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Abstract—Multi-access edge computing (MEC) enables mobile
units (MUs) to offload computation tasks to edge servers nearby.
This translates in energy savings for the MUs, but creates a
joint problem of offloading decision making and allocation of
the shared communication and computation resources. In a MEC
scenario with multiple MUs, multiple access points and multiple
cloudlets the complexity of this joint problem grows rapidly
with the number of entities in the network. The complexity
increases even further when some MUs have a higher incentive
to offload tasks due to a low battery level and are willing
to pay in exchange for more resources. Our proposed energy-
minimization approach with a flexible maximum offloading time
constraint is based on matching theory. A global orchestrator
(GO) collects all the system state information and coordinates
the offloading preferences of the MUs. A MU can lower the
maximum time constraint by a payment. The GO allocates the
shared communication and computation resources accordingly
to satisfy the time constraint. The computation load of the
algorithm at each MU is reduced to a minimum as each MU
only has to take a simple offloading decision based on its task
properties and payment willingness. In numerical simulations,
the proposed matching approach and flexible resource allocation
scheme is tested for fast and reliable convergence, even in large
networks with hundreds of MUs. Furthermore, the matching
algorithm, tested with different resource allocation strategies,
shows a significant improvement in terms of energy-efficiency
over the considered reference schemes.

I. INTRODUCTION

The Cisco Annual Internet Report 2020 forecasts a rapid

deployment of billions of machine to machine (M2M) devices

until 2023 [1]. These devices will enable new services for

companies, cities and home automation, but most of them are

strictly limited in their processing power and battery capacity.

Multi-access Edge Computing (MEC) is expected to be the

key technology to deliver computation resources at cloudlet

servers in the vicinity of the M2M devices [2].

Mobile computing devices like smartphones, tablets and

laptops can also profit from external computation resources

and save their limited battery energy by offloading compu-

tation tasks to such cloudlets. Specifically, the authors of the

studies [3] and [4] about the usage of smartphones have shown

that users are already behaving very cautious about saving

energy or recharging their device at battery levels of around

30%. Therefore, providing the possibility to flexibly allocate

more communication and computation resources to mobile

units (MUs) with low battery levels than to MUs with higher

battery levels, enables these devices to extend the usage of

computation extensive tasks like video editing or augmented

reality applications.

Distributed algorithms for MEC scenarios with multiple

MUs, multiple access points (APs) and multiple cloudlets have

already been studied in [5]–[9]. Compared to smaller scenar-

ios with single APs for communication or single cloudlets

for computation, the MUs have to choose between multiple

offloading options. The most beneficial assignment of MUs

to APs and cloudlets has to be found while simultaneously

considering that the limited communication and computation

resources are shared between all offloading MUs. While the

authors of [5], [6] and [7] propose algorithms based on game

theory for the offloading decisions and solve the resource

allocation in an optimal way by solving a Lagrange dual

version of the problem, the authors of [8] and [9] consider

matching theory as the basis for their algorithms.

In [5], the sum of computation times of all MUs shall be

minimized. The problem is formulated as an exact potential

game. The formulated problem minimizes the sum of all task

computation times of the MUs. A joint objective of energy

minimization and a monetary payment is proposed in [6].

While this model also considers the operation costs of the

cloudlet, the weighting factors of the joint objective function

can significantly affect the outcome of the algorithm. In [7],

we propose an energy minimization game where the offloading

decision is influenced by a fixed maximum offloading time

constraint and the availability of the required software for the

computation at the cloudlet. Furthermore, we define different

types of tasks with individual characteristics.

Although game theory and, specifically, potential games

offer many possibilities to model algorithms for MEC sce-

narios, the related field of matching theory enables broader

possibilities. Most importantly, it can provide the ability to

model different objectives for the MUs and the mobile network

operator (MNO). The authors of [8] propose an algorithm

based on the student project allocation (SPA) problem. The

SPA problem is fitting for the offloading decision making

problem as it is able to match two entities, each with individual

preferences. In case of an offloading scenario, these entities are

the MUs and the APs with cloudlets. The proposed algorithm

is fast converging and reliable, but it shares the resources

equally by a defined quota of offloading MUs. The algorithm

with the equal resource allocation is best suited for scenarios

in which all MUs have comparable task characteristics. The

more different the tasks are, the less effective is this allocation

strategy. In [9], the authors propose a global orchestrator (GO)

that is performing the matching of the MUs to the APs. The



formulated problem shall jointly minimize the sum of energies

of all MUs and the maximum offloading time in the network.

