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Abstract—This paper presents a stochastic geometry framework
for modeling and evaluating the connectivity of uplink transmis-
sion in a large-scale intelligent reflecting surface (IRS) assisted
millimeter-wave (mmWave) communication network, where the
uplink user equipments (UEs) attempt to communicate with the
nearest base stations (BSs) either without or with the help of an
IRS. We propose a novel elliptical geometry model, which can
effectively capture the impact of IRS location and orientation, as
well as incident/reflection angle on mmWave signal propagation,
while, at the same time, significantly simplifying the analysis of
the system performance. Employing the elliptical geometry model,
the approximate reflection probability of IRS as well as its upper
and lower bounds are derived in closed form. Based on these
results, we further analyze the successful connection probability
of uplink UEs for IRS-assisted mmWave cellular networks. Our
results show that compared with conventional direct UE-to-BS
communication without IRS, indirect communication with the aid
of IRS exhibits a slower decaying in the connection probability as
the communication distance increases, as the latter can significantly
increase the connection probability for cell-edge UEs. Moreover,
for mmWave BSs with small receiving power thresholds, the
deployment of IRS can effectively mitigate the impact of blockages
to improve mmWave signal propagation.

Index Terms—Intelligent Reflecting Surfaces (IRS), Blockage,
Stochastic Geometry.

I. INTRODUCTION

Millimeter-wave (mmWave) communications usually require
strong line-of-sight (LoS) channel conditions to mitigate the
large propagation loss of mmWave signals. However, mmWave
communications in urban areas can severely suffer from block-
ages caused by e.g. buildings and trees [1]. To address this chal-
lenge, application of intelligent reconfigurable surfaces (IRSs)
for enhanced mmWave communications has recently attracted
significant interest in both academia and industry [2], [3].
Thereby, through tuning the phase shifts of the metasurface
units, the IRS enables to scatter/reflect mmWave signals towards
desired directions, which can increase the likelihood of estab-
lishing LoS mmWave communications between base stations
(BSs) and user equipments (UEs). Moreover, due to its passive
nature, IRS consumes much less energy than conventional relay
nodes. Further, the IRSs can be easily deployed on the facade
of buildings for extending mmWave cellular coverage to urban
communication hot spots.

The work is supported by the National Natural Science Foundation of China
under Grant U2001210, Hubei Provincial Science and Technology Department
under Grant 2021BAA009. The work of L. Xiang has been funded by the
LOEWE initiative (Hesse, Germany) within the emergenCITY center and the
BMBF project Open6GHub under grant 16KISKO14.

In [4], the authors considered joint optimization of power
allocation, user association and beamforming for maximizing
the sum rate of an IRS-assisted mmWave communication sys-
tem. In [5], the authors considered joint optimization of BS
transmit precoding and IRS phase shift for maximizing the
received signal power. However, the aforementioned works have
only considered IRS-aided mmWave communications in small-
scale networks with a limited number of nodes (UEs, BSs, and
IRSs) and/or blockages. Extending the research to large-scale
IRS-aided mmWave networks is crucially needed for evaluating
the performance of IRS-aided mmWave communications and
gaining insights for future practical deployment.

Motivated by the aforementioned research need, in this
paper, we consider performance analysis of large-scale IRS-
aided mmWave networks in urban areas using the stochastic
geometry theory, which takes into account large-scale randomly
distributed nodes (UEs, BSs, and IRSs) and blockages. As has
been shown in the literature [6]–[10], the stochastic geometry
tool can accurately capture the characteristics of BS deployment
and user distributions in practical cellular networks, while still
enabling tractable analyses of the network performance. To
our knowledge, stochastic geometry has not been employed
for analyzing large-scale IRS-aided mmWave cellular networks
except in [11], where the authors analyzed the signal-to-
interference-ratio (SIR) of mmWave communication and the
coverage probability. However,the results in [11] ignored the
impact of blockages on mmWave signal propagation, which are
not applicable to urban mmWave cellular networks. On the other
hand, although modeling and analyses of IRS-aided cellular
networks using stochastic geometry have also been considered
for non-orthogonal multiple access (NOMA) networks in [12],
[13] and traditional cellular networks in [14], they have not
considered mmWave communications. In fact, the approaches in
[11]–[14] cannot be applied for our problem in a straightforward
manner, as this would be overly complicated. In particular, for
the considered IRS-aided mmWave communication in presence
of blockages, the system performance depends jointly on the
incident and reflection/scattering angles of mmWave signals at
the IRSs. The latter is difficult to characterize using the existing
approaches in [11]–[14].

