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Abstract—In this paper, the transmission energy for reliable
communications with short packets and low latency require-
ments, e.g. for control applications, is minimized. Since the
dynamics of the agents determine the allowed latencies for re-
ceiving control inputs, the requirements on latency and allowable
packet error rate are individual, depending on the machine type.
We consider a centralized environment with a single controller
transmitting control commands wireless to multiple agents with
given latency requirements. Also, the channel conditions are
individual for each agent. Therefore, the optimal time-frequency
resource allocation is derived for continuous time-frequency
resource allocation. Since the resource allocation in OFDM
systems like 5G is discrete, an algorithm to select the allocation
from a resource grid with different resolutions is proposed and
shown to achieve solutions with less than 0.5 dB increase in energy
consumption compared to the continuous results. With numerical
evaluation, the benefit of a channel-state- and deadline-aware
solution is shown for a resource grid based on the 5G frame
structure. On average, the gain of the proposed algorithm to an
allocation only balancing the number of resources for each agent,
as far as the deadlines allow, is about 50% energy saving.

Index Terms—Communication and Control, Cyber-Physical
Systems, URLLC, 5G

I. INTRODUCTION

Recent developments in industrial automation introduce

wireless communication to production facilities for e.g. real-

time monitoring or process control [1]. Currently, most

Internet of Things (IoT) devices serve as home appliances,

building control or environmental sensors [2]. In IoT for

industrial manufacturing, called Industrial Internet of Things

(IIoT), devices are part of industrial production processes

and, therefore, directly embedded into control loops, which

impose different demands on wireless communication systems

compared to previous applications like voice, web browsing

and video streaming. In control, the data amounts are small,

in the order of tenths or a few hundred bytes, while the

constraints on latency and packet error rate are even tighter

than in other fields. Packet error rates as low as 10−9 and

latencies of 0.25 to 5 ms are required [3]. The new 5G mobile

radio standard is the first to define requirement profiles for

these use cases [4].

We consider a model with a single central controller, which

observes multiple agents and generates control commands

for them, which are then transmitted via a wireless link.

To maintain the requirements of the control process, each

command has to be delivered successfully with a maximum

latency and packet error rate. To achieve energy-optimal

communication while maintaining the error rate and latency

requirements, the allocation of time-frequency resources has

to be adapted to the individual wireless channel conditions and

transmission deadlines resulting from the control perspective.

The capacity of a communication channel for infinite time-

frequency resources according to Shannon is determined by

the Signal-to-noise ratio (SNR). This is a valid assumption

for transmissions of large amounts of data over infinite time-

frequency resources, but since IIoT is especially about short

packets and low latencies, this estimation is way too optimistic.

To have a more realistic estimation for Ultra-Reliable Low

Latency Communication (URLLC), Polyanskiy et al. derived

a short packet formula, which gives a tighter bound on

the achievable data rate given the available time-frequency

resources, the SNR at the receiver and the allowable packet

error rate in their seminal paper [5].

Since the allowable packet error rate and number of time-

frequency resources are limited, the SNR at the receiver, which

is determined by the transmit power and the channel gain, has

to be tuned to meet the requirements. To increase the SNR,

the transmit power has to be increased, which results in an

increase of total energy consumption.

We will now give a brief overview of related work. In [6], a

system with a single controller and agent was investigated. The

main focus was to find the minimum SNR to maintain stability.

The controller sends control commands over a wireless link

to the agent. The effects of quantization to discrete commands

and packet loss due to the short packet effect were considered.

Further control requirements leading to latency restrictions

were not considered. In [7], a power spectral density minimiza-

tion was investigated. A limited number of time-frequency

resources was split between an initial transmit and a potential

retransmit, potentially saving energy, if no retransmission is

needed. A maximum probability of a buffer underrun at the re-

ceiver had to be reached, thus including latency requirements.

In this scenario, all available time-frequency resources are used

for the single agent, while the multi-agent scenario is not

considered. A multi-agent bandwidth minimization problem

was studied in [8]. The channel was assumed to be frequency

selective, but only known to the receiver. The transmit power

per resource element was fixed. [9] maximized the energy

efficiency in a scenario with multiple sensors transmitting

data to agents. Sensors and agents were assumed to be in

different mobile radio cells, the transmissions were done in

URLLC style. The deadlines for these transmissions were
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Fig. 1: System model

assumed identical, which is unrealistic for an industrial plant

with agents belonging to different classes of machines.