The minimization of the maximum offloading time is a useful

choice if the results of all tasks have to be considered as a

cumulative result. In a scenario with independent MUs and

tasks, an individual maximum time constraint for every MU

is a better choice.

In this work, a scenario with multiple MUs, APs and

cloudlets is assumed. Each MU has a task that belongs to one

of multiple types of tasks. The maximum time for offloading

the task of a MU is bound by a maximum time constraint.

While in [7], the maximum offloading time is fixed to be less

than the local computation time, a more flexible time constraint

is introduced in this paper. By having a more expensive

subscription and offering an additional payment, the MUs can

receive a bigger fraction of the shared communication and

computation resources. A MU with a lower battery level is

assumed to have a higher willingness for a payment. A SPA

problem based matching algorithm is proposed to solve the

offloading decision making problem and a GO is performing

the matching. The three main contributions of this work are: 1.

Introducing a matching framework with a GO that coordinates

the communication and computation resources and chooses

the most suitable AP and cloudlet for a MU to offload its

task. 2. Simplifying the offloading decision of a MU to

deciding whether offloading is beneficial or not and whether

the MU can profit from receiving more resources in exchange

for a payment. 3. Proposing a flexible resource allocation

strategy based on the maximum offloading time and payment

preference of a MU.

The paper is structured as follows: The scenario and most

relevant concepts are introduced in Section II. In Section III,

the resource management, optimization problem and match-

ing framework are formulated. In Section IV, the proposed

algorithm is evaluated numerically.

II. SYSTEM MODEL

A. Scenario

Fig. 1. Computation offloading scenario with K MUs and L APs

In the considered MEC scenario, multiple MUs are willing

to connect to remote servers to offload computation tasks.

These remote servers are modeled by cloudlet servers. Each

of the cloudlet servers is positioned at one of the APs. The

connection between MUs and APs is established via shared

radio access channels. The scenario is shown in Figure 1

with K MUs and L APs. The MUs are modeled by the set

K = {1, . . . ,K} and the APs by the set L = {1, . . . , L}.

B. Mobile Units and Local Computation

Every MU k ∈ K has a non-splittable task to be computed.

The task can be described by its size stask
k , measured in

bits, and its computational complexity factor ck, measured in

central processing unit (CPU) cycles per bit. Although this

complexity factor is only an approximation, it enables the

comparability of different task types, e.g. video processing,

calculations or Augmented Reality applications. The task types

are chosen similar to [7]. The complexity of different task

classes on CPUs has been studied in [10].

Because the task is non-splittable, each MU k has to take a

binary decision whether the task should be computed locally

on its own CPU, i.e. xMU
k = 1, or the task should be offloaded

to one of the cloudlet servers, i.e. xAP
k = 1.

The frequency fMU
k and processing power pcalc

k of the CPU

of MU k are known. If MU k decides for local computation,

the local processing time can be estimated by

TMU
k =

cks
task
k

fMU
k

. (1)

The corresponding local processing energy is then given by

EMU
k = pcalc

k ·
cks

task
k

fMU
k

. (2)

C. Remote Computation at an Access Point

A MU k ∈ K can be in the vicinity of multiple APs from

L, but it can be only connected to one of them simultaneously.

Each AP l is assumed to have its own frequency band with a

total bandwidth bmax
l . When MU k is transmitting its task to

AP l it uses an orthogonal frequency-division multiple access

(OFDMA) transmission scheme. If multiple MUs decide to

offload their tasks to AP l, each MU k only receives a fraction

bk,l of the total bandwidth bmax
l . All fractional bandwidths

assigned to MUs can reach at most the total bandwidth bmax
l ,

i.e.
∑K

k=1
bk,l ≤ bmax

l . With estimates of the uplink channel

gain |hk,l|
2 and the white Gaussian noise power σ2 for the

radio access channel between MU k and AP l, an expression

for the Shannon channel capacity can be found by

rAP
k,l = bk,l log2

(

1 +
ptrans
k,l |hk,l|

2

σ2

)

