2((Dk+dk)2+H2)α/2

)]
=Rk. (6)

Proof: Note that Rk,t is a monotonically decreasing
function of ∥U(t) − Lk∥. Then, Rk ≤ minLk∈Lk

Rk,t

holds if and only if maxLk∈Lk
∥U(t) − Lk∥ ≤ Dk +

dk. Hence, the UAV can only serve GU k within region
Uk ≜ {U(t) | maxLk∈Lk

∥U(t)− Lk∥ ≤ Dk + dk}, outside
of which q∗k(t) = 0.

Let U(t) be an arbitrary boundary point of Uk, i.e.,
maxLk∈Lk

∥U(t) − Lk∥ = Dk + dk. Due to the triangle
inequality, given any x ∈ R2×1, we have maxLk∈Lk

∥U(t)−
Lk∥ ≤ ∥U(t)− x∥+ g(x). This further implies

max
Lk∈Lk

∥U(t)− Lk∥ ≤ min
x

∥U(t)− x∥+ g(x)

(a)

≤ ∥U(t)−Ok∥+ dk, (7)

where (a) is due to dk = g(Ok) = minx g(x). Here,
equality condition holds in both inequalities of (7) if and
only if ∥U(t) − Ok∥ = Dk and Ok is collinear with U(t)
and Lk ∈ argmaxLk∈Lk

∥U(t) − Lk∥. Therefore, we have
q∗k(t) = 0 if ∥U(t)−Ok∥ > Dk, which implies (5).

Note that Lemma 1 still holds if the GUs’ locations are
perfectly known, i.e., if Lk = {Lk} is a singleton, where we
have dk = 0 and Ok = Lk. The latter result is consistent with
[7, Lemma 1].

Lemma 2. For minimization of the sum CoDD, the UAV has to
fly over straight line segments at the maximum speed between
serving any two consecutive GUs.

Proof: A similar proof has been given in [14] for min-
imizing the completion time of UAV communications. It can
be extended to our considered CoDD minimization problem in
a straightforward manner, due to the monotonicity of CoDD
functions with respect to (w.r.t.) delivery delay.

B. Problem Transformation

As the UAV completes serving the GUs one by one, the
whole trajectory can be partitioned into K segments, where
each GU is served in exactly one segment. Based on Lemma 2,



finding the optimal trajectory reduces to determining the
starting and ending points of each segment. In particular, let
u = [u(1) . . . , u(K)] be the order of the GUs for message
delivery, where u(·) : K → K is a permutation of the GU
indices and u(i) = k indicates that GU k is served in the ith
place, i ∈ K. Moreover, let su(i), eu(i) ∈ R2×1 be the starting
and ending points of the UAV’s trajectory segment during
serving GU u(i). Based on Lemma 1, su(i) and eu(i) have to
be within the disk region of GU u(i) specified in (5). Using
this notion, the delivery delays for serving two consecutive
GUs, Γu(i) and Γu(i−1), satisfy

C7 : Γu(i) ≥ Γu(i−1) +
∥su(i)−eu(i−1)∥

Vmax
+

Mu(i)

Ru(i)
, (8)

where Γu(0) = 0. In (8), the second and the third terms on
the right-hand side denote the time for flying from eu(i−1) to
su(i)and communicating with GU u(i), respectively. Moreover,
we can reformulate problem P1 as

P2 : minimize
u,su(i),eu(i),Γu(i)

∑K

i=1
fu(i)

(
Γu(i)

)
(9)

s.t. C7, C6 : Γu(i) ≤ T, ∀i ∈ K
C8 : ∥su(i) −Ou(i)∥ ≤ Du(i), ∀i ∈ K
C9 : ∥eu(i) −Ou(i)∥ ≤ Du(i), ∀i ∈ K
C10 : ∥su(i) − eu(i)∥ ≤ Mu(i)Vmax/Ru(i), ∀i ∈ K.

In problem P2, constraints C8 and C9 follow from (5). C10
ensures that the UAV flight satisfies the speed limit, cf. C2,
when serving a GU.