In this paper, a scenario with a single central controller and

multiple agents is considered. The controller can sense the

states of the agents, generates control commands according

to the states and transmits them to the agents via a wireless

link. The control commands are assumed to be short data

packets of up to a few hundred bits in size. In contrast to

the state of the art of [9], we consider the different dynamics

of the various types of machines by means of the definition of

agent-specific deadlines. Additionally, the maximum allowable

packet error rate is constrained to a low constant value to

account for the safety requirements of industrial production

plants. The available bandwidth for transmission is limited.

Under these constraints, we find the optimal time-frequency

resource allocation to the agents minimizing the required

energy for transmission.

For this purpose, we first formulate a problem with a

continuous amount of resources for each agent in Sec. III.

The given agent-specific maximum latencies lead to deadlines,

when the transmission has to be finished the latest. The

channel conditions are also given, as well as the common

maximum packet error rate. This problem is shown to be con-

vex. Then, we propose a gradient-based algorithm in Sec. IV

to allocate the time-frequency resources in an Orthogonal

Frequency Division Multiplex (OFDM) scheme in a quantized

fashion. For comparison, an allocation balancing the number

of resources for each agent, as far as the deadlines allow,

is calculated. The three approaches are compared in Sec. V

and the gradient based allocation is shown to be close to the

continuous lower bound. Moreover, the balancing allocation

of resources to all agents is shown to perform worse than the

gradient-based algorithm.

The remainder of the paper is organized as follows: First,

the system model is introduced. Then, the energy minimization

problem is stated and its convexity is shown in Sec. III. In

Sec. IV, the resource allocation algorithms are presented. Last,

numerical results are shown to illustrate the performance of

our proposed algorithm.

II. SYSTEM MODEL

The system consists of a single central controller and M

agents randomly distributed around the controller, as shown in

Fig. 1. The central controller senses the control system states

of all agents and generates control commands accordingly,

which are then transmitted to the agents. The control system

is assumed to be discrete-time with a time slot duration T .

For each time slot a new control command is generated for

every agent, the commands are all available at the beginning

of the time slot. The time elapsed since the beginning of the

time slot is denoted by t, 0 ≤ t ≤ T , t = 0 indicates where

transmission starts. The performance of the control system is

determined by the latency of the control commands, so each

agent m has an individual deadline τm, 0 ≤ τm ≤ T for

the successful reception of its command after the beginning

of the time slot. The value of τm depends on the dynamics

of agent m, where higher dynamics generally lead to shorter

deadlines. Allocating resources to agent m after its deadline

τm has passed would not contribute to a timely reception,

so we assume no resources after the deadline are allocated.

Additionally, the probability of a lost control command must

not exceed pc to keep the agents in a safe operation region.

Throughout this paper, a continuous quantity x will be

denoted by x′(t), while its piecewise continuous counterpart

will be denoted by xt. The total bandwidth available for

transmission is denoted by B. The time-variant bandwidth

assigned to agent m at time t is b′m(t) ≤ B. b′m(t) is assumed

to fulfill the uncertainty principle, i.e. it does not change

arbitrarily fast. Moreover, the sum of all assignments must

not exceed the total bandwidth, i.e.

M
∑

m=1

b′m(t) ≤ B for 0 ≤ t ≤ T. (1)

The commands for each agent, consisting of N bits, are

transmitted over a wireless channel, which is perfectly known

at the central controller and the receiving agents. The agents

are assumed to be stationary. The channel between the con-

troller and every agent is modelled as line-of-sight (LOS).

Thus, the channel is assumed to stay constant over T and B.

The power gain of the channel from the central controller to

agent m is denoted by the scalar channel gain Gm.