. (3)

Knowing rAP
k,l, the upload time from MU k to AP l is defined

by

T up

k,l =
stask
k

rAP
k,l

. (4)

Similar to the shared bandwidth, the computation resources

at the cloudlet of AP l are shared by all MUs deciding to

offload to this AP. MU k receives a fraction fAP
k,l of the total

computation frequency fmaxAP
l . The total amount of allocated



computation resources to all offloading MUs cannot exceed

the total computation frequency, i.e.
∑K

k=1
fAP
k,l ≤ fmaxAP

l . The

time for the processing of the task of MUs k at AP l can then

be expressed by

T comp

k,l =
cks

task
k

fAP
k,l

. (5)

The total offloading time is then defined by the sum of (4)

and (5) as

TAP
k,l

(

bk,l, f
AP
k,l

)

= T up

k,l + T comp

k,l . (6)

To calculate the offloading energy spent during the offloading

process by the MU, two powers are introduced. The static

power pstatic
k represents the baseline power of all components

of MU k spent both in idle state and during transmitting state.

While transmitting its task, the radio hardware of MU k has

an additional transmit power ptrans
k,l . With these two powers

and (6), the energy of MU k for offloading its task to AP l is

defined by

EAP
k,l

(

bk,l, f
AP
k,l

)

=
(

ptrans
k,l + pstatic

k

)

· T up

k,l (7)

+ pstatic
k ·

(

max
{

0, T down
m,l − T up

k,l

}

+ T comp

k,l

)

.

As the offloading time in (6) and the offloading energy in (7)

are dependent on the shared resources, they will be denoted

in the following by TAP
k,l

(

bk,l, f
AP
k,l

)

and EAP
k,l

(

bk,l, f
AP
k,l

)

,

respectively.

The time for the transmission of the computation result

back to the MU is omitted in our model, as the result can

be assumed to be much smaller than the original task in many

applications [11].

D. Global Orchestration

In order to be able to calculate its best offloading decision,

each MU k ∈ K has to communicate with each AP l ∈ L about

its possible fraction of the shared resources. A GO is intro-

duced to collect all the required information centrally, manage

the resource allocation and reduce the signaling overhead. The

GO takes the leading position and can be one of the APs or

a central entity in the backhaul of the network, controlled by

the MNO. It has the two important functions:

1) Collect all the necessary system information, i.e. char-

acteristics of the MUs and their tasks, information

about the radio access channels, information about the

available computation resources.

2) Compute the best suitable AP l for offloading the task

of MU k and propose this option to the MU.

It is assumed that a MU k is not interested to communicate

with all L APs to negotiate about the possible shares of

the resources. Furthermore, it is assumed that the GO is

acknowledged as a trustworthy instance by all MUs that is

taking the best possible decision for it. The GO stores the best

offloading option for MU k in an offloading decision vector

xk = [xMU
k , xAP

k,1, . . . , x
AP
k,L] and this vector has exactly one

non-zero element.

E. Flexible Maximum Offloading Time Constraint

In [7], the maximum offloading time is limited by a fixed

constraint in the proposed optimization problem and game

theoretic algorithm. This constraint ensures that offloading the

task of MU k to an AP l is at least as fast as local computation,

i.e.

TAP
k,l

(

bk,l, f
AP
k,l

)

≤ TMU
k . (8)

In this paper, a more flexible time constraint is introduced.

Each MU k is assumed to have a subscription with the MNO

that is running the L APs. Furthermore, it is assumed that a

MU can spend additional monetary units in form of tokens to

achieve a lower maximum computation time Tmax
k . By paying

tokens, the MU can react to different battery levels and request

the allocation of more resources for offloading. In general,

P levels of subscription plans and an additional payment

between 0 and Q tokens can be considered. The subscription

plan of MU k is denoted by vsub
k ∈

{

vsub
1

, . . . , vsub
P

}

and the

payment by vpay

k ∈
{

vpay
0

, . . . , vpay
Q

}

. With the knowledge of

both parameters, the GO can calculate the value of MU k as

vk = vsub
k · vpay

k . This value influences the time factor

tk =







t1,0 t1,1 · · · t1,Q
...

...
. . .