To tackle these challenges, in this paper, we propose a novel
elliptic geometry model for analyzing the scattering/reflection
mechanism of large-scale IRS-aided mmWave uplink transmis-
sions. By utilizing the geometric properties of the proposed
model, the impact of the incidence and reflection angles of the



mmWave signal on the connectivity of the IRS-aided mmWave
communications can be captured analytically with greatly sim-
plified effort. This further facilitates a tractable analysis of the
connection probability for uplink UEs without and with the aid
of IRS. Our derivations are validated by Monte Carlo simula-
tions. Both the numerical and the simulation results reveal that
the deployment of IRS can significantly improve the connection
probability of cell-edge mmWave UEs and, for networks with
small receiving power threshold, IRS can effectively mitigate
the impact of blockages on mmWave signal propagations.

The remainder of this paper is organized as follows. In Sec. II,
the system model of the considered IRS aided uplink mmWave
transmission is presented. The reflection probability in IRS
aided mmWave signal transmission and the total connection
probability of a typical UE are analyzed in Sec. III. The
numerical and simulation results are presented in Sec. IV, where
the impact of communication distance and receiving power
threshold is investigated. Finally, Sec. V concludes the paper.

II. SYSTEM MODEL

A. Network and Blockage Model

As shown in Fig. 1, we consider uplink communication in an
IRS aided mmWave network in an urban area, where the BSs are
distributed over the whole R2 plane to provide seamless access
service to the UEs. Let yi and xj be the locations of BS i and UE
j, respectively. The locations of the BSs and the UEs, denoted
by ΦBS = {yi; i = 1, 2, 3 · · ·} and Φu = {xj ; j = 1, 2, 3 · · ·},
are assumed to follow homogeneous Poisson Point Processes
(PPPs) with densities λBS and λu, respectively. We assume that
Φu is independent of ΦBS . Moreover, λu is large enough so that
each mmWave BS serves exactly one UE in any given resource
block and no BSs are idle [15].

As mmWave signals have weak diffraction and penetration
capabilities, buildings lying between the UEs and BSs can
significantly degrade the mmWave signal propagation. We as-
sume that, for any UE-to-BS link whose LoS path is blocked
by buildings in between, the power received at the BS is
negligible [14]. To enhance mmWave signal propagation in the
considered urban environment, IRSs are deployed on μ ∈ [0, 1]
fraction of the buildings, where each building can mount at
most one IRS. We assume that the lengths and widths of
the buildings follow independent uniform distributions in the
range of (E[L]− l0,E[L] + l0) and (E[W ]− w0,E[W ] + w0),
respectively. E[L] and E[W ] are the expected length and width
of the buildings, respectively. In this paper, we assume E[L],
E[W ], l0,and w0 are given, cf. Table I in Sec. IV. Moreover, the
center locations of the buildings, denoted by Φb, follows a PPP
with density λb, independent of ΦBS and Φu. Consequently, the
locations of IRSs, denoted by ΦR, follow a PPP with density
λR = μλb.

B. UE-to-BS Association

The UEs transmit signals at a given output power Pmax.
The UEs and the BSs employ antenna arrays with Mu and
Mb antenna elements, respectively. However, each UE has only
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Fig. 1. Network model of IRS aided mmWave communications in an urban
area.

one radio frequency (RF) chain, such that only one data stream
is sent for communicating with its intended BS. Consequently,
the antenna arrays at the UE and its intended BS are mainly
used for beamforming purpose, so as to mitigate the prop-
agation loss of mmWave signals [16]. Moreover, we assume
that each UE attempts to associate with the nearest BS in its
communication range such that, if successful, the path loss of
mmWave signal propagation is further minimized. Considering
a typical UE and its associated BS located at x and ys, we have
ys = argminy∈ΦBS

‖y − x‖, where ‖·‖ denotes the Euclidean
distance.

Due to blockages caused by the buildings, a portion of the
UEs may not be able to connect to their nearest BS for direct
LoS (DLoS) communication. Then, these UEs will attempt an
indirect LoS (ILoS) transmission, i.e., to communicate with its
nearest BS via an IRS. To this end, the IRS having the minimal
effective path loss over the end-to-end UE-to-IRS-to-BS link is
chosen. That is, the IRS located at ts is selected if and only if
ts = argmint∈ΦR

δ{t} (‖ys − t‖α · ‖t− x‖α), where δ{t} = 1
if the IRS located at t can establish an ILoS connection from
the UE to its associated BS and otherwise δ{t}=∞. We note
that the defined association scheme is not capacity-achieving
but is considered in order to facilitate a tractable analysis of the
network connectivity.

As a UE performing DLoS transmission would always ex-
periences a shorter signal propagation path than when per-
forming ILoS communication, the UEs will employ DLoS
communication with a high priority, i.e., they will attempt ILoS
communication only after the attempt of DLoS communication
to the nearest BS fails.

