
Sumedh Dongare, Andrea Ortiz and Anja Klein, ”Deep Reinforcement Learning for Task
Allocation in Energy Harvesting Mobile Crowdsensing,” in Proc. of the IEEE Global Commu-
nications Conference - (IEEE GLOBECOM 2022), December 2022.

©2022 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this works must be obtained from the IEEE.

Deep Reinforcement Learning for Task Allocation
in Energy Harvesting Mobile Crowdsensing

Sumedh Dongare, Andrea Ortiz, Anja Klein
Communications Engineering Lab, Technical University of Darmstadt, Germany.

{s.dongare, a.ortiz, a.klein}@nt.tu-darmstadt.de

Abstract—Mobile crowd-sensing (MCS) is an upcoming sens-
ing architecture which provides better coverage, accuracy, and
requires lower costs than traditional wireless sensor networks.
It utilizes a collection of sensors, or crowd, to perform various
sensing tasks. As the sensors are battery operated and require
a mechanism to recharge them, we consider energy harvesting
(EH) sensors to form a sustainable sensing architecture. The
execution of the sensing tasks is controlled by the mobile crowd-
sensing platform (MCSP) which makes task allocation decisions,
i.e., it decides whether or not to perform a task depending on the
available resources, and if the task is to be performed, assigns
it to suitable sensors. To make optimal allocation decisions,
the MCSP requires perfect non-causal knowledge regarding the
channel coefficients of the wireless links to the sensors, the
amounts of energy the sensors harvest and the sensing tasks to
be performed. However, in practical scenarios this non-causal
knowledge is not available at the MCSP. To overcome this
problem, we propose a novel Deep-Q-Network solution to find the
task allocation strategy that maximizes the number of completed
tasks using only realistic causal knowledge of the battery statuses
of the available sensors. Through numerical evaluations we show
that our proposed approach performs only 7.8% lower than
the optimal solution. Moreover, it outperforms the myopically
optimal and the random task allocation schemes.

I. INTRODUCTION

Mobile crowd-sensing (MCS) is a sensing architecture
which utilizes a collection of sensors or ’crowd’ to perform
sensing tasks [1]. With an increasing number of smart devices
equipped with a variety of sensors and due to recent advance-
ments in the Internet of Things (IoT), MCS has become a
popular topic of research [2]. There are many advantages MCS
has over the traditional wireless sensor networks (WSNs) such
as lower infrastructure costs, higher coverage and wider range
of applications due to sensor mobility [3]. As a consequence,
MCS is rapidly becoming a viable alternative to WSNs in sens-
ing applications. In fact, there are many existing applications
ranging from traffic monitoring (FourSquare,Waze), environ-
mental monitoring [4], spectrum sensing [5], to mHealth [6]
which efficiently employ MCS.

A typical MCS scenario consists of data requesters, a mobile
crowd-sensing platform (MCSP), and the sensors. The data
requesters require some sensing data which they communicate
to the MCSP as a request. The MCSP then reformulates this

This work has been funded by the German Research Foundation (DFG) as
a part of the projects C1 and T2 within the Collaborative Research Center
(CRC) 1053 - MAKI (Nr. 210487104) and has been supported by the BMBF
project Open6GHub (Nr. 16KISK014) and the Loewe Center EmergenCity.

request as a sensing task and allocates it to the appropriate
sensors. The sensors perform the task and transmit the sensed
data back to the MCSP. The MCSP then provides the sensed
data back to the data requesters. In an MCS scenario, the task
allocation strategy used to choose the sensors which perform
the sensing tasks has a strong impact on the completion of
the tasks, the energy efficiency of the system, and the quality
of the sensed data. For example, tasks allocated to unsuitable
sensors can take too long to be completed or the quality of
the results might not be adequate. For this reason, one of the
main challenges to maximize the number of completed tasks or
coverage in MCS, is finding a suitable task allocation strategy.

The sensors are usually battery operated and therefore
require a mechanism to recharge their batteries to form a
sustainable sensing architecture. One option to achieve this
is by using energy harvesting (EH) [7]. EH is a technology
where the nodes can collect energy from the environment
using different renewable energy sources [8]. EH has been
previously used in the context of WSN [9], [10]. However, its
application in MCS scenarios is not straightforward because
the solution to the task allocation problem depends on the
amounts of energy harvested by the sensors, which are usually
not known in advance at the MCSP. The availability of the
sensors to perform a sensing task is constrained by the energy
available in their batteries. Therefore, there is a trade-off
between selecting a sensor to perform a task at a given time
and spend its energy, or saving the sensor’s energy to perform
more complex and energy demanding tasks in the future.