...

tP,1 tP,2 · · · tP,Q







that is responsible for a shorter or longer maximum offloading

time constraint.

For more simplicity of the following explanations, we

assume two levels of subscription and a maximum payment

of 2 tokens. If MU k has a free or cheaper subscription, we

set variable vsub
k to 0. If it has a more expensive subscription

with a shorter guaranteed maximum offloading time, αsub
k is

set to 1. We define a binary vector v
pay

k that represents the

willingness of MU k to pay extra monetary units. The vector

has three binary elements vpay

k,0, vpay

k,1 and vpay

k,2 representing that

MU k spends 0, 1 or 2 extra tokens, respectively. With these

two assumptions, a flexible maximum offloading time can be

formulated as

Tmax
k =

(

1− vsub
k

)

·
(

vpay

k,0 · t0 + vpay

k,1 · t2 + vpay

k,2 · t3
)

· TMU
k

(9)

+ vsub
k ·

(

vpay

k,0 · t4 + vpay

k,1 · t5 + vpay

k,2 · t6
)

· TMU
k ,

where t1, . . . , t6 are scaling factors for the local computation

time TMU
k . The adapted maximum offloading time constraint

is

TAP
k,l

(

bk,l, f
AP
k,l

)

≤ Tmax
k . (10)

III. PROBLEM FORMULATION

A. Optimization Problem

The share of the communication resources allocated to MU

k can be indicated by vector bk = [bk,1, . . . , bk,L]. Similarly,

the vector fk = [fAP
k,1, . . . , f

AP
k,L] represents the share of the

computation resources allocated to MU k. If MU k decides



for offloading its task to AP l, the entries bk,l and fAP
k,l are

non-zero while all others are 0. Using the offloading decision

stored in the offloading decision vector xk and the energies

for local computation defined in (2) and for offloading to AP l
defined in (7), the GO can calculate the energy the computation

of the task of MU k in dependence of the allocated resources

and the decision by

Ek (xk, bk,fk) = xMU
k ·EMU

k +

L
∑

l=1

xAP
k,l ·E

AP
k,l (bk,fk) . (11)

A global optimization problem minimizing the sum of the in-

dividual energies from (11) for all K MUs can be formulated

as

argmin
xk,bk,fk,
∀k∈K

K
∑

k=1

Ek (xk, bk,fk) , (12)

s.t. xAP
k,l · T

AP
k,l

(

bk,l, f
AP
k,l

)

≤ Tmax
k , ∀k& ∀l, (12a)

K
∑

k=1

bk,l ≤ bmax
l , ∀l, (12b)

K
∑

k=1

fAP
k,l ≤ fAP max

l , ∀l, (12c)

bk,l, f
AP
k,l ≥ 0, ∀k& ∀l, (12d)

xMU
k , xAP

k,l ∈ {0, 1}, ∀k& ∀l, (12e)

xMU
k +

L
∑

l=1

xAP
k,l = 1, ∀k. (12f)

Constraint (12a) is the flexible maximum offloading time

constraint. The shared resources are limited by upper bounds,

the communication resources in constraint (12b) and the com-

putation resources in constraint (12c). Constraint (12d) ensures

that only positive quantities of the resources are assigned to

the MUs. The binarity of the offloading decision variables is

handled by constraint (12e) and constraint (12f) ensures that

each MU is either choosing local computation or computation

at one AP.

Optimization problem (12) is a mixed-integer non-linear

program (MINLP). A MINLP is in general NP-hard [12].

B. Minimum Required Resources for Offloading

For the GO, it is important to estimate the share of the

communication and computation resources that is necessary so

that offloading becomes beneficial for MU k. The minimum

resources to make offloading possible can be found by solving

the offloading time constraint (10) with equality, i.e

T up

k,l + T comp

k,l = Tmax
k (13)

stask
k

bk,l log2

(

1 +
ptrans
k,l

|hk,l|2

σ2

) +
cks

task
k

fAP
k,l

= tk ·
cks

task
k

fMU
k

, (14)

with tk ∈ {t1, . . . , t6}. After a few reformulations, we obtain:

ck · bk,l · log2

(

1 +
ptrans
k,l |hk,l|

2

σ2

)

·
(

fAP
k,l − tk · fMU

k

)

