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Abstract—This work studies the application of a reconfigurable
intelligent surface (RIS) in a cloud radio access network (C-
RAN) targeting the reduction of resource usage while providing
adequate capacity. We investigate if an RIS can contribute to
improve the trade-off between the downlink system spectral
efficiency (SE) and energy consumption of a multi-base-station
(BS) multi-user single-RIS setup by means of link activation,
radiated power control, and operational power mode decisions
that can benefit from RIS-enhanced radio channels. For this
purpose, we optimize the activations jointly with BS and RIS
beamforming for maximum energy efficiency (EE) under a cen-
tralized approach and subject to SE, power, fronthaul capacity,
and RIS phase-shift constraints. The associated mixed-boolean
non-linear problem is solved using monotonic and semidefinite
relaxation methods integrated in a Branch-Reduce-and-Bound
procedure. Simulations show that the RIS helps to increase the
EE of a C-RAN w.r.t. its non-RIS-aided and fully-connected
versions by 30% and 80%, respectively.

Index Terms—Reconfigurable intelligent surfaces, energy effi-
ciency, cell-free massive MIMO, C-RAN, beamforming, mono-
tonic optimization, semi-definite relaxation.

I. INTRODUCTION

Due to the growing concern about the energy efficiency (EE)
of wireless networks [1], the performance of new deployments
should be evaluated not only in terms of spectral efficiency
(SE), but also power consumption. Cell-free multiple-input
multiple-output (MIMO) implies that many base stations
(BSs), thus radio-frequency (RF) chains, power amplifiers
(PAs), and dedicated power-hungry digital signal processing
(DSP) hardware, have to be installed for uniform coverage [2],
[3], which requires a high amount of energy. The concern is
well justified if we consider that, to receive 1mW of power at
each user equipment (UE), up to 60W need to be generated at a
power plant and up to 80% of the transmit power is lost at PAs
[1], [4]. Part of these issues can be tackled by a cloud radio
access network (C-RAN) which can move the power-hungry
processing from the BSs to a central processing unit (CPU)
to share resources and reduce hardware and power costs, as
well as to increase the performance w.r.t. local processing
schemes [2] and manage the fronthaul for BS coordination.
However, the high amount of power spent at the PAs and other
components still leaves room for improvement.
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Increasing the EE requires methods to simultaneously in-
crease the SE and reduce the power consumption. Recently, a
new class of antennas, known as reconfigurable intelligent sur-
face (RIS), has been proposed for several wireless applications
[5]–[9]. By means of electronically changing its reflection
coefficients, it can reflect the incoming RF waves to desired
directions without needing power-hungry components. Given
its potential to tune the channels to improve the SE and power
usage independently, here we investigate its benefit on the EE
of a C-RAN, that, due to the mentioned reasons, is a highly
suitable performance measure for this kind of networks.

Related works: An application example of RISs for EE
in communication systems is the single-BS multi-UE setup [7]
in which by power and RIS phase-shift optimizations a gain
of 3×EE w.r.t. an Amplify-and-Forward (AF) relay scheme is
reported. Minimum SE and power constraints are considered
and the system is optimized by alternating between gradient
descent and fractional programming (FP) steps. Subject to the
same constraints, the single-BS multiple RIS setup was investi-
gated in [8], in which in addition to BS and RIS beamforming,
each optimized via successive convex approximations, RIS
activations are decided via greedy search, and a 68% EE
gain w.r.t. to an AF relay is reported. Also, for a practical
RIS implementation, it has been studied that the configuration
of the reflecting phase depends on the ability to control the
impedance load of each antenna [5]. Regarding the EE of a
conventional C-RAN, the work in [10] investigated the joint
BS beamforming and association problem by using monotonic
optimization (MO). Recently, the work in [9] studied the EE
of a cell-free system with multiple RISs. The optimization
is formulated as a joint power allocation and RIS phase-shift
problem and it is shown that the EE can be also improved
in this scenario when the radiated and BS hardware power
levels are similar. In that regard, different from macrocell
systems operating at kilowatt power levels, picocell BSs can
be switched on or off quickly, in ms, which allows applying
dynamic BS operational power control methods [1], [4]. In this
work we consider a picocell-based C-RAN industrial setup in
which we apply a sleep mode method assisted by an RIS to
activate only the links that contribute to the EE. We use [10]
as the baseline for our system model.

Scope and contributions: We investigate the contribution
of an RIS to the EE performance of a C-RAN system. We
noticed that there are very few other published studies on



this topic besides the ones previously cited. For a multi-BS
multi-UE and single-RIS setup, we optimize the link activation
decisions, or equivalently BSs-UEs associations, jointly with
the BS and RIS beamformers for maximum EE, which as far
as we know is carried out for the first time in this work.
We consider minimum SE guarantees, which is expected to
be enforced but nevertheless omitted in [9]. We consider
that due to hardware constraints, the RIS reflection phases
can be configured within an arbitrary continuous range. We
solve the optimization problem using MO and semidefinite
relaxation (SDR) methods from [11] and [12]. Our solution is
not rectricted to regimes or special types of beamformers as in
[7] but considers the interference, as well as the DSP power
consumption. For these reasons, it provides a new evaluation
of the EE in RIS-aided C-RANs w.r.t. the cited studies.

Paper outline and notation: Section II addresses the
system model of the RIS-aided C-RAN, including the power
consumption, link activations, fronthaul capacity model, and
the problem formulation. Section III presents the algorithm
development together with brief descriptions of the used
mathematical tools. Section IV presents the simulation setup
and results and Section V concludes this paper.