To make an optimal task allocation decision, the MCSP
requires perfect non-causal knowledge of the time varying
parameters of the MCS system, e.g., the channel coefficients
of the wireless links to the sensors, the tasks to be performed,
the sensor’s locations or their trajectories. So far, the MCS
research has focused on non-EH systems. The state-of-the-art
approaches assume that the MCSP always has a sensing task
to perform. Additionally, non-causal knowledge of the sensor’s
locations, their trajectories, and the channel coefficients is
assumed at the MCSP. [11]–[14]. Specifically, in [11], the
authors investigate a greedy approach for task assignment to
minimize the energy consumption under a coverage constraint
under the assumption of known sensor mobility information at
the MCSP. In [12], the authors propose a genetic algorithm for
the task allocation problem to maximize the task completion
assuming the sensor locations are known. The authors then

Sensing Task t

(Mt,�t
dl,Ut)

Sensing Task T

(MT,�T
dl,UT)

...

MCSP

time

Target Area

1

3
2

4

7

5

8

6

...

Fig. 1. System model with K = 8 reserved sensors

optimize the travelling path of the sensors with constraints
based on known user preferences, such as travel distance to
the task. In [13], the authors assume knowledge about the
channel and prior user trajectories. They propose a machine
learning-based approach for task allocation by formulating
a path planning problem to maximize the MCSP’s profit
and coverage under deadline constraints. In [14], the authors
formulate an optimization problem to achieve a given quality
of information level from the MCS under the constraint of
minimum energy consumption. The authors assume knowledge
about the channel coefficients and the user trajectories at the
MCSP. In practical scenarios, this knowledge may not always
be available at the MCSP.

We formulate the task allocation problem in an MCS
scenario to maximize the number of completed tasks in a
finite time horizon. To form a sustainable sensing architecture,
we assume EH sensors. Moreover, the sensing tasks are
deadline constrained. We propose a novel Deep-Q-Network
Reinforcement Learning (RL) approach to find the task allo-
cation strategy that maximizes the number of completed tasks,
without the strict requirement of non-causal knowledge about
the channel coefficients, the amounts of harvested energy, and
the tasks to be performed. In particular, our proposed approach
learns to make allocation decisions considering the trade-off
between selecting a sensor at a given time and spending its
energy, or not selecting it and thus save its energy to perform
more complex and energy demanding tasks in the future.

In the rest of the paper, Section II presents the system
model. Section III describes the task assignment problem
in EH MCS to maximize the number of completed tasks.
Our proposed algorithm is explained in Section IV and the
simulation results to compare the performance of the proposed
algorithm with reference schemes are presented in Section V.
Finally, Section VI concludes the paper.

II. SYSTEM MODEL

We consider an MCS scenario which includes an MCSP
with sensing tasks and multiple EH sensors distributed ran-
domly in an area, as depicted in Fig. 1. As in [15], we consider
a time slotted structure where a finite time horizon TH is
divided equal time steps indexed with t ∈ {1, 2, . . . , T}. The
duration of each time step is τ int. The duration of one time
horizon is then, TH = Tτ int. All the available sensors in the

area are included in the set Q. At the beginning of the time
horizon, the MCSP broadcasts a participation request to all
sensors in Q with indices q = {1, 2, . . . , Q}. The participation
request informs the sensors about the duration of the time
horizon TH for which the sensors will be reserved to perform
sensing tasks. We assume a subset K ⊆ Q of sensors responds
positively to the request. These k = {1, 2, . . . ,K} ∈ K
sensors are reserved for the time horizon TH.

At the beginning of each time step t, a task arrives at
the MCSP with probability λ ∈ (0, 1]. As we consider at
maximum one task per time step, the variable t is used as
the task index as well as the time step index. Each task t is
characterized using a tuple

〈
Mt, τ

dl
t , Ut

〉
where Mt denotes

the sensing task size measured in bits, τdlt is a task specific
deadline and Ut describes the number of sensors required to
execute the task t. We assume the maximum task size is Mmax

and τdlt ≤ τ int for all t. The tuple
〈
Mt, τ

dl
t , Ut

〉
is provided

by the data requesters as a requirement to be fulfilled in order
to complete the task t. Ut can be based on the requester’s
budget and the number of samples it requires for that sensing
task such that Ut ≤ K. We define a set of sensors which are
assigned the task t as Kt. Therefore, |Kt| = Ut must hold.