= fAP
k,l · f

MU
k . (15)

As the expression fAP
k,l − tk · fMU

k has to be greater than 0
to lead to a feasible solution, this already reveals a minimum

fmin
k,l for the shared computation frequency at cloudlet l:

0 < fAP
k,l − tk · fMU

k (16)

fmin
k,l = tk · fMU

k < fAP
k,l . (17)

Under the assumption that a value for the computation fre-

quency fAP
k,l of MU k at cloudlet l is fixed, (15) can also

be used to calculate the minimum required bandwidth bmin
k,l to

fulfill the offloading time as

bmin
k,l =

fAP
k,l

ck · log
2

(

1 +
ptrans
k,l

|hk,l|2

σ2

)

·
(

fAP
k,l

fMU
k

− tk

) . (18)

C. Matching Approach

The SPA problem is used as a basis for the matching

algorithm proposed in this section. In general, the SPA prob-

lem describes the assignment of student projects offered by

teachers to the students. Each student creates an ordered list of

the preferred projects and applies for the projects. Similarly,

the teachers have preferences which students have the most

suitable skills to work on their projects. Algorithms to solve

the SPA problem shall find the most suitable matching of

the students to the projects. In [13], the authors propose and

compare different solution strategies to the SPA problem. The

algorithm used in this paper is based on [8].

The set K of MUs corresponds to the set of students and

the set L of APs to the teachers in the SPA problem. The

communication resources in form of the bandwidth bmax
l and

the computation resources in form of the CPU frequency fmax
l

are the equivalent of the projects. A MU k offloading its task

to AP l is denoted by (k,l). If a MU k is computing its task

locally, the empty set ∅ is assigned for the matching, because

it does not require resources and is not matched to an AP.

A matching Y is defined as a subset of all offloading

possibilities of the MUs and APs, i.e. Y ⊆ K×L. Each MU k
has preferences ≻ and a preference list PLMU

k to indicate and

store the locations with the highest benefit when offloading.

MU k prefers an AP l over AP l′ if the total energy for

offloading to AP l is smaller than to AP l′, i.e.

(k, l) ≻ (k, l′) ↔ EAP
k,l

(

bk,l, f
AP
k,l

)

≤ EAP
k,l′

(

bk,l′ , f
AP
k,l′

)

. (19)

Similarly, every AP l has preferences ≻ and a preference list

PLAP
l . An example for the preferences of MU 1 in a scenario

with 5 APs could be

(1, 3) ≻ (1, 1) ≻ (1, 2) ≻ (1, 5) ≻ ∅. (20)

Note that, in this example AP 4 is out of reach for MU 1 as the

maximum offloading time is always violated and/or offloading

costs more energy than local computation.



The proposed matching algorithm is ensured to terminate

with a feasible solution by the following definitions.

Definition 1 (Blocking Pairs). A subset of MUs Kblock ⊆ K
and an AP l ∈ L are called a blocking pair if one of the

following conditions holds:

1) The MUs in Kblock are not part of the matching set Y ,

i.e. Kblock ∪ Y = ∅.

2) The MUs in Kblock prefer AP l over their current AP l′,
i.e. (Kblock, l) ≻ (Kblock, l′).

3) AP l prefers MUs in Kblock over at least one of the MUs

KAP l already matched to it, i.e. (Kblock, l) ≻ (KAP l, l).

Definition 2 (Stability). The matching set Y is stable if no

blocking pairs exist.

Before starting the matching process, the GO can sort the

MUs based on their task characteristics stask
k and ck, local

CPU frequency fMU
k or local processing energy EMU

k . If the

energy minimization of the MUs was not chosen to be the

main objective of the GO, it could also prefer MUs with more

expensive subscriptions and higher payments in the sorting

process. This profit maximization is not considered in this

paper.

The matching process starts with the evaluation of the

payment preference of the MUs. The GO is informed about the

subscription of the MUs and accordingly proposes offloading

possibilities to the MUs. As introduced in Section II, the MUs

decide for one of the possibilities and, thereby, on the payment

of tokens to the MNO based on their tasks and battery levels.

Then, the GO can generate the preference list PLMU
k for each

MU k. As shown in the example preference list, only possible

offloading locations are stored. If the required bandwidth bk,l
to offload the task of MU k to AP l exceeds the total available

bandwidth bmax
l , the infeasible solution is neglected.