Note that for given u, fu(i)(·) is a convex and monotonically
increasing function and that Γu(i) is a convex function of su(i)
and eu(i). Hence, the objective function is jointly convex w.r.t.
su(i) and eu(i) [15]. Moreover, constraints C6, C7–10 are also
convex. Therefore, problem P2 is convex when u is given, and
can be efficiently solved using off-the-shelf solvers. However,
due to the combinatorial nature of order optimization, a brute-
force solution of problem P2 using exhaustive search has to
enumerate over K! visiting orders and solve a convex problem
for each order. As each latter step incurs a computational
complexity of O(K3.5), where O(·) is the big-O notation, the
resulting overall computational complexity is O(K!×K3.5).
To lower the computational complexity, we propose below two
approximate DP-based algorithms to solve problem P2.

C. DP based Joint Serving Order and Delivery Delay Opti-
mization

We first reformulate problem P2 as a K-stage DP, where
the stages are indexed by i ∈ K. For this purpose, let us define
the state, action, and cost of the DP as follows.

• State: We define a state by (Si, k), which represents the
GUs having been visited, where Si is a subset of the GUs
with |Si| = i. Moreover, index k denotes the lastly visited
GU in Si. Using this notion, the initial state is given by
(∅0, 0), where the UAV is at the starting point S with no
GUs served yet. Moreover, there are K terminal states as
given by (SK , k), k ∈ K with SK ≡ K, where the UAV

finishes serving all GUs with GU k ∈ K being lastly
served.

• Action: At state (Si, j), the UAV selects a GU from K\
Si to serve in the next stage.

• Cost: Assume that GU k ∈ K \ Si is selected as action
at state (Si, j). The system then transits to a new state
(Si+1, k), where Si+1 = Si ∪ {k} and j ̸= k. This
transition incurs a cost of aijk, for j, k ∈ K ∪ {0},
which accumulates over stages. Let ΓSi

j be the delivery
delay of GU j in state (Si, j). Moreover, let tjk be the
time difference between the completion of serving GU j
and GU k, where tjk=ΓSi+1

k −ΓSi

j =
∥sk−ej∥
Vmax

+Mk

Rk
. Then,

according to problem P2, we can define the cost as

aijk=min
sk,ej

∑
m∈K\Si

(
fm(ΓSi

j + tjk)−fm(ΓSi
j )

)
(10)

s.t. ∥sk −Ok∥ ≤ Dk, ∥ej −Oj∥ ≤ Dj ,

which is the sum CoDD accumulated by GU k and the
unvisited GUs during the time tjk. The cost incurred
when transiting from initial state to stage 1 is given
as a00k =

∑
m∈K fm(t0k). Note that the optimization

problem in (10) is convex. If this optimization problem
is infeasible, e.g. when the lastly visited GU k does not
meet C6, we let aijk = ∞.

Now, let us introduce the value function of state (Si, k),
denoted as J(Si, k), which gives the minimum accumulated
CoDD, incurred from the starting point till the completion of
serving each GU in Si ⊂ K, with GU k served in stage i. The
value function is defined recursively as [16]

J(Si, k) = minj∈Si−1 [J(Si−1, j) + ai−1
jk ]. (11)

By convention, the value function of the initial state is just
zero, i.e., J(∅0, 0) = 0, where the UAV has not started
its movement. The value function of a terminal state ending
at GU k, i.e., J(SK , k), gives the minimum sum CoDD
accumulated by all users starting from the initial state till every
GU has been served, with GU k being lastly served. Therefore,
problem P2 is reduced to minimizing the value functions over
all possible terminal states in the DP problem.

The value function J(Si, k) can be calculated iteratively
using the forward DP algorithm [16]. The overall procedure
for solving the formulated DP problem is summarized in
Algorithm 1. We note that when GU k is selected to be visited
next, all states (Si−1, j), j ∈ Si−1, which only differ in the
lastly visited GU, will transit to state (Si−1 ∪ {k}, k). While
calculating J(Si−1 ∪ {k}, k) in (11), let βk

i , k ∈ K, i ∈ K be
the optimal solution of the right-hand side problem of (11),
i.e.,

βk
i ∈ argminj∈Si−1 [J(Si−1, j) + ai−1

jk ]. (12)

Here, βk
i gives the visited GU in stage i − 1 before visiting

GU k in stage i, where β0
0 = 0 since there is no previous

GU. The side information encoded in βk
i can be exploited to

determine the optimal visiting order after knowing the value
function of the state.