Immediately after receiving a task, the MCSP makes a task
allocation decision in two consecutive steps: a task acceptance
and a task assignment decision. The task acceptance decision
is represented by a binary variable xt. In some time steps it
is not possible for the sensors to complete the task because
of the task requirements might be too strict. In this situation,
the MCSP should decide to drop the task, i.e., xt = 0, in
order to save the sensor’s energy. If the MCSP decides to
perform the task t, i.e., xt = 1, then the MCSP decides to
which sensors to assign this task. The task assignment decision
for each sensor k in time step t is denoted by yk,t. If a
sensor k is chosen for a task t, then yk,t = 1, otherwise
yk,t = 0. We assume that allocation of the sensing task to
the sensors requires negligible time. The task acceptance and
the task assignment decisions for all t are stored in the vector
x = (x1, x2, . . . , xT)

T and matrix Y = (y1, y2, . . . , yT)
where yt = (y1,t, y2,t, . . . , yK,t)

T, respectively. We assume
that the task is independently executed by each sensor k once
the task is allocated to it, that means, each sensor will generate
its sensing data independently.

For the execution of task t, the sensor k spends time τ sk,t,
and energy Es

k,t = pstτ
s
k,t for sensing, where pst is the power

required for sensing. After the sensing, the sensor transmits the
sensed data back to the MCSP. For this purpose, each sensor
k has its own wireless channel with channel coefficient hk,t in
time step t and bandwidth W [15]. We assume that channels
of different sensors are orthogonal to each other. Transmitting
the sensed data back to the MCSP requires time,

τ tx
k,t =

Mt

W log2

(
1 +

ptx
max|hk,t|2

σ2

) , (1)

where ptxmax is the transmit power and σ2 is the noise
power. For the transmission, the sensor spends energy Etx

k,t =

TABLE I
NOTATIONS

Description Notation Description Notation
Total number of sensors Q Sensing task t size Mt

Length of the time horizon TH Deadline of task t τ dl
t

Total reserved sensors for TH K Number of required sensors for task t Ut

Set of sensors assigned to task t Kt Sensing, transmission and execution
τ s
k,t,τ tx

k,t and τ exec
k,tTask index, time step index t time of sensor k for task t

Index of reserved sensor k Sensing, transmission and execution
Es

k,t, Etx
k,t and Eexec

k,tBattery status of sensor k in time step t bk,t energy of sensor k for task t

Battery capacity Bmax Channel bandwidth for sensor k W

Channel coefficient of sensor k in time step t hk,t Task acceptance vector x

Task arrival probability λ Task assignment matrix Y

ptxmaxτ
tx
k,t. Therefore, to perform a sensing task, the allocated

sensor k requires time τ execk,t = τ sk,t + τ txk,t and energy
Eexec

k,t = Es
k,t + Etx

k,t. Note that Eexec
k,t ̸= 0 only if task t

is allocated to sensor k, otherwise Eexec
k,t = 0. We assume

that the task execution is complete only if the task deadline
requirement is fulfilled. After the execution, the MCSP collects
the sensed data and provides it back to the data requester. The
task is completed if each sensor k ∈ Kt follows the deadline
constraint such that τ execk,t ≤ τ int. Else, the task is incomplete.
If after the deadline task t is incomplete, all the sensors stop
the execution and wait to be assigned to a new task.

The sensors harvest energy from the environment. The
maximum amount of energy that can be harvested in one time
step t is Eharv

max . Note that the sensors harvest energy also in
all time steps t where there is no task to be performed. We
assume that the energy Eharv

k,t harvested by sensor k is stored
in its battery with capacity Bmax without any losses. However,
the harvested energy Eharv

k,t is available in the battery in time
step t + 1. The sensors can only use the energy which is
stored inside the battery at the beginning of time step t. A
new battery status bk,t is calculated at the end of t from the
previous battery status bk,t−1 as,

bk,t = bk,t−1 − Eexec
k,t + Eharv

k,t . (2)

All the reserved sensors K transmit their updated battery status
bk,t to the MCSP via a dedicated control channel.