C. Effective Channel Model for DLoS and ILoS Transmissions

We consider small-scale fading and path loss for modeling
the mmWave channel [16]. In particular, for the BS at ys, its
received signal power from the UE located at x is given by
Pe

Δ
=Px|hx,ys |2CsLx,ys , where Px is the transmit power of the

UE and Cs is the propagation path loss at a reference distance



of 1 m. |hx,ys | denotes the effective small-scale fading gain for
mmWave communication from x to ys, which is a scalar since
we are only interested in the received power Pe of beamformed
mmWave signals. To capture the LoS dominant mmWave prop-
agation channels, we assume independent Nakagami fading for
each link, i.e., |hx,ys |2 ∼ Γ (Ns, 1) is Gamma distributed with
unit mean power, where Ns is the effective fading parame-
ter after considering transmit and receiver beamforming over
the underlying mmWave multiple-input multiple-output channel
[16]. Note that hx,ys can be obtained by employing maximum
ratio combining on independent Nakagami fading paths [17].
Finally, Lx,ys is the path loss for mmWave communication
from x to ys. For example, Lx,ys = ‖ys − x‖−α for DLoS
transmission, where α ∈ [2, 4] is the path loss exponent.

To further characterize Lx,ys for ILoS transmission, let us
first consider mmWave signal transmission from the typical
UE to its associated BS via scattering/reflection at an IRS
of length 2LR centered at (xR(0), yR(0)), cf. Fig. 1. Any
point on the IRS with distance l ∈ [−LR, LR] from the
center of the IRS has a coordinate given as (xR(l), yR(l)) =
(xR(0)+l cos θR(l), yR(0)+l sin θR(l)), where θR(l) ∈ (−π, π]
is an auxiliary angle parameter. Moreover, rQ(l) and θQ(l),
Q ∈ {BR,RU}, denote the distances and incident/reflection
angles associated with the BS-to-IRS and IRS-to-UE links at
(xR(l), yR(l)). Assume rQ � 2LR. Then the propagation
distance from the UE to point (xR(l), yR(l)) on IRS can be
approximated as rQ(l) ≈ rQ(0) + ql sin (θQ(0)), where q = 1
if Q = BR, and q = −1 if Q = RU . Following a similar
approach as [13], the path loss for ILoS transmission is given

by Lx,ys = M
∣∣∣
∫ +LR

−LR
Ψ(l) exp(−j 2π

λ Ω(l))dl
∣∣∣
2

, where λ is the
wave length of the considered mmWave signal and M is the
number of metasurface strips deployed on an IRS. Ψ(l) =
cos(θBR(l))+cos(θRU (l))

8π
√

rBR(l)rRU (l)
and Ω(l) = rBR(l) + rRU (l) − Θ(l)

denote the amplitude and phase (or precisely overall propa-
gation distance) of mmWave signals received at the BS via
scattering/reflection at (xRl, yR(l)) of the IRS, respectively,
where Θ(l) is the phase shift of metasurface unit at point
(xR(l), yR(l)) of the IRS. In this paper, we set Θ(l) =
(sin (θBR(0))− sin (θRU (0))) l+

φ0λ
2π , where φ0 ∈ [0, 2π) is a

fixed phase shift [13]. Thereby, substitute Θ(x) into Ψ(x), we
have Ψ(l) = rBR(0)+ rRU (0)− φ0λ

2π , i.e., the mmWave signals
scattered/reflected at different points of the IRS are cophase and
can be coherently superimposed (provided the mmWave signals
are coherently combined at the BS). Consequently, for ILoS
transmission, we have [13]

Lx,ys ≈ C2
t (rBR(0)rRU (0))

−α
, (1)

where Ct =
MLR

4π (cos (θBR(0)) + cos (θRU (0))).
Now, generalizing the results in (1) to the selected IRS located

at ts, the large-scale propagation Lx,ys can be described as

Lx,ys =

{
‖ys − x‖−α, for DLoS scheme,

C2
ts(rx,tsrts,ys)−α, for ILoS scheme.

(2)

where rts,ys and rx,ts denote the distances from the BS at
ys and the UE at x to the center of the IRS at ts, respec-
tively. θts,ys and θx,ts denote the reflection and the incident
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Fig. 2. Proposed elliptic geometry model for characterizing IRS scattering.

angles at the center of the IRS, respectively. And Cts =
MLR

4π (cos (θx,ts) + cos (θts,ys)).

D. System Performance Metric and Proposed Elliptic Geometry
Model

To characterize the impact of IRS on mmWave communica-
tions, we will analyze the connectivity of the considered IRS-
assisted mmWave cellular network, which is defined as

Pc =

∫ ∞

0

(
PDLoS(r)PD|r{Pe > Pth}

+
(
1− PDLoS(r)PILoS(r)PI|r{Pe > Pth}

)
fR(r)dr.

(3)

In (3), PDLoS(r) and PILoS(r) are the probabilities that the
typical UE located at a distance of r from its associated
BS can perform DLoS and ILoS transmissions, respectively.
PD|r{Pe > Pth} and PI|r{Pe > Pth} are the probabilities that
the signal power received at the associated BS, Pe, exceeds the
threshold Pth for establishing DLoS and ILoS communications,
respectively. Finally, fR(·) is the probability density function
(PDF) of the distance between the typical UE and its associated
BS, denoted by R. And we have fR(r) = 2πλBSre

−λBSπr2 ,
which is obtained from the void probability of PPP following
[18].