Let us define one DP iteration for stage i ∈ K, cf. lines 4–
10, as follows. First, let Ξi be the set of states (Si, k) in stage i.



Algorithm 1 Proposed approximate DP algorithm for solving
problem P2

1: Input: Given Vmax, {Lk, Rk,Mk}Kk=1

2: Initialization: Set Ξ0
∆
=
{
(∅0, 0)

}
, J(∅0, 0)=0, β0

0=0, Γ0
0=0;

Calculate {Ok, Dk}Kk=1 ▷ Eq. (6)
3: for i = 1 : K do ▷ For each stage i
4: Set Ξi = ∅
5: for (Si−1, j) ∈ Ξi−1 do
6: Calculate costs ai−1

jk , k ∈ K \ Si−1 ▷ Eq. (10)
7: Calculate J(Si−1∪{k}, k), k∈K\Si−1 ▷ Eq. (11)
8: Collect side information: βk

i , ΓSi
k ▷ Eq.(12)

9: Update Ξi = Ξi ∪ (Si−1 ∪ {k}, k)
10: end for
11: end for
12: Calculate u(K) = argmink∈KJ(SK , k)

13: for i = K − 1 : 1 do Calculate u(i) = β
u(i+1)
i+1

14: end for
15: Output: u = [u(1), . . . , u(K)]

Ξi is initialized to be an empty set, ∅, in line 4. For each state
(Si−1, j) ∈ Ξi−1 with j ∈ Si−1, we then identify all possible
new states that can be reached in stage i and associated costs,
cf. line 6. Meanwhile, for each obtained new state, denoted
as (Si−1 ∪ {k}, k), we calculate the value function J(Si−1 ∪
{k}, k) in line 7 based on J(Si−1, j) and ai−1

jk . Additionally,
we collect the side information for the obtained state, cf. line 8.
Finally, these new states are stored in Ξi, cf. line 9.

The DP iteration continues until the terminal states are
reached, cf. lines 3-11, where ΞK has K terminal states
and the minimum costs needed to reach each of them, i.e.,
J(SK , k), are known. Hence, we can now find an approximate
optimal visiting order by selecting the terminal state (SK , k)
with the lowest cost among all terminal states, cf. line 12,
and tracking βk

Ks backwards from ΞK to Ξ1, cf. line 13–14.
After obtaining the visiting order, P2 can be further solved to
compute the exact user scheduling and the UAV’s trajectory.

The proposed DP algorithm finds an approximate optimal
visiting order for problem P2 with a computational complexity
of O(K2 × 2K × K3.5) [16], which is much lower than
O(K!×K3.5). For example, when K = 16, we can reduce the
computational complexity by K!

K2×2K
> 106 times. Note that

the proposed DP algorithm becomes the exact DP algorithm
when the state definition is altered such that, the subset
representing GUs have been visited Si is replaced by a vector
which represents GUs having been visited with exact order, i.e.
[u(1), . . . , u(i)]. In this case, the optimal solution of problem
P2 can be obtained, but the resulting computational complexity
is similar to that of exhaustive search.

D. Joint Serving Order and Delivery Delay Optimization with
Problem Approximation

Algorithm 1 may become computationally intensive when
K is large, as it requires solving an optimization problem for
calculating cost of each state in (10). To further lower the
computational complexity, in this section, we provide another
DP algorithm to solve an approximate problem of P2.

In particular, assume that the UAV has to hover over Ok till
completing the information transmission to GU k, k ∈ K. In
this case, based on Lemma 2, the optimal trajectory is given
by the line segments connecting the GUs according to the
optimal serving order, where the starting and ending points of
each trajectory segment coincide with the hovering points of
the UAV. Consequently, problem P2 reduces to finding only
the visiting order of the GUs that minimizes the sum CoDD
within time T , which can be solved in two steps.