Now, the actual matching process can begin. Each MU k is

assigned to its most preferred AP l, i.e. (k, l), and the required

communication and computation resources are reserved. We

assume a fixed value higher than fmin
k,l for the CPU frequency

at AP l and calculate bmin
k,l as shown in (18). After all MUs are

matched, the APs that have more than the maximum available

resources reserved, have to take a decision which MUs should

offload and which MUs have to be unmatched. The easiest way

to achieve the most beneficial set KAP l of offloading MUs to

AP l, is the exclusion of the MU that has the smallest energy

saving Eworst
k by offloading their task, i.e.

Eworst
k = EMU

k − EAP
k,l. (21)

This exclusion step is repeated until the AP has only reserved a

feasible amount of communication and computation resources.

Afterwards, the GO reassigns an excluded MU k to the next

AP l′ in its preference list PLMU
k . This procedure is repeated

until all APs are not able to take more MUs for offloading.

A MU k that is not assigned to any of its preferred APs, i.e.

PLMU
k = ∅, will compute its task locally.

The matching procedure is described as pseudo-code in

Algorithm 1.

Algorithm 1 Flexible Matching Approach

Optional: GO sorts the set K of MUs
Empty matching set Y , all MUs undecided xk = 0 ∀k;
for ∀k ∈ K do

GO offers offloading possibilities for 0, 1 and 2 tokens;
MU k decides for payment;
GO generates PLMU

k ;
end for
% While any MU is unmatched
while ∃k /∈ Y do

% Add MUs to the Matching Y
for ∀k ∈ K do

GO matches MU k to first entry in PLMU
k , i.e. (k, l);

Update matching Y = Y ∪ (k, l);
Remove first entry from PLMU

k ;
end for
Exclude all MUs with EMU

k − EAP
k,l < 0 from matching Y

for ∀l ∈ L do
% Check if too much bandwidth is required at AP l
while

∑K

k=1
bk,l ≥ bmax

l do
Find MU k with smallest energy savings Eworst

k ;
Remove MU k from matching Y = Y \(k, l);

end while
% Check if too much CPU frequency is required at AP l
while

∑K

k=1
fAP
k,l ≥ fAP max

l do

Find MU k with smallest energy savings Eworst
k ;

Remove MU k from matching Y = Y \(k, l);
end while

end for
end while

return Matching Y

One of the main advantages of the proposed matching

algorithm is its small complexity. The maximum number of

iterations is increasing linearly with the number of MUs and

APs, i.e. K · L. Each additional MU can have at maximum

a preference list of length L if could offload to all L APs.

Compared to the exponentially increasing number of different

permutations (L + 1)K of the offloading decisions of all K
MUs, the algorithm can easily handle much larger networks.

IV. NUMERICAL RESULTS

To model the scenario described in the previous sections,

we model an area of 200m× 200m with 4 APs placed in the

corners. All MUs are placed randomly inside this area with a

minimum distance of 10m to any AP. We assume each MU

to have one task to be computed locally or offloaded to one

of the APs. The task belongs to one of three task classes:

• Type 1 (audio, photo, etc.): small to medium size, low

complexity, offloading or local computation is highly

dependent on the network quality and the offloading

decisions of the other MUs

• Type 2 (video processing): high task size, high complex-

ity, offloading is always preferred, enough communica-

tion and computation resources need to be available

• Type 3 (computation tasks, e.g. MATLAB): small size,

high complexity, offloading is always preferred, enough

computation resources need to be available



We tried to align the assumed task parameters close to mea-

surements from [14] and [10]. The simulation parameters for

the types of tasks are chosen similar to [7] and are summarized

in Table I.

TABLE I
SIMULATION PARAMETERS OF DIFFERENT TASK TYPES

Type 1 Type 2 Type 3

Task Size stask 10 MB 100 MB 1 MB

Task Complexity c 200 1000 2000

Software Size sapp 200 MB 2000 MB 1000 MB

Each MU k has a local calculation power pcalc
k = 1W,

a transmission power ptrans
k,l = 200mW and a static power

pstatic
k,l = 100mW. The MUs are assumed to have a local

comutation frequency of fMU
k = 2GHz and the cloudlets at

the APs a total computation frequency of fmaxAP
l = 20GHz.