Note that our system model is not restricted to one par-
ticular device as a sensor. The sensors can be any sensing
device such as smartphones, wearable, smart vehicles, or IoT
devices, which are battery operated and have EH capabilities.
A summary of the notation is presented in Table II.

III. PROBLEM FORMULATION

A. Optimization problem

In this section, we formulate the task allocation problem
in the considered MCS scenario to maximize number of
completed tasks in a finite time horizon TH. As described in
section II, the task allocation decision made by the MCSP con-
sists of two steps, the task acceptance and the task assignment
for all tasks in time horizon TH. These two decisions are stored
in vector x and matrix Y respectively. Since tasks can have

different requirements in terms of Mt,τdlt , and Ut, they require
different amounts of resources for their completion. To handle
these different requirements, we introduce the normalized
quantities

〈
M ′

t , τ
dl′

t , U ′
t

〉
to form a single weight,

Vt = ξM ′
t + ωτdl

′

t + ψU ′
t , ∀t, (3)

where the variables ξ, ω, ψ ∈ [0, 1] are importance factors for
M ′

t , τ
dl′

t , and U ′
t respectively. Their values can be modified

to favour task execution w.r.t. the respective requirement.
Specifically, M ′

t is Mt

Mmax
where Mmax is the size of the

largest task, τdl
′

t is 1 − (
τdl
t

τ int), and U ′
t is Ut

K . Therefore,
M ′

t , τ
dl′

t , U ′
t ∈ [0, 1]. If task size Mt is large, more resources

are required for successful completion and hence, Vt increases.
Since fulfilling shorter task deadlines is harder than longer
ones, τdlt affects the weight Vt inversely. Finally, Ut directly
impacts Vt as a higher value of Ut implies more resources.

Since each task t has deadline τdlt , the allocated sensors for
task t must fulfil the deadline constraint given by,

τ exec
k,t yk,t ≤ τ dl

t , ∀k ∈ Kt,∀t. (4)

Furthermore, the task assignment decision yk,t is constrained
by the requirement Ut as,

K∑
k=1

yk,t = Utxt, ∀k ∈ Kt,∀t. (5)

Notice that the task assignment decision yk,t depends on the
task acceptance decision xt made by the MCSP. Moreover, the
contributions from all sensors are equally important. If a task
t is allocated to Ut sensors, and if one or more of them cannot
successfully perform the task under given requirements, then
the task is incomplete.

The sensors cannot spend more energy than their current
battery status bk,t. To ensure this, an energy causality con-
straint is imposed as,

J∑
j=1

Eexec
k,j yk,t ≤

J−1∑
j=0

Eharv
k,j , ∀k ∈ Kt,∀t, ∀J = 1, ..., T . (6)

The energy causality constraint in (6) also ensures that the
harvested energy cannot be used instantaneously and needs

to be stored in the battery first. Since sensors cannot store
energy more energy than the battery capacity Bmax, an energy
overflow constraint is imposed on the sensors as
J−1∑
j=0

Eharv
k,j −

J∑
j=1

Eexec
k,j yk,t ≤ Bmax, ∀k ∈ Kt,∀t,∀J = 1, ..., T .

(7)
The optimization problem to maximize the average weighted
sum of completed tasks is formulated as follows,

argmax
{xt,yk,t}

T∑
t=1

K∑
k=1

xtVt

subject to (4), (5), (6), (7).

(8)

The formulated task allocation problem is NP-hard. Also,
the constraints are interdependent. To find an optimal task
allocation strategy to maximize the average weighted sum of
completed tasks, the MCSP requires perfect non-causal knowl-
edge about the channel coefficients, the amount of harvested
energy and the sensing tasks to be performed. Such non-causal
knowledge is, in practical scenarios, usually not available at
the MCSP. To overcome this challenge, we propose a Deep-
Q-Network (DQN)-based approach which does not have this
strict requirement. Our approach only assumes that the current
battery statuses bk,t of the sensors and the requirements of the
current task t are known.

B. Reformulation as Markov Decision Process
The MCSP has to make task allocation decisions in each

time step. Such decision making problems can be modelled
using a Markov Decision Process (MDP). Therefore, in this
section, we reformulate the optimization problem as an MDP.