In the first step, we optimize the order of visiting GUs
by solving the approximate problem of P2, where qk(t) ·
∥U(t) − Ok∥ = 0, ∀k ∈ K. To this end, Algorithm 1
can be applied by replacing starting and ending points of
line segments with Ok, k ∈ K. Therefore, instead of an
optimization in (10), tjk could be calculated as ∥Ok−Oj∥

Vmax
+Mk

Rk
.

In the second step, we optimize the exact user scheduling
and the UAV’s trajectory by solving P2 for given serving
order, which is a convex optimization problem. The resulting
overall computational complexity reduces to O(K2 × 2K) as
no optimization is needed in each state, which is several orders
lower than that of Algorithm 1 when K ≫ 1. Note that both
algorithms in Section IV-C and Section IV-D are based on
joint serving order and delivery delay optimization, which
necessarily incur an exponential computational complexity of
O(2K). This complexity hurdle may be further overcome by
heuristic solutions based on e.g. greedy search; however, our
simulation results in Section V indicate that this may result in
a non-negligible performance loss.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
schemes via simulation. The considered UAV flies at an
altitude H=50 m to communicate with K GUs in an area of
1000 m × 600 m. Note that the location region of GU k, Lk,
can be an arbitrary set provided its center, Ok, and maximum
distance to the center, dk, are given, cf. Lemma 1. In the
simulation, for given dks, Oks are randomly and uniformly
placed in the considered area. In the special case of dk = 0, we
assume Lk = Ok. The starting location of the UAV is fixed at
(100, 15). The maximum speed and mission completion time
of the UAV are Vmax=50 m/s and T =200 sec, respectively.
Message sizes Mk are randomly and uniformly selected from
set {0.3, 0.6, 0.9, 1.2, 1.5} MBytes. For transmission to the
GUs, the UAV is allocated a bandwidth B = 0.1 MHz and
employs a transmit power of Ptx = 10 mW, where channel
power gain ρ0 = 1. We consider air-to-ground communication
in an urban area, where the channel parameters are given as
σ2 = −137 dBm/Hz, ξLoS = 1.12, ξNLoS = 10, α = 12.08,
and β=0.11 [11]. The data rate Rk of the UAV-to-GU k link
is set according to (6), where we set Dk ≡ D and dk ≡ d;
the values of D and d are later specified. In the simulations
we consider the CoDD function stated in (3), with tolerance
paramaters γ = 1 and ωk = Mk

Rk
· m, for m being randomly

and uniformly chosen from the interval [1, 10].
Fig. 2 shows the trajectories obtained by approach proposed

in Section IV-C, referred to as Proposed Scheme 1, and
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Fig. 2. Trajectories obtained by (a) Baseline Scheme 1, (b) Baseline Scheme 2, and (c) Proposed Scheme 1.

Fig. 3. Sum CoDD of the considered schemes versus radius of service disk,
D, considering 12 GUs. Cases of certain (d = 0 m) and uncertain (d = 30 m)
GU location knowledge shown with solid and dashed lines respectively.

benchmarks for the same scenario setting with K = 10 GUs
and d = D = 30 m. The values of individual delay preference
factors, i.e. ωks, are also shown next to each GU location.
The Baseline Scheme 1 minimizes the length of the flight
path and, hence, completes the mission in the shortest amount
of time; however, by ignoring the GUs’ individual tolerance
to stale information, it leads to a higher sum CoDD than
the Proposed Scheme 1. On the contrary, Baseline Scheme
2 determines the visiting order solely based on the tolerance
of GUs’, i.e. ωk, but ignores the distances between the GUs.
As a result, Baseline Scheme 2 leads to the longest traveling
distances and delivery delays, which severely penalizes the
sum CoDD. On the other hand, we note that with the Proposed
Scheme 1, the UAV starts with serving the GUs located at
the right top of the area, similar to Baseline Scheme 2, since
these GUs have larger preference factors, i.e. higher costs
caused by delivery delay. However, unlike Baseline Scheme
2, Proposed Scheme 1 also serves GUs with low preference
factors whenever possible, to reduce back-and-forth flights
between GUs. Hence, Proposed Scheme 1 can flexibly balance
between flight distances and the preference factors of the GUs,
for which it achieves the lowest sum CoDD despite the fact
that it has a longer trajectory than the one obtained with
Baseline Scheme 1.