However, analyzing ILoS transmission in (3) is particularly
challenging. This is because, for ILoS transmission, Lx,ys

depends jointly on parameters θx,ts , θts,ys , rx,ts and rts,ys ,
which are functions of the locations of the BS, the UE, and the
IRS. Representing these parameters in polar coodinates results
in complex expressions and complicates the derivation process.
To facilitate a tractable analysis, we further propose an elliptic
geometry model for analyzing θx,ts , θts,ys , rx,ts and rts,ys in
the considered stochastic geometry framework. In particular, let
the origin O be located in the middle of the UE and the BS.
Moreover, define an ellipse with focal length c = r

2 such that
the BS and the UE coincide with the focal points of the ellipse,
cf. Fig. 2. Consequently, an arbitrary point in the R2 plane,
denoted as (x, y), can be alternatively described in a parametric
form as x =

√
b2 + c2 cos θ and y = b sin θ, where b and θ

are the length of the minor axis of the ellipse and an auxiliary
angle parameter, respectively. Meanwhile, for the associated BS
at ys and the IRS at t, we have rx,t =

√
b2 + c2 − c cos θ and

rt,ys =
√
b2 + c2 + c cos θ. As will be shown in Sec. III, with

the proposed model, convenient geometric properties of ellipse
can be exploited to simplify the analyses of IRS-aided mmWave



communications. For example, when the UE and its associated
BS are in the far field of the IRS, we have θx,t + θt,ys = ψ,
where ψ = arcsin 2bc sin θ

b2+c2 sin2 θ
is the angle between the UE-to-

IRS link and the BS-to-IRS link, namely the focal vertex angle,
cf. Fig. 2.

III. UPLINK PERFORMANCE ANALYSIS

A. Analyses of DLoS and ILoS Probabilities

In this section, we first analyze the probabilities of associating
with BSs at a distance of r from the typical UE before establish-
ing DLoS and ILoS transmissions, i.e. PDLoS(r) and PILoS(r),
respectively. Based on the derived results, the impact of the
BS receiving threshold on UE-to-BS association will be further
analyzed in Section III-B. For the DLoS scheme, the following
lemma reveals that the probability of association, PDLoS (r),
decreases exponentially with distance r, as the number of
blockages grows with r.

Lemma 1. For a typical mmWave UE, the probability of asso-
ciating to the BS at a distance of r away for DLoS transmission
is given as

PDLoS(r) = exp (−βr − p) , (4)

where β = 2
πλb(E[L]+E[W ]) and p = λbE[L]E[W ] character-

ize the average impact of the blockage sizes on mmWave signal
propagation.

Proof: The proof follows from [19] and is ignored herein
for saving page space.

On the other hand, when the typical UE employs ILoS
transmission, PILoS (r) is given as the probability of having
at least one IRS for enabling an indirect LoS path from the
typical user to the associated BS at a distance of r away [14].
Taking into account the sizes of the blockages, we introduce a
protection distance of rmin =

√
(E[W ] + w0)2 + (E[L] + l0)2,

such that the distance from the center of a blockage to the UE
or the BS should exceed rmin, i.e. all UEs and BSs are located
away from the blockages. Meanwhile, for an IRS located on the
ellipse, we require both the IRS-to-BS and IRS-to-UE distances
to exceed rmin. This equivalently sets

√
b2 + c2−c > rmin, i.e.,

b >
√
r2min + r · rmin

Δ
= b1. Finally, using the proposed elliptical

model, PILoS (r) is derived in closed form in the following
theorem.
Theorem 1. Assume that the distance between the typical UE
and its associated BS is r. The probability of having at least
one IRS to reflect the mmWave signals from the UE to the BS
is given as

PILoS(r) = 1− exp

(
− 4λR

w2 − w1
I(r)

)
, (5)

where I(r) =
∫ w2

w1

∫ π/2

0

∫∞
b1

E(b)C(r, b, θ, w)J (b, θ)db dθ dw
characterizes the average number of IRSs that can reflect
the mmWave signals from the UE to the BS located at a
distance of r away with E(b) = e−2(p+β

√
b2+c2), w1 =

E[W ] − w0, and w2 = E[W ] + w0. Moreover, C(r, b, θ, w) =
1
2π

(
π − sin−1 w

2rx,ts
− sin−1 w

2rts,ys
− ψ

)
is the probability

that an IRS located at (b, θ) with width w is properly oriented

such that both the typical UE and its associated BS are in
front of the IRS, where sin−1 w

2rx,t
and sin−1 w

2rt,ys
are the

angles caused by the width of the blockage and the lengths
of UE-to-IRS link or IRS-to-BS link, respectively. Finally,
J (b, θ) = b2+c2 sin2 θ√

b2+c2
is due to coordinate transformation using

the proposed elliptic geometry model.