The transmission is performed interference free by using

frequency division multiple access on the available bandwidth

B and time T for each agent. The integral of b′m(t) with

respect to t corresponds to the time-frequency resources of

agent m, denoted by n′
m

n′
m =

∫ T

0

b′m(t)dt. (2)

The Power-Spectral-Density (PSD) of the transmit power for

agent m is denoted by qm. It is assumed to stay constant for

the whole transmission. The total energy Em spent for the

transmission to agent m is then given by

Em = qm

∫ T

0

b′m(t)dt. (3)

To account for the deadlines τm in (3), the assigned bandwidth

for agent m, b′m(t), must be set to zero for t > τm. The

receiver noise is assumed to be Additive white Gaussian noise

(AWGN), whose power σ2
m(t) depends only on the noise PSD



N0 and the bandwidth b′m(t) ≤ B assigned to agent m at t,

i.e. σ2
m(t) = N0b

′
m(t). The SNR at agent m is then

γm =
qmb′m(t)

σ2
m

=
qmb′m(t)

N0b′m(t)
=

qm

N0
. (4)

Since the commands are short and transmit time and band-

width is limited, the well-known Shannon capacity formula

Cm = log2 (1 + γm) (5)

for error-free transmission is too optimistic to determine the

minimum SNR and has to be extended for short packets.

Therefore, also the channel dispersion for agent m,

Vm = γm
2 + γm

(1 + γm)
2 log22 (e) , (6)

has to be considered. In [9] the approximation

Vm ≈ log22 (e) (7)

is given, which is valid for γm ≥ 5dB. For the strict demands

on pc, the short packet sizes N and limited resources nm,

generally γm ≥ 5dB is required. For an AWGN channel,

the normal approximation from [5] gives the short packet

formula for a packet error rate pc, given a certain packet size

N , the number of time-frequency resources nm, the channel

dispersion Vm and the SNR at the receiver γm. The packet

error probability pc,m for agent m can then be approximated

by

pc,m ≈ Q

(

nmCm −N + log
2
nm

2√
nmVm

)

, (8)

where Q(·) is the Gaussian Q-function.

The minimal Shannon capacity corrected for short packets

Ccorr,m and therefore Em required to fulfill the latency and er-

ror rate requirements pc,m for each agent m can be calculated

using a reformulated version of (8):

Ccorr,m ≈ 1

n′
m

(

√

n′
mVmQ−1(pc) +N − log2(n

′
m)

2

)

(9)

Em (n′
m, Gm, N, pc) = (2Ccorr,m − 1)

N0n
′
m

Gm

(10)

In the next section, the minimum total energy for continuous

nm will be derived. In practice, however, a continuous allo-

cation of time-frequency resources is not possible. Therefore,

we follow the approach used in mobile radio standards like 5G

New Radio (NR) to implement the OFDM scheme, dividing

the time-frequency plane into a grid of rectangles, called

resource elements. The total available bandwidth B is split

into Nsc subcarriers. The subcarrier bandwidth is bsc, such

that B = bscNsc. The number of OFDM symbols per time slot

is Nsym, such that T = Nsymtsym. Considering the available

bandwidth, we define a time-frequency resource element as

tsymbsc. Each resource element is identified by its time index

t, t = 1, . . . , Nsym and subcarrier index s, s = 1, . . . , Nsc. The

number of resource elements for agent m is denoted by nm.

The complete distribution of resource elements is collected in

the vector n = [n1, . . . , nM ]
T

. Due to the nature of OFDM,

the area of one resource element is always tsymbsc = 1s · Hz.

In Sec. IV, two algorithms to derive distributions of resource

elements n are proposed.

III. PROBLEM FORMULATION

A. General formulation

The overall goal is to minimize the total energy E =
∑M

m=1 Em (n′
m, Gm, N, pc) used for the command transmis-

sion. Since B as well as the available time, due to the dead-

lines, is limited, n′
m is also limited. The energy minimization

problem for the continuous resource case is then

min
n′

1
,...,n′

M

M
∑

m=1

Em (n′
m, Gm, N, pc) , (11a)

s.t.

M
∑

m=1

b′m(t) ≤ B for 0 ≤ t ≤ T, (11b)

b′m(t) = 0 for τm < t ≤ T,m = 1, . . . ,M, (11c)

where (11b) enforces the bandwidth limitation and (11c)

effectively restricts the transmission to 0 ≤ t ≤ τm.

B. Convex reformulation

Problem (11a)-(11c) is hard to tackle, because the solution

space is non-convex. We will now implement constraints on

nm and b′m(t) to get a convex subset of the original solution

space, still containing the optimal solution.