Fig. 3 evaluates the sum CoDD of the considered schemes
versus the radius of service disk, D, for certain (i.e., d=0 m)
and uncertain (d=30 m) GU locations, which are shown in

solid and dashed lines, respectively. Here, approach proposed
in Section IV-D, referred to as Proposed Scheme 2 is included
for computational convenience. Provided results are simulated
with K=12 GUs and each point is averaged over a number
of independent realizations for given parameter settings. From
Fig. 3 we observe that, when the GUs’ locations are perfectly
known, the sum CoDD of all considered schemes decreases
and increases with D in the small and large regimes, respec-
tively. This is because, for small Ds (e.g., when D < H),
the UAV-to-GU communication experiences a high likelihood
of LoS propagation, whereby relatively high data rates can be
achieved according to (7); in this case, increasing D rarely
affects the communication time but can significantly reduce
the flight time, as the UAV can initiate communication to
the GUs within a larger disk and reduce the flight distance.
On the contrary, for large Ds (e.g., when D > H), the
likelihood of LoS propagation reduces significantly, as D
increases; hence, according to (7), the data rate for fixed-
rate transmission significantly reduces, which penalizes the
communication time. Therefore, there exists an optimal radius
of the service disk that strikes the best trade-off between flight
time and communication time.

Fig. 3 also shows that, when the GUs’ locations are uncer-
tain, the same trade-offs can also be observed for the Baseline
Scheme 1 and the Proposed Scheme 2, except that they suffer
from non-negligible performance losses. To mitigate potential
communication outages caused by uncertain GU locations,
the UAV-to-GU communication has to lower its data rate and
hence requires a longer time for communication. However, for
the Baseline Scheme 1, the increase of communication time
even exceeds the decrease of flight time, such that its sum
CoDD always increases with D for the considered settings
of uncertain GU locations. Nevertheless, compared with the
Baseline schemes, the Proposed Scheme 2 always achieve the
best performance for both certain and uncertain GU locations.
For example, when D=40 m and d=30 m, the sum CoDD
of the Proposed Scheme 2 is 60% (18%) lower than that
of Baseline Scheme 2 (Baseline Scheme 1), by exploiting
knowledge of flight distances and the tolerance factors for
trajectory planning.

Finally, Fig. 4 evaluates the CoDD performance of the
considered schemes for different number K of GUs. Provided



Fig. 4. Sum CoDD of the considered schemes versus number of GUs, K.

results are simulated with d = 30m and D = 40m and each
point is averaged over a number of independent realizations
for given parameter settings. From Fig. 4 we observe that
the performance gap between the Proposed Scheme 2 and
the considered Baseline schemes increases as the number of
GUs grows. This is because, with a large number of GUs, the
Proposed Scheme 2 has more degrees of freedom (e.g. more
GUs may be tolerant to stale information and the UAV is now
allowed to transmit in a larger area) in optimizing the GU
scheduling and the UAV trajectory; therefore, the proposed
scheme can achieve large performance gains over the baseline
schemes. For example, for K = 16, the sum CoDD of the
Proposed Scheme 2 is 66% (20%) lower than that of Baseline
Scheme 2 (Baseline Scheme 1).

VI. CONCLUSION

In this paper, we proposed a generic framework for joint
optimization of the scheduling of GUs and the UAV’s tra-
jectory so as to minimize the sum CoDD in UAV-assisted
delay-sensitive communications. Thereby, a disk-based fixed-
rate transmission was investigated for facilitating timely com-
munications despite uncertain user locations. Moreover, the
individual GUs’ costs caused by message delivery delays were
modeled using a class of delay-aware cost functions. Exploit-
ing the underlying structure, we proposed two approaches to
solve the formulated optimization problem, which determine
the order of serving the GUs via approximate DP followed
by further fine-tuning the exact link scheduling and UAV
trajectory via convex optimization. Simulation results showed
that the proposed schemes can achieve significantly lower
sum CoDD than several baseline schemes, as the former can
flexibly balance between the traveled distances and the GU’s
tolerances of delivery delays in optimizing the GUs’ serving
order.
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