Proof: Please refer to Appendix A.
However, PILoS(r) in (5) involves a sophisticated triple-

integral term I(r), which is inconvenient to evaluate. In the
following, we further simplify the results by deriving an ap-
proximate value of I(r) as well as its upper and lower bounds.

Proposition 1. The triple-integral term I(r) can be approxi-
mated as

I(r) ≈ I0(r)
Δ
=∫ ∞

b1

E(b)
(
(w2 − w1)Xa(b)− π

4
(w2

2 − w2
1)
)
db,

(6)

where Xa(b) =
∫ π/2

0

(
π − arcsin 2bc sin θ

b2+c2sin2θ

)
J (b, θ)dθ. More-

over, Xa(b) is bounded as Xl(b) < Xa(b) < Xu(b), where
Xl(b) = π√

b2+c2

(
arctan b

c

(
b2 + c2

2

)
− 1

)
and Xu(b) =

π(π
2 b2+c2)−2bc√

b2+c2
.

Proof: For θ → 0, we have arcsin θ ≈ θ. Moreover, when
w 
 rx,ts and w 
 rts,ys , we have

sin−1 w

2rx,ts
+ sin−1 w

2rts,ys

≈ w

2rx,ts
+

w

2rts,ys

=
w(rts,ys + rx,ts)

2rts,ysrx,ts
=

w
√
b2 + c2

b2 + c2sin2θ
.

(7)

Substituting these approximations into I(r), (6) can be obtained.
Moreover, as θ ∈ (0, π/2], we have arcsin θ > θ > sin θ and

Xa(b) <

∫ π
2

0

(
π − 2bc sin θ

b2 + c2 sin2 θ

)
J (b, θ) dθ = Xu(b). (8)

Finally, exploiting the property of ellipse, we have ψ =
2arctan c sin θ

b and

Xa(b) =
1√

b2 + c2

(
π

(
arctan

b

c

(
b2 +

c2

2

)
− 1

)

+

∫ π
2

0

((
b2 +

c2

2

)
θ − c2 sin 2θ

4

)
2bc cos θ

b2 + c2 sin2 θ
dθ

(a)
>

1√
b2 + c2

π

(
arctan

b

c

(
b2 +

c2

2

)
− 1

)
= Xl(b),

(9)

where (a) is due to θ > sin(2θ)
2 for θ > 0. This completes the

proof.
Fig. 3 shows the reflection probability PILoS(r), its ap-

proximate value and upper/lower bounds versus the UE-to-BS
distance, r. From Fig. 3, we observe that the approximation
value is in good agreement with the exact value of I(r).
Moreover, the reflection probability PILoS(r) decreases mono-
tonically with r. This is because, as r increases, the UE-to-IRS
and IRS-to-BS links have larger lengths and, hence, are more
likely to be blocked. Further, PILoS(r) decreases the fastest for
r ∈ [200 m, 600 m]. This is because, in addition to the increased
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lengths and blockages of the UE-to-IRS and IRS-to-BS links,
the likelihood of having a properly oriented IRS reduces, as r
increases in this range.

B. Connectivity Analysis

In Sec. III-A, the reflection probability PILoS(r) has char-
acterized the impact of the IRS orientation on establishing an
ILoS signal path. In this section, we further analyze the impact
of signal incidence and reflection angles at the IRS on the
received signal power at the BS. To this end, we first analyze
the path loss of the IRS-assisted communication link using the
proposed elliptic geometry model. Based on the obtained results,
the successful connection probabilities PD|r{Pe > Pth} and
PI|r{Pe > Pth} are further derived.

1) Path Loss of IRS Reflection: For the ILoS transmission via
IRS, the connection probability PI|r{Pe > Pth} depends jointly
on the incident and reflection angles of mmWave signals, as well
as the length, position and orientation of the IRS, as revealed
in the following lemma.

Lemma 2. Let O denote the random orientation of a typical
IRS. Then the expected path loss of the IRS located at (b, θ),
averaged with respect to O, is given as

EO[Lx,ys ] = M2 L2
R

16π2

b2

(b2 + c2sin2θ)
1+α . (10)

Proof: Please refer to Appendix B.
2) Connection Probability: Based on Lemma 2, the condi-

tional connection probabilities of DLoS and ILoS transmissions,
given that the UE is associated with the BS at a distance of r,
are given in the following theorem.

Theorem 2. Let (B,Θ) denote the random location of the IRS.
The probabilities of successfully performing DLoS and ILoS
transmissions by the uplink UEs, when the UE-to-BS distance
is r, are given as

PD|r{Pe > Pth} = 1−
(
1− exp

(
− ηsPthr

α

PxMbMuCs

))Ns

,

(11)
PI|r{Pe > Pth} = 1−

∫ ∞

0

fLR(LR)·

EB,Θ

⎡
⎣
(
1− exp

(
−16π2ηsPth

(
b2 + c2 sin2 θ

)1+α

ML2
RPmaxMbMuCsb2

))Ns
⎤
⎦ dLR,

respectively, where fLR
(LR) is the PDF of the IRS length.