First, we restrict on nm to make (11a) convex. In [9], the

partial convexity of (10) in nm up to an inflection point nm,thr,

i.e. for nm ≤ nm,thr, is shown. Furthermore, the number of

resources nm achieving the global minimum of (10), nm,min,

is shown to be 0 ≤ nm,min ≤ nm,thr. Thus, nm ≤ nm,thr will

turn (10) and (11a) into convex functions in nm.

Since (11a) is only based on nm and not on b′m(t) directly,

b′m(t) can be restricted to be piecewise constant, without

further restrictions on nm. The values of the constant pieces

are then collected in a vector bm.

As a consequence, (2) becomes a sum of rectangular areas.

The width of the rectangles is selected as the distance between

two consecutive deadlines. With the auxiliary variable τ0 = 0,

we have the convex problem

min
n1,...,nM

M
∑

m=1

Em (n′
m, Gm, N, pc) (12a)

nm :=

M
∑

k=1

(τk − τk−1)bm,k (12b)

s.t.

M
∑

m=1

bm,k ≤ B for k = 1, . . . ,M (12c)

bm,k = 0 for m = 1, . . . ,M, k = 1, . . . ,m (12d)

nm ≤ nm,thr for m = 1, . . . ,M (12e)



IV. RESOURCE SCHEDULING ALGORITHMS

A. Gradient-Based Resource Scheduling Algorithm

The continuous allocation of time-frequency resources is

not possible in an OFDM scheme, which splits the time-

frequency plane into a grid of small rectangles. Therefore,

(12a)-(12e) can only be used as a lower bound on E. To find a

solution for the discrete-time and discrete-bandwidth problem,

two scheduling algorithms are developed. The first algorithm

is based on the fact that (12a) is convex in nm for all m

up to nm,thr. All resource elements are iteratively allocated to

the agents. In each iteration, the resource elements previously

allocated n = [n1, . . . , nM ]
T

determine the possible reduction

of Em for each agent m, if an additional resource element is

allocated to it. Therefore, the gradient of E, ∂E
∂n

(n) is used

as the decision criterion to select the agent for the resource

element in the current iteration. The resource elements can

be distributed to the agents according to (12d) and (12e).

However, not all resource elements are beneficial to all agents

because of (12d). For resources at t, only agents with τm ≥ t

can benefit. The larger t, the more deadlines τm have passed,

hence less agents will benefit from these resources. Before

allocating the resource elements, the level of competition, i.e.

how many agents can actually benefit form a certain resource

element, must be calculated for each resource element.

Therefore, the algorithm consists of two phases. First, the

level of competition for each resource element is determined.

Second, the resource elements are allocated to the agents,

starting with the resource elements with the lowest level of

competition. If multiple agents can use a resource element,

the agent who achieves a greater energy reduction with this

additional resource element gets it. In the first phase, the

level of competition is stored in matrix C ∈ N
Nsc×Nsym . The

element cs,t of matrix C contains the number of agents,

which can use the resource element at subcarrier s and time

instant t. To calculate C, first, the three dimensional array

R ∈ {0; 1}Nsc×Nsym×M
is generated. The element rs,t,m is set

to 1, if agent m can use the resource element at subcarrier

s and time instant t, and to 0 otherwise. Finally, the array

R is summed up along the third dimension to get C, i.e.

cs,t =
∑M

m=1 rs,t,m.

In the second phase, the resource elements are allocated

to the agents in increasing level of competition, starting with

elements with cs,t = 1 up to cs,t = M . Elements with cs,t = 0
are neglected, because no agent benefits from them. Now, all

resource elements with the current level of competition are

determined and their subcarrier and time indices s and t are

stored in the vectors s and t, respectively. In each iteration,

one resource element identified by corresponding s and t from

s and t is considered. First, the agents competing for this

element are stored in the vector m. Then, the current total

number nm of elements allocated to agent m is calculated. The

agent m from m with the smallest derivative gm = ∂Em

∂nm
(nm)