An MDP is characterized by a tuple ⟨S,A,P,R⟩ such that
the set S contains the states which the decision making agent,
the MCSP in our model, can experience. The state St ∈ S
is the knowledge the MCSP has about the MCS scenario in
time step t. The set A contains the possible actions the MCSP
can take, i.e., the possible task allocation decisions. The set
P contains probabilities P (St+1|St, At) that the MCSP will
observe state St+1 ∈ S when it takes action At ∈ A in
the state St ∈ S . The reward set R contains the rewards
Rt ∈ R the MCSP receives after taking action At ∈ A in
state St ∈ S. In our scenario, the state St is the collection
of battery statuses bk,t of all reserved sensors K, the task
size Mt and the number of required sensors Ut. It is defined
as St = {b1,t, b2,t, . . . , bK,t,Mt, Ut}. Since the battery levels
can take any value in the continuous range [0, Bmax], there
can be infinitely many possible states in the set S. The action
set A consists of all the task allocation decisions the MCSP
can take. Since Ut sensors are chosen for the task execution
t, with 1 ≤ Ut ≤ K, the set A consist of 2|K| combinations,
including an action to not allocate any sensor for the current
task, or in other words, to not perform the task to save energy.
As perfect knowledge about the environment is not available,
the transition probability matrix P is assumed to be unknown.
Finally, after selecting an action At, the MCSP receives a
rewards Rt ∈ R according to (8).

Algorithm 1 Deep Q-network agent training

Require: Battery status b for all reserved sensors K, Task tuple
〈
M, τdl, U

〉
.

1: for each episode i = 1, 2, . . . , I do
2: Initialize DQN Agent critic Q(S,A; θ) with random parameter values

θ and a target DQN critic with parameter values θt.
3: for each time step t = 1, 2, . . . , T do
4: For current state St, select a random action with probability ϵ, or

select an action which has highest Q(St+1|St, At) ▷ ϵ-greedy
policy

5: Observe Rt and evaluate St+1. ▷ Constraints (4-7)
6: Store ⟨St, At, Rt, St+1⟩ in replay memory
7: Sample random L experience samples to form a mini-batch
8: Evaluate the loss function
9: Update θ, update ϵ using ϵ-decay rate

10: Update θt = θ periodically for target network
11: end for
12: end for
13: return Trained DQN Agent with parameters Q(S,A; θt)

An action selection policy π determines the relation between
the state St ∈ S and an action At ∈ A taken by the agent as
At = π(St). Furthermore to evaluate how good or bad some
policy π is, an action-value function Qπ(St, At) is calculated.
This function calculates the expected reward starting from state
St ∈ S , selecting action At ∈ A and following the same
policy π until the end of the time horizon. There also exists
an optimal policy π∗ which guarantees an optimal action-value
function Q∗(St, At). Conversely, when an action At ∈ A
maximizes the function Q∗(St, At), it is an optimal action.

IV. REINFORCEMENT LEARNING SOLUTION

In our proposed approach, the MCSP implements a DQN
to solve the task allocation problem. The use of a DQN is
motivated by the infinitely large state space and the com-
binatorial but finite action space. The DQN agent, i.e., the
MCSP, learns the task allocation strategy by interacting with
the environment. From this interaction, the MCSP builds an
estimate of the action value function Q(St, At) and selects
actions which yield the highest Q(St, At). The general aim of
the DQN agent is to maximize the expected long term return,

G = lim
T−→∞

E

[
T∑

t=1

γtRt

]
. (9)

Here, γ ∈ (0, 1] is the discount factor that describes the ex-
ponentially decreasing weight given to future rewards. γ → 1
indicates that the DQN agent prefers to achieve higher rewards
in the future compared to lower values of γ that indicate a
preference for immediate rewards.