TABLE I
PARAMETERS SETTINGS [14], [19]

Parameter Default Value Parameter Default Value
λBS 10−5/m2 M 5
λb 5× 10−4/m2 Px 1 W
λu 3× 10−4/m2 μ 0.2
E[L] 10 m E[W ] 5 m
l0 2 m w0 1 m
α 3 Cs 1/4π2

Ns 3 LR 4 m
Mb 18 Mu 10

Proof: Let H and L denote the random small-scale fading
and IRS length, respectively. According to (2), we have

PD|r{Pe > Pth}
= P

{
MbMuPxCs |hx,ys |2 r−α ≥ Pth

}

= 1− P
{
|hx,ys |2 <

Pthr
α

PxMbMuCs

}

(b)≈ 1−
(
1− exp

(
− ηsPthr

α

PxMbMuCs

))Ns

,

(12)

and
PI|r{Pe > Pth}
(c)≈ PH,B,Θ,L

{
PxMbMuCs |hx,ys |2 EO[Lx,ys(r)] ≥ Pth

}

= 1− EB,Θ,L

{
PH

[
|hx,ys |2 <

16π2Pth

M2L2
RPxMbMuCs

·

1

b2
(
b2 + c2 sin2 θ

)1+α
]}

(d)≈ 1− EB,Θ,L

{[
1− exp

(
−ηs

16π2Pth

M2L2
RPxMbMuCs

·

1

b2
(
b2 + c2 sin2 θ

)1+α
)]Ns

}
,

(13)

where (b) and (d) follows from [16, Lemma 6] with ηs =

Ns(Ns!)
− 1

Ns . (c) is due to the fact that the location and
the orientation of IRSs are independent. Note that for any
function of random variables B and Θ, denoted as f(B,Θ),
its expectation is given as

EB,Θ[f(B,Θ)] =

∫ +∞

0

∫ 2π

0

fB,Θ(b, θ)f(b, θ)dθdb (14)

where fB,Θ (b, θ) =
λR(2b2+c2)
2
√
b2+c2

exp
(
−πλRb

√
b2 + c2

)
[18].

Finally, by substituting (4), (5), (11) and (14) into (3), the
total connectivity probability Pc in (3) is obtained.

IV. NUMERICAL RESULTS

In this section, the derived analytical results are validated us-
ing Monte Carlo simulations, where the location of the buildings
and RIS are randomly generated according to PPP. Moreover,
we evaluate the impact of the receiving signal thresholds of
BSs and the densities of blockages on the system performance.
Unless otherwise specified, the simulation parameters are set
according to Table I. For convenience, in the following, we
refer to Pd(r) = PDLoS(r)PD|r{Pe > Pth} and Pi(r) =
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Fig. 4. Connection probability of DLoS and ILoS transmissions versus the
UE-to-BS distance, r.

(1− PDLoS(r))PILoS(r)PI|r{Pe > Pth} as the effective con-
nection probabilities of DLoS and ILoS transmissions when the
UE-to-BS distance is r.

Fig. 4 shows Pd(r) and Pi(r) as functions of the UE-to-BS
distance r for different transmission schemes. From Fig. 4 we
observe that Pd(r) monotonically decreases with the UE-to-BS
distance, r. This is because, as r increases, the UE-to-BS link
is more likely to be blocked and, at the same time, experiences
a larger path loss. However, the connection probability of ILoS
transmission increases with r in the small regime, but decreases
with r in the large regime. That is, there exists an optimal UE-
to-BS distance for implementing ILoS communication via IRS.
This is because, unlike Pd(r), the term (1−PDLoS(r)) in Pi(r)
increases with r. From Fig. 4 we also observe that, when the UE
is far away from the BSs, Pd(r) decreases much faster with the
UE-to-BS distance than Pi(r). This is because the probability of
having DLoS links, PDLoS(r), decreases exponentially with r,
cf. Lemma 1. However, for ILoS scheme, the mmWave signals
can propagate over multiple pairs of shorter paths and are more
likely to find an unblocked ILoS path, cf. Theorem 1. Hence,
Pi(r) decreases with r more slowly than Pd(r), even though
the ILoS communication experiences a larger path loss. This
result implies that the deployment of IRS in mmWave cellular
networks can significantly improve the connection probability
of cell-edge UEs.

Finally, Fig. 5 shows PD
Δ
=
∫∞
0

Pd(r)fR(r)dr,

PI
Δ
=
∫∞
0

Pi(r)fR(r)dr, and Pc = PD + PI as functions
of the threshold of received signal power at the BSs for
different densities of buildings, where λb1 = 5 × 10−4/m2

and λb2 = 2.5 × 10−4/m2. From Fig. 5 we observe that,
as the receiving power threshold decreases, the probability
of implementing DLoS communication, PD, saturates as
blockages have a dominant impact on the connectivity in the
small power threshold regime. However, as the density of
blockages increases, both PD and PI decrease monotonically
due to the increased blockages. From Fig. 5 we also observe
that, for small receiving power thresholds, the total connection
probability, Pc, is close to 1, where most of the UEs can
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Fig. 5. Probabilities of DLoS and ILoS transmissions, and total connection
probability versus the threshold of received signal power.

successfully connect with the BSs. This result implies that the
deployment of IRSs in mmWave networks is most advantageous
if the receiving power threshold is sufficiently small.