is assigned the resource element, because this results in the

greatest reduction of E. If gm ≥ 0, nm,min is achieved, agent

Algorithm 1 Scheduling algorithm

Input: τ1, . . . , τM
Output: n1, . . . , nM

PHASE 1: Calculate levels of competition

1: for t = 1 : Nsym do

2: for s = 1 : Nsc do

3: for m = 1 : M do

4: if t ≤ τm then ⊲ check, if resource element at s and t is before

deadline of agent m
5: rs,t,m = 1
6: else

7: rs,t,m = 0
8: end if

9: end for

10: end for

11: end for

12: cs,t =
∑M

m=1
rs,t,m ⊲ calculate levels of competition

PHASE 2: Allocate resource elements to agents

13: for l = 1 : M do

14: (s, t) = findindex(cs,t == l) ⊲ find all resource elements for current

level of competition

15: for (s, t) ∈ (s, t) do

16: nm =
∑M

m=1

∑Nsc
s=1

as,t,m ⊲ calculate current numbers of resource

elements

17: m = findindex(rs,t == 1) ⊲ find all agents competing for this

element

18: gm = ∂Em
∂nm

(nm) ⊲ calculate derivative for m ∈ m

19: o = sort(g)
20: for m ∈ o do

21: if m ∈ m then ⊲ check if element usable by agent m
22: if gm < 0 then ⊲ check if not yet larger than nm,min

23: as,t,m = 1
24: break for

25: else

26: as,t,m = 0
27: end if

28: end if

29: end for

30: end for

31: end for

32: nm,opt =
∑M

m=1

∑Nsc
s=1

as,t,m ⊲ calculate final numbers of resource elements

m has no benefit from any more resources. The allocation is

stored in the three dimensional array A ∈ {0; 1}Nsc×Nsym×M
.

Finally, all allocations from A are combined to get the total

numbers of resources nm. If the resource elements can only be

assigned in groups like the physical resource blocks in 5G NR

[10], the Nsc for the algorithm has to be reduced accordingly.

For the calculation of gm and the final counting to get nm,

the size of one resource element group has to be adapted. A

summary of the code is presented in Alg. 1.

B. Deadline-Aware Balancing Scheduling Algorithm

For comparison, a simpler resource element balancing al-

gorithm is developed. The gradient of E is not considered,

but rather the number of resource elements already allocated

to agent m is the decision criterion for the current iteration.

The resource element is allocated to the agent with the least

number of resources, i.e. with the lowest nm whose deadline

has not yet passed and, thus, can use the resource element

of the current iteration. This is done by replacing line 18 in

Alg. 1 by gm = nm. As a consequence, an equal allocation, as

far as the deadlines allow, is achieved. Moreover, the channel

gain Gm is not considered.

V. NUMERICAL RESULTS

The numerical results are generated for parameters based

on the 5G NR standard. In particular, we consider the frame



Carrier frequency fc 6 GHz

Noise power spectral density N0 −174 dBm
Hz

Number of subcarriers Nsc 4

Subcarrier bandwidth Bsc 15 kHz

Symbol duration tsym 66.666µs

Deadlines τm τm ∼ U(14tsym; 70tsym)
Maximum packet error probability pc 10−9

Number of OFDM symbols Nsym 70

TABLE I: Simulation parameters
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Fig. 2: Energy for different number M of agents

structure [10] and the possibility to make shorter time al-

locations instead of assigning a whole frame to an agent,

so-called minislots [11]. The carrier frequency fc is chosen

to be 6 GHz, corresponding to unlicensed band n96 of 5G

NR. The channel is assumed to be pure LOS, so Gm only

depends on the distance of agent m to the central controller,

but not on the subcarrier frequency or the time t. Random

deadlines τ1, . . . , τM are used and the results are derived

from a Monte-Carlo simulation. Each Monte-Carlo run uses

a new set of deadlines, drawn from the uniform distribution

U (14tsym; 70tsym) for each τm to ensure τm ≤ T on the

one hand and make the problem feasible on the other hand.

Parameters common to all simulations are given in Table I.

The allocations generated by the gradient-based scheduling

algorithm described in Sec. IV-A and the balancing scheduling

algorithm described in Sec. IV-B are compared to the continu-

ous lower bound derived in Sec. III-B. Both, the gradient-based

scheduling algorithm and the balancing scheduling algorithm,

are used to either assign a single resource element or four

resource elements from a single OFDM symbol per iteration.