The proposed algorithm is based on [16]. In a nutshell,
our DQN works as follows: The DQN agent is trained over
multiple instances of the finite time horizon. Each of these
instances is called an episode. During the training phase,
our proposed algorithm initializes a deep neural network
for the estimation of a parameterized action-value function
Q̂(St, At; θ). This parameterized value function is used to
select an action At in each time step. Through the interaction
with the environment, the DQN tunes the parameters θ to

TABLE II
SIMULATION PARAMETERS

Parameter Value
Total time steps T in time horizon TH 3000 time steps
Duration of one time step t = τ int 200ms

Number of reserved sensors K 8
Sensor distances to MCSP [dmin, dmax] [200, 1000]m

Battery capacity Bmax 32mWs

Maximum harvested energy Eharv
max per t 10% of Bmax

Total Bandwidth W per sensor k 1MHz

Noise power σ2 10−16 W

Transmit power ptxmax of sensor k 100mW

Channel gain |hk,t|2 ∼ d−3 (Urban scenario)
Sensing task throughput M [10− 250] kbit

Deadline τdl Uniform in [τ
int

2
, τ int]s

Required sensors Ut per task t Uniform in [1,K]

improve the accuracy of Q̂(St, At; θ) and converge it to the
true value function Q(S,A).

A summary of the proposed algorithm is presented in Alg.
1. In each episode i, a finite time horizon TH is considered
in the corresponding time steps of τ int. In each time step
t, the MCSP may explore a new action or exploit the so
far best possible action At which maximizes Q̂(St, At; θ) for
the current state St. This policy is known as ϵ-greedy action
selection. Each action At selected by the MCSP in state St

returns a reward Rt based on the objective function in (8). In
simple terms, the MCSP gets a reward Rt > 0 if the current
task is completed, otherwise zero. The reward Rt linearly
depends on the values of the task tuple

〈
M ′

t , τ
dl′

t , U ′
t

〉
. The

proposed algorithm uses a replay memory which stores the
experiences of the MCSP in the form of ⟨St, At, Rt, St+1⟩.
This memory helps the MCSP to tune the parameters θ to
improve the estimate Q̂(St, At; θ). The estimate Q̂(St, At; θ)
for the current state St and all actions At ∈ A is calculated
using a subset of samples from the replay memory, known
as a mini-batch of size C. A loss function, i.e., Huber loss
function, is calculated over this subset of experiences w.r.t. θ.
The parameters θ are then tuned such that the loss function is
minimized. At the end of the time step t, the MCSP updates
the neural network parameters. Since the MCSP improves
Q̂(St, At; θ) based on previous estimates, stability needs to
be maintained. To achieve this, two identical sets of neural
networks are used. One network with parameters θ is tuned in
every time step, whereas another neural network, also known
as a target network, with parameters θt is updated from the
tuned network θ periodically until convergence is achieved.

V. NUMERICAL EVALUATION

In this section, we present simulation results to evaluate the
performance of our proposed DQN-based approach by com-
paring it with reference schemes. These results are generated
by taking an average over I = 1000 independent realizations.
In each realization, we consider T = 3000 time steps. Each
task size Mt in time step t is an element of a discrete set of task
sizes M = {Mt,1, . . . ,Mt,5} such that Mt,1 < . . . < Mt,5.
Moreover, all of these task sizes are equiprobable. The task

arrival probability λ is set to |M|
|M|+1 to include the fact that in

some time steps, no task arrives at the MCSP. The sensors are
located in an area such that the maximum distance between a
sensor and the MCSP is 1 km. The channel between sensor k
and the MCSP is modelled as Rayleigh fading with path loss
exponent of three. The sensors can move freely in the area at
an average speed of 5 km/h. We set the parameters χ, ω, and
ψ from (3) to one to encourage fairness in task completion.
Table II provides a summary of simulation parameters.

To train the DQN agent, a neural network with two hidden
layers is used for the Q(S,A) estimation. Additionally, a
learning rate α = 3 × 10−3 is used. In order to learn from
a sufficiently large data sample set, a replay memory of size
5×104 is used out of which a mini batch of C = 256 samples
of experiences is considered for the Q(S,A) estimation.
We consider following reference schemes for comparison:
Optimal task allocation: In this approach, we assume that the
MCSP has perfect non-causal knowledge about the channel
coefficients, the amounts of harvested energy and the task to
be performed for the complete time horizon TH.
Myopically optimal task allocation: This approach assumes
the MCSP has perfect causal knowledge of the channel coef-
ficients and the amounts of harvested energy. The myopically
optimal allocation is found by iteratively selecting the sensors
with the best channel coefficients hk,t and adequate battery
statuses bk,t for the current task t to ensure task completion.
Random task allocation: This strategy provides the lower
bound for the performance since it participates in every task
and randomly allocates the sensors for execution.