V. CONCLUSION

In this paper, the successful connection probability of a large-
scale IRS-assisted urban mmWave cellular network was ana-
lyzed for uplink UEs performing DLoS and ILoS transmissions.
We introduced a novel elliptic geometry model to facilitate
a tractable analysis of the reflection probability via the IRS.
Moreover, simpler approximate expressions of the reflection
probability as well as the upper and lower bounds were pro-
vided. Based on the reflection probability, the total connection
probability for uplink communication with and without the IRS
was further derived. Our analytical results were validated by
Monte Carlo simulations, both of which further showed that the
deployment of IRS can significantly enhance the connectivity of
the considered mmWave network, particularly for cell-edge UEs
and BSs with sufficiently small received power threshold. In this
paper, PPPs are used to model the spatial locations of BSs, UEs
and buildings. Extending the proposed elliptic geometry model
to more sophisticated spatial distributions of BSs, UEs, and
buildings, such as thinning PPP [20] and Binomial Point Process
(BPP) [21], is an interesting work for future consideration.

APPENDIX A
PROOF OF THEOREM 1

The typical UE can perform ILoS communication if and only
if at least one IRS is properly located and oriented whereby the
IRS has (i) a LoS connection with the user, (ii) a LoS connection
with the BS and (iii) a proper orientation such that both the UE
and the BS are located in front of the IRS. We have

PILoS(r) = 1− P(N = 0)

(a)
= 1− exp

(
−λR

∫∫∫

Ω

P′
I(r)J (b, θ)db dθ dw

)
,

(15)

where N denotes the number of IRSs satisfying conditions (i)–
(iii), (a) is based on the void probability of PPP, Ω is the integral
region for (b, θ, w), and P′

I(r) is the probability that an IRS can
fulfill conditions (i)–(iii) for given UE-to-BS distance of r.
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Fig. 6 shows two extreme cases where condition (iii) is
fulfilled [14]. Accordingly, P′

I(r) can be calculated as

P′
I(r) = e−p−βrx,te−p−βrt,ysC(r, b, θ, w)

(b)
= e−2p−2β

√
b2+c2C(r, b, θ, w)

(16)

where (b) is due to rx,t + rt,ys = 2
√
b2 + c2 for any

t on an ellipse. e−p−βrt,ys , e−p−βrx,t and C(r, b, θ, w) =
1
2π

(
π − sin−1 w

2rx,t
− sin−1 w

2rt,ys
− ψ

)
are the probabilities

of events (i), (ii) and (iii), respectively. Based on (16), the
density of IRSs satisfying conditions (i)–(iii) is P′

I(r)λR.
Finally, substituting (16) into (15), we can obtain (5), which

completes the proof.

APPENDIX B
PROOF OF LEMMA 2

Based on (2), we have

EO [Lx,ys(r)] = EO
[
C2

ts
]
(rx,tsrts,ys)

−α
, (17)

where Cts = ML
4π (cos (θx,ts) + cos (θts,ys)). Moreover, we

have

EO
[
(cos θx,ts + cos θts,ys)2

]

(c)
=

2

π

∫ π
2

0

(
cos2 θx,ts + cos2 θts,ys + 2 cos θx,ts cos θts,ys

)
dθx,ts

=
1 + cosψ

2

π − ψ + sinψ

π

(d)≈ 1 + cosψ

2
,

(18)
where (c) is due to the fact that θx,ts is uniformly distributed
in [−π

2 + ψ, ψ] [13]. (d) follows from sinψ ≈ ψ, when ψ is
small. When ψ is close to π, (d) also holds as 1 + cosψ ≈ 0
and (sinψ − ψ)(1 + cosψ) ≈ 0.

Substituting (18) to (2), we have

EO [Lx,ys ]
(e)
=

M2L2

16π2

b2

rx,tsrts,ys

(rx,tsrts,ys)
−αi

=
M2L2

16π2

b2

(b2 + c2sin2θ)
1+αi

,

(19)

where (e) follows from rx,trt,ys = 2b2

1+cosψ for any t located on
an ellipse. This completes the proof.

REFERENCES

[1] J. G. Andrews, T. Bai, M. N. Kulkarni, and et al., “Modeling and analyzing
millimeter wave cellular systems,” IEEE Trans. Commun., vol. 65, no. 1,
pp. 403–430, Oct. 2017.