The radio access channel of AP l has a maximum available

bandwidth of bmax
l = 10MHz and is separated from the radio

access channels of the other APs. A white Gaussian noise

power of σ2 = 10−13 W is assumed. With the Euclidean

distance dk,l, the channel gain between MU k and AP l is

given by |hk,l|
2 = 1/d3k,l.

The assumed factors t1, . . . , t6 for flexible maximum time

constraint that is dependent on the subscription and the pay-

ment willingness of the MUs are summarized in Table II.

TABLE II
DEPENDENCE OF MAXIMUM TIME FACTOR ON PAYMENT

Payment 0 Token 1 Token 2 Tokens

Cheap Subscription t1 = 120% t2 = 110% t3 = 100%

Expensive Subscription t4 = 100% t5 = 90% t6 = 80%

The following simulation results are obtained by at least

200 Monte Carlo runs per data point. Each run has randomly

placed users, a random task type, a random subscription and

a payment willingness dependent on a random battery level.

A scenario with only local computation and a scenario with

an assignment of the MUs to their closest AP by Euclidean

distance are considered as basic reference schemes. In the

latter case, all MUs are connected to their closest AP, the

resources are distributed based on these decisions and all MUs

that cannot fulfill the maximum offloading time constraint are

changed to local computation.

For the proposed matching algorithm, four different re-

source allocation schemes are compared:

• Allocation 1: There exists a quota of how many MUs can

connect to each AP l. The resources are shared equally

among all MUs that decide for offloading to AP l.
• Allocation 2: Each MU k receives a cloudlet computation

frequency fAP
k,l of 2.5GHz or 3GHz according to its

subscription. The required bandwidth to fulfill the strict

time constraint TAP
k,l

(

bk,l, f
AP
k,l

)

≤ T local
k is calculated

using Equation (18).

• Allocation 3: Similar to Allocation 2, but with the pro-

posed flexible bandwidth TAP
k,l

(

bk,l, f
AP
k,l

)

≤ Tmax
k .
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• Allocation 4: Similar to Allocation 3, but a MU k receives

additional 0.5GHz computation frequency fAP
k,l for every

token it pays.

In the first simulation result in Figure 2, the influence of

the fixed quota found in the allocation scheme 1 is shown.

The communication and computation resources are shared

equally based on the quota, similar to [8]. We compare the

number of MUs that can connect to each AP against the total

number of MUs that are matched for offloading. Two extreme

cases are considered. A small scenario with K = 20 MUs

is shown in red and a large scenario with K = 200 MUs

in blue. The dotted lines show how many of the offloading

MUs got matched to their first preference from their individual

preference list. In the scenario with 20 MUs, only up to 15
out of the 20 MUs offload their tasks, because some MUs

have a small task of type 1 and a bad channel quality so that

the maximum offloading time constraint cannot be fulfilled.

In the scenario, with 200 MUs, many more MUs are matched

for offloading. Most of these MUs have computation intensive

tasks of type 2 or 3. The dotted line shows that nearly all

matched MUs are offloading to their most preferred AP. If

the MUs are assumed to have tasks with significantly different

characteristics, the matching algorithm with the equal resource

allocation strategy 1 only prefers the MUs with the largest

tasks and energy savings as it is a greedy strategy. The steep

drop in both blue lines is the effect of the equal resource

allocation strategy. While the resources are sufficient to serve

up to 8 MUs per AP, most MUs cannot fulfill their maximum

time constraint with a quota of 9 or more MUs per AP.

Therefore, in allocation scheme 1, the choice of a correct quota

is crucial to the number of matched MUs.

The next simulation result in Figure 3 compares the two

reference schemes and the four resource allocation schemes

in terms of the energy requirements of the MUs. The sum

of the energies of all MUs for the computation or offloading

of their tasks is shown for a varying number of MUs. For

allocation scheme 1, a quota of 7 MUs per AP is chosen.
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Allocation schemes 2 and 3 are performing slightly better than

the equal allocation scheme 1 and the most flexible scheme

4. Allocation scheme 4 is performing worse in this scneario,

because the computation resources at the cloudlets are limited.