The average weighted sum of completed tasks in a finite
time horizon TH for all approaches is shown in Fig. 2. The
optimal task allocation strategy performs the highest average
weighted sum of completed tasks, i.e. 1997 tasks, and sets the
upper bound of the performance. In comparison, our proposed
algorithm performs near-optimally by completing 1843 tasks
which are approx. 92.2% of the optimal performance without
the strict requirement of non-causal knowledge about the chan-
nel coefficients, the amounts of harvested energy and the tasks
to be performed. Our approach performs at least 12% better
than the myopically optimal task allocation scheme which re-
quires perfect causal knowledge about the channel coefficients
and the amounts of harvested energy. The reason for this is
that our proposed approach learns to make task allocation
decisions considering their future consequences. For example,
instead of always allocating the task to the sensors with best
channel coefficients, like in the case of the myopically optimal
strategy, our proposed algorithm allocates the task to sensors
which can fulfil the requirements despite of not having the best
channel conditions. By doing so, we ensure that future, and
potentially more demanding tasks, can also be performed. As
a consequence, our proposed approach performs consistently
well especially in case of limited resources. For the random
task allocation strategy there is no guarantee that assigned
sensors will fulfil the task requirements. Therefore, the number
of completed tasks is low. Our proposed approach outperforms
the random allocation by performing at least 80% more tasks.

 0

 500

 1000

 1500

 2000

Optimal DQN-RL Myopic Random

A
ve

ra
ge

 w
ei

gh
te

d
su

m
of

 c
om

pl
et

ed
 ta

sk
s

Fig. 2. Average weighted sum of completed tasks
for all approaches

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5

R
at

io
 o

f
co

m
pl

et
ed

 ta
sk

s
 to

 to
ta

l n
um

be
r

of
 ta

sk
s

(i
n

%
) Optimal

DQN-RL
Myopic-Opt.

Random

Fig. 3. Average weighted sum of completed tasks
(%) vs. Task size

 1600

 1700

 1800

 1900

 2000

 2100

10 25 50 75 100

A
ve

ra
ge

 w
ei

gh
te

d
su

m
of

 c
om

pl
et

ed
 ta

sk
s

Optimal
DQN-RL

Myopic Opt.

Fig. 4. Average weighted sum of completed tasks
vs. Eharv

max in % of Bmax

To analyze the performance of all the considered approaches
w.r.t. the task size we compare the task completion rate in
percentage, as shown in Fig. 3. This analysis highlights the
importance of the weight V introduced in (3). As the task
size increases, the sensors require more time τ txk,t to transmit
the result back to MCSP which makes the fulfillment of the
deadline constraint (4) harder. Therefore a downward trend is
seen in the task completion as the task size increases. Even
in these conditions, our proposed approach outperforms the
myopically optimal task allocation scheme at least by 23%
and 3% in the completion of the Mt,1 and Mt,5, respectively.

To study the effect of the amount of harvested energy per
time step t on the performance, we repeat our experiment
for different values of maximum harvested energy Eharv

max .
The results are shown in Fig. 4. As Eharv

max increases, the
probability that the sensors will have enough energy to perform
the tasks increases. Due to this, all the approaches perform
better with an increase in Eharv

max . In Fig. 4, we omit the
random allocation because it performs consistently worse
than the other schemes. The performance of the myopically
optimal task allocation strategy improves drastically by 16.1%
when Eharv

max = 0.25Bmax. This is because the MCSP no
longer needs to reserve the resources for the future. As Eharv

max

increases further, the performance of our proposed approach
is only 2.2% below the performance of the optimal approach.
The performance of our proposed algorithm outperforms the
myopically optimal strategy throughout and tends to converge
to the optimal performance as Eharv

max increases.

VI. CONCLUSION

In this work, we study the task allocation problem in an
energy harvesting mobile crowd-sensing scenario to maximize
the average weighted sum of completed tasks in a finite time
horizon. The mobile crowd-sensing platform (MCSP) makes
task allocation decisions, i.e., it decides whether or not to
perform a task depending on the available resources, and if
the task is to be performed, assigns it to suitable sensors. The
optimal task allocation strategy in this scenario requires perfect
non-causal knowledge of the channel coefficients, the amounts
of harvested energy and the sensing tasks to be performed. In
realistic scenarios, this knowledge is unavailable at the MCSP.
We proposed a DQN approach to solve the allocation problem
without this strict requirement. According to the simulation
results, our proposed approach performs only 7.8% lower than
the optimal task allocation strategy. Moreover, our proposed

approach outperforms the myopically optimal task allocation
strategy by 12%; and the random allocation strategy by 80%.