[2] S. Gong, X. Lu, D. T. Hoang, and et al., “Toward smart wireless com-
munications via intelligent reflecting surfaces: A contemporary survey,”
IEEE Commun. Surveys Tuts., vol. 22, no. 4, pp. 2283–2314, Jun. 2020.

[3] Q. Wu and R. Zhang, “Towards smart and reconfigurable environment:
Intelligent reflecting surface aided wireless network,” IEEE Commun.
Mag., vol. 58, no. 1, pp. 106–112, Nov. 2020.

[4] P. Wang, J. Fang, X. Yuan, Z. Chen, and H. Li, “Intelligent reflecting
surface-assisted millimeter wave communications: Joint active and passive
precoding design,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 14 960–
14 973, Oct. 2020.

[5] D. Zhao, H. Lu, Y. Wang, H. Sun, and Y. Gui, “Joint power allocation and
user association optimization for IRS-assisted mmWave systems,” IEEE
Trans. Wireless Commun., vol. 21, no. 1, pp. 577–590, Jul. 2022.

[6] X. Ge, J. Ye, Y. Yang, and Q. Li, “User mobility evaluation for small
cell networks based on individual mobility model,” IEEE J. Sel. Areas
Commun., vol. 34, no. 3, pp. 528–541, 2016.

[7] X. Ge, B. Yang, J. Ye, G. Mao, C.-X. Wang, and T. Han, “Spatial
spectrum and energy efficiency of random cellular networks,” IEEE Trans.
Commun., vol. 63, no. 3, pp. 1019–1030, 2015.

[8] Y. Zhong, T. Q. Quek, and X. Ge, “Heterogeneous cellular networks with
spatio-temporal traffic: Delay analysis and scheduling,” IEEE J. Sel. Areas
Commun., vol. 35, no. 6, pp. 1373–1386, 2017.

[9] J. Zhang, L. Xiang, D. W. K. Ng, M. Jo, and M. Chen, “Energy efficiency
evaluation of multi-tier cellular uplink transmission under maximum power
constraint,” IEEE Wireless Commun., vol. 16, no. 11, pp. 7092–7107,
2017.

[10] J. Zhang, J. Han, L. Xiang, D. W. K. Ng, M. Chen, and M. Jo, “On the
performance of dual-mode uplink transmission: Connection probability
versus energy efficiency,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp.
11 152–11 168, 2020.

[11] M. Nemati, J. Park, and J. Choi, “RIS-assisted coverage enhancement in
millimeter-wave cellular networks,” IEEE Access, vol. 8, pp. 188 171–
188 185, Oct. 2020.

[12] T. Hou, Y. Liu, Z. Song, X. Sun, Y. Chen, and L. Hanzo, “Reconfigurable
intelligent surface aided NOMA networks,” IEEE J. Sel. Areas Commun.,
vol. 38, no. 11, pp. 2575–2588, Jul. 2020.

[13] C. Zhang, W. Yi, Y. Liu, and et al., “Reconfigurable intelligent surfaces
aided multi-cell NOMA networks: A stochastic geometry model,” IEEE
Trans. Commun., vol. 70, no. 2, pp. 951–966, Nov. 2022.

[14] M. A. Kishk and M.-S. Alouini, “Exploiting randomly located blockages
for large-scale deployment of intelligent surfaces,” IEEE J. Sel. Areas
Commun., vol. 39, no. 4, pp. 1043–1056, Aug. 2021.

[15] A. AlAmmouri, J. G. Andrews, and F. Baccelli, “SINR and throughput of
dense cellular networks with stretched exponential path loss,” IEEE Trans.
Wireless Commun., vol. 17, no. 2, pp. 1147–1160, Nov. 2018.

[16] T. Bai and R. W. Heath, “Coverage and rate analysis for millimeter-wave
cellular networks,” IEEE Trans. Wireless Commun., vol. 14, no. 2, pp.
1100–1114, Oct. 2015.

[17] J. Zhang, X. Ge, Z. Li, G. Mao, and Y. Yang, “Analysis of the uplink
maximum achievable rate with location-dependent intercell signal inter-
ference factors based on linear Wyner model,” IEEE Trans. Veh. Technol.,
vol. 62, no. 9, pp. 4615–4628, Jun. 2013.

[18] S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry
and Its Applications. U.K.: Wiley, 2013.

[19] T. Bai, R. Vaze, and R. W. Heath, “Analysis of blockage effects on urban
cellular networks,” IEEE Trans. Wireless Commun., vol. 13, no. 9, pp.
5070–5083, Jun. 2014.

[20] Y. Hmamouche, M. Benjillali, and S. Saoudi, “Fresnel line-of-sight prob-
ability with applications in airborne platform-assisted communications,”
IEEE Trans. Veh. Technol., vol. 71, no. 5, pp. 5060–5072, 2022.

[21] T. Shafique, H. Tabassum, and E. Hossain, “Stochastic geometry analysis
of assisted downlink cellular networks,” IEEE Trans. Commun., vol. 70,
no. 2, pp. 1442–1456, 2022.