In Fig. 2 the required energy E for different numbers M

of agents is shown. The available resources are kept constant

as in Table I. The agents are spaced equidistant on a straight

line starting at the central controller. The agent m = 1 is at

a distance dmin = 5m from the central controller, m = M

at dmax = 100m. The packet size is N = 256 bits, which is

in the center of the range for N , where (8) is valid [5]. The

more agents are in the scenario, the less resources per agent

are available, therefore the required energy E increases. In a

highly constrained scenario, i.e. nm ≪ nm,min, changes in nm
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Fig. 3: Energy for different packet sizes N

have greater influence on Em, because (10) is strictly convex

in nm for nm < nm,min. The continuous lower bound gives

the minimum E, if there were no quantization effects of nm

on E. The influence of the coarse grid with the allocation in

blocks of four resource elements on the performance becomes

apparent especially for M ≥ 8. For M ≥ 8, the gradient based

scheduler is about 0.1 dB worse than the optimum, in single

resource element case and about 1.25 dB in the 4-resource

element case. Meanwhile, the balancing algorithm needs 5 dB

and 2.3 dB more than the lower bound, respectively.

In Fig. 3, the influence of different packet sizes N on the

required energy E is investigated. The number of agents is

M = 7, the agents are spaced equidistant from dmin = 5m

to dmax = 100m. Since the number of resources and agents is

fixed, the scenario becomes more constrained when the packet

size increases. This is because the more bits are transmitted,

the larger is the number of bits per resource element. The

effect on E is similar to the previous result, due the curvature

of (10) for small nm in constrained scenarios. The gradient-

based scheduling algorithm for a single resource element

gets results about 0.3 dB worse than the optimum derived

by solving (11a) even for high N . The balancing benchmark

scheduler always needs about 3dB more energy than the

gradient-based algorithm, even with the fine grid of only one

resource element, because it does not consider the different

gradients of Em caused by the different channel gains Gm

and packet sizes N .

In Fig. 4, the influence of different channel gains Gm on

the required energy E is shown. The M = 7 agents are placed

again equidistantly, agent m = 1 is at dmin = 5m, but agent

m = M is varied from dmax = 10m to dmax = 160m.

The agents in between are placed accordingly to keep the

equidistant positioning. The higher dmax, the greater is the dis-

tance between neighbouring agents and, thus, their difference

in Gm. The optimal resource allocation has to account for

this difference. Since the balancing scheduler only takes the

number of resources into account, the energy requirement is

up to 3 dB higher than for the gradient based scheduler. This is
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an interesting result especially for scenarios, where non-line-

of-sight propagation leads to largely different channel gains.

The benefit of assigning resources nm based on the gradient

of E, compared to the balancing scheduling for different

channel gains Gm is investigated in Fig. 5. The setup is the

same as in Fig. 4. The difference between the largest and the

smallest nm for all agents, averaged over all runs with the

same dmax, is shown. The continuous lower bound suggests

a larger difference in the assigned nm is beneficial in terms

of energy consumption by assigning more resources to agents

with low Gm. For the gradient based scheduler, almost the

same δm as the continuous lower bound is attained. Especially

for larger dmax, the 4-resource element case cannot achieve the

results of the finer resource grid, since the adaptation is worse

due to the coarser grid. The difference in the distances rm and,

thus, the channel gains Gm is not considered by the balancing

scheduler, resulting in the costant average differences.

VI. CONCLUSION

In this paper, the time-frequency resource allocation for

a single central controller transmitting control commands to

multiple agents, was optimized for minimum energy consump-

tion. The agents needed to receive the control commands

before an individual deadline. The resulting continuous min-

imization problem was shown to be convex. For application

in mobile radio systems like 5G, the resource allocation has

to be done based on fixed size resource elements, turning the

problem into a mixed integer problem. An algorithm to find

a scheduling of these resource elements based on the gradient

of the required transmit energy was proposed and compared

to a simple resource balancing algorithm only considering the

deadlines. The gradient-based algorithm was shown to perform

only about 0.3 dB worse in terms of required energy than the

continuous optimum and showed improvements of more than

50% to the balancing algorithm, especially if the channel gains

are very different.
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