REFERENCES

[1] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and
future challenges,” IEEE Commun. Mag., vol. 49, no. 11, pp. 32–39,
2011.

[2] J. An, X. Gui, J. Yang, S. Yu, and X. He, “Mobile crowd sensing
for internet of things: A credible crowdsourcing model in mobile-sense
service,” in IEEE Int. Conf. on Multimedia Big Data, 2015, pp. 92–99.

[3] H. Ma, D. Zhao, and P. Yuan, “Opportunities in mobile crowd sensing,”
IEEE Commun. Mag., vol. 52, no. 8, pp. 29–35, 2014.

[4] H. To, L. Fan, L. Tran, and C. Shahabi, “Real-time task assignment in
hyperlocal spatial crowdsourcing under budget constraints,” in IEEE Int.
Conf. on Pervasive Comput. and Commun., 2016, pp. 1–8.

[5] X. Li and Q. Zhu, “Social incentive mechanism based multi-user sensing
time optimization in co-operative spectrum sensing with mobile crowd
sensing,” Sensors, vol. 18, no. 1, 2018.

[6] R. Pryss, J. Schobel, and M. Reichert, “Requirements for a flexible
and generic API enabling mobile crowdsensing mhealth applications,”
in Int. Workshop on Requirements Engineering for Self-Adaptive, Col-
laborative, and Cyber Physical Systems (RESACS), 2018, pp. 24–31.

[7] Z. Yu, H. Ma, B. Guo, and Z. Yang, “Crowdsensing 2.0,” Commun.
ACM, vol. 64, no. 11, p. 76–80, Oct 2021. [Online]. Available:
https://doi.org/10.1145/3481621

[8] X. Cui, J. Zhang, H. Zhou, and C. Deng, “Powerpool: Multi-source
ambient energy harvesting,” in 6th Int. Conf. on Big Data Comput. and
Commun. (BIGCOM), 2020, pp. 86–90.

[9] M. M. Sandhu, K. Geissdoerfer, S. Khalifa, R. Jurdak, M. Portmann,
and B. Kusy, “Towards energy positive sensing using kinetic energy
harvesters,” in IEEE Int. Conf. on Pervasive Comput. and Commun.
(PerCom), 2020, pp. 1–10.

[10] M. M. Sandhu, S. Khalifa, R. Jurdak, and M. Portmann, “Task schedul-
ing for energy-harvesting-based iot: A survey and critical analysis,”
IEEE IoT Journal, vol. 8, no. 18, pp. 13 825–13 848, 2021.

[11] D. Zhang, H. Xiong, L. Wang, and G. Chen, “Crowdrecruiter: Selecting
participants for piggyback crowdsensing under probabilistic coverage
constraint,” in Proc. ACM Int. Joint Conf. on Pervasive and Ubiquitous
Comput., New York, 2014.

[12] X. Tao and W. Song, “Efficient task allocation for mobile crowd sensing
based on evolutionary computing,” in 2018 IEEE Int. Conf. on Internet of
Things (iThings) and IEEE Green Comput. and Commun. (GreenCom)
and IEEE Cyber, Physical and Social Comput. (CPSCom) and IEEE
Smart Data (SmartData), 2018, pp. 374–380.

[13] ——, “Task allocation for mobile crowdsensing with deep reinforcement
learning,” in 2020 IEEE Wireless Commun. and Networking Conf.
(WCNC), 2020, pp. 1–7.

[14] C. H. Liu, B. Zhang, X. Su, J. Ma, W. Wang, and K. K. Leung, “Energy-
aware participant selection for smartphone-enabled mobile crowd sens-
ing,” IEEE Systems Journal, vol. 11, no. 3, pp. 1435–1446, 2017.

[15] A. Ortiz, T. Weber, and A. Klein, “A two-layer reinforcement learning
solution for energy harvesting data dissemination scenarios,” in 2018
IEEE Int. Conf. on Acoustics, Speech and Sig. Proc. (ICASSP), 2018,
pp. 6648–6652.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” 2013. [Online]. Available: https://arxiv.org/abs/1312.5602