As this scheme allocates more computation resources to MUs

that are willing to pay tokens, the average number of offloading

MUs is smaller than for allocation schemes 2 and 3.

TABLE III
NUMBER OF OFFLOADING MUS FOR THE DIFFERENT RESOURCE

ALLOCATION STRATEGIES FOR A SCENARIO WITH 120 MUS

Allocation Strategy 1 2 3 4

No. of offloading MUs 23.97 28.41 27.49 23.86

No. of first preference 22.08 22.17 20.98 17.33

Percentage of first preference 92.1% 78.1% 76.3% 72.7%

In Table III, this influence on the number of offloading MUs

is demonstrated in detail. The number of offloading MUs and

the number of MUs that are offloading to their most preferred

AP is shown for a scenario with 120 MUs. Allocation schemes

2 and 3 match around 4 MUs more to the APs for offloading.

Furthermore, the table shows the inflexibility of allocation

scheme 1 with the fixed quota. 92.1% of the matched MUs

are matched to their first preference. The proposed allocation

schemes 2-4 with more flexibility can adapt better to the

scenario with different task types. These schemes support that

also MUs with smaller tasks are matched to less preferred APs

and still save energy compared to local computation.

If the 4 APs are assumed to be much more powerful with

a total computation frequency of fmaxAP
l = 100GHz, the

computation bottleneck from the previous result is exchanged

with a bottleneck of the shared communication resources.

Figure 4 shows the sum of energies of all MUs for this

case. As the quota is unchanged at 7 MUs per AP, allocation

scheme 1 is performing only slightly better than the reference

scheme of matching MUs to their nearest AP. The equal

resource allocation scheme proves to be heavily dependent on

the right choice of the quota. For scenarios with fluctuating
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maximum resources, a constant estimation of the right quota

and adaptation of the resource split is necessary.

The proposed flexible allocation schemes 2-4 do not require

a quota. Allocation schemes 2 and 3 are again performing

very similar to each other. On average 38.52 MUs and 39.03
MUs are able to offload in a scenario with 200 MUs for these

schemes. The most flexible resource allocation scheme 4 now

shows a clear advantage due to its adaptive allocation of the

computation resources relative to the payment of the MUs. For

the case of 200 MUs, 67.60 MUs are offloading on average

and the sum energy is 82.55% less than the sum energy of

allocation scheme 3.

V. CONCLUSION

The joint offloading decision making and resource allocation

problem is rapidly increasing in complexity with an increasing

network size. The proposed matching algorithm based on the

SPA problem with a GO coordinating the offloading decisions

and the available resources is able to easily handle large

networks with hundreds of MUs and multiple APs. MUs

with a demand for more communication and computation

resources due to low battery levels can increase the problem

complexity even further. The proposed flexible time constraint

and resource allocation strategy takes this into account. It

adapts the resources according to payments from the MUs

to the MNO. In numerical simulations, the convergence of the

matching algorithm is shown. The resource allocation strategy

is tested against less flexible allocation strategies. In a scenario

with plenty of computation resources, the proposed allocation

strategy clearly outperforms the other tested strategies.

ACKNOWLEDGEMENT

This work has been performed in the context of the DFG

Collaborative Research Center (CRC) 1053 MAKI and the

BMBF project Open6GHub. This work has been supported

by DAAD with funds from the German Federal Ministry of

Education and Research (BMBF).



REFERENCES

[1] Cisco, “Cisco annual internet report (2018–2023),” Tech. Rep. C11-
741490-01, 2020.

[2] S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan,
D. Purkayastha, F. Jiangping, D. Frydman, G. Verin et al., “MEC in
5G networks,” ETSI white paper, vol. 28, pp. 1–28, 2018.

[3] D. Ferreira, A. K. Dey, and V. Kostakos, “Understanding human-
smartphone concerns: a study of battery life,” in Proc. of the Interna-

tional Conference on Pervasive Computing. Springer, 2011, pp. 19–33.
[4] S. Hosio, D. Ferreira, J. Goncalves, N. van Berkel, C. Luo, M. Ahmed,

H. Flores, and V. Kostakos, “Monetary assessment of battery life on
smartphones,” in Proc. of the 2016 CHI Conference on Human Factors

in Computing Systems, 2016, pp. 1869–1880.
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