The following notations are used: bold lower case, bold up-
per case and calligraphic letters denote vectors, matrices, and
sets, respectively. (·)T

, (·)H
, ‖·‖, diag (·) , arg (·) , tr (·) ,<,=,

denote the transpose, Hermitian, Euclidean norm, diagonal,
argument, trace, real, and imaginary operators. For any two
vectors x and y ∈ RN , x ≤ y means xi ≤ yi, for i = 1, ..., N ,
where xi is the ith element of x, and, unless otherwise
specified, [x,y] denotes a set or box such that for any vector
v in the box, we have x ≤ v ≤ y. For any set V and number
x, bxcV and dxeV denote the floor and ceil rounded values
of x on V , whereas bxci/V and dxei/V are the corresponding
vector versions that round only the ith element. ei is the unit
vector such that ei = 1 and ej = 0,∀j 6= i, A � B means
that A−B is semi-definite positive, and unt (x) divides each
element of x by its magnitude.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an RIS-aided C-RAN where M BSs, each of N
antennas, serve K single-antenna UEs in downlink (DL) using
the same time-frequency resources via space division multiple
access (SDMA). Each BS and UE is indexed by m ∈ M ∆

=

{1, ...,M} and k ∈ K ∆
= {1, ...,K}, respectively. One RIS

of I antennas and configurable phase-shifts of unit-amplitude
is available for reflecting the signals towards the intended
UEs. The BSs are connected via fronthaul links to a CPU
that designs the transmit strategy based on resource allocation
and beamforming in a centralized way from the knowledge
of the channel responses, system requirements and available
resources. The configuration is then forwarded to the BSs and
RIS. The data ak ∼ CN (0, 1) of the UE k is shared among its
serving BSs. For every k ∈ K and m ∈ M, wmk ∈ CN×1 is
the BS beamforming vector and dmk ∈ C1×N , Bm ∈ CI×N
and qk ∈ C1×I are the BSm-UEk, BSm-RIS, and RIS-UEk
channels, respectively. The equivalent channel for UE k is

hk
∆
= (dk + qkΦB) ∈ C1×MN where dk

∆
= [d1k, ...,dMk],

B
∆
= [B1, ...,BM ] and Φ

∆
= diag (φ) is the RIS phase-

shifts matrix, where φ ∆
= [ejθ1 , ..., ejθI ]T and θi is the phase

at antenna i ∈ I ∆
= {1, ..., I}. If wk

∆
= [wT

1k, ...,w
T
Mk]T ,

W ∆
= {wk}k∈K, and nk ∼ CN (0, σ2) is the noise of variance

σ2, the received signal at UE k can be modeled as

yk = hkwkak +
∑

k′∈K\{k}
hkwk′ak′ + nk, (1)

and the signal-to-interference-plus-noise ratio (SINR) as

γk (W,φ) =
|hkwk|2∑

k′∈K\{k} |hkwk′ |2 + σ2
. (2)

Therefore, the SE of UE k is

rk (W,φ) = log2 (1 + γk) bits/s/Hz. (3)

Fronthaul capacity and power consumption models: We
consider the fronthaul is used to offload complex DSP from
the BSs to the CPU and to share the UE DL data among
the selected BSs. The link activation between BSm-UEk is
denoted by xmk ∈ D

∆
= {0, 1} and the capacity cm required

by each BS m is modeled as the sum SE of the served UEs
and assumed to be limited by Cm, i.e.,

cm =
∑

k∈K
xmkrk ≤ Cm bits/s/Hz, ∀m ∈M. (4)

We consider that the total DSP power depends on cm as

pFH = ηFH

∑
m∈M

cm, (5)

where ηFH is a constant factor in W/Gbits/s/Hz.
Hardware power consumption: We consider two opera-

tional modes for each BS m represented by sm ∈ D, where
sm = 1 indicates an active mode with power consumption
P run

BS and sm = 0 indicates a sleep mode with power P sl
BS

[4], [10]. The power consumed by each UE and each RIS
antenna is denoted by PUE and PE, respectively. Then, the
total hardware power consumption can be modeled as

pHW =
∑

m∈M
(smP

run
BS +(1− sm)P sl

BS) +KPUE + IPE. (6)

Radiated power: The power used for active beamforming
from BSs with PAs under constant efficiency ηPA is

pm = 1
ηPA

∑
k∈K
‖wmk‖2, ∀m ∈M, (7)

and the radiated signal power is limited by Pm, i.e.,∑
k∈K
‖wmk‖2 ≤ Pm, ∀m ∈M. (8)

Thus, by defining s ∆
= {sm}m∈M, x ∆

= {xmk}m∈M,k∈K, and
r

∆
= {rk}k∈K, the system power consumption is given by

p(s,x,W,φ) = pFH + pHW +
∑

m∈M
pm (9)

= ηFH

∑
m∈M

∑
k∈K

xmkrk (W,φ) +
∑

m∈M
sm∆P+

1
ηPA

∑
m∈M

∑
k∈K
‖wmk‖2 + Pconst,

where Pconst
∆
= MP sl

BS + IPE +KPUE and ∆P
∆
= P run

BS −P sl
BS.



BS activation and BS-UE associations: If UE k has guar-
anteed service, it should connect to at least one BS, then∑

m∈M
xmk ≥ 1,∀k ∈ K, (10)

and the BS m that does not serve any UE can be put into
sleep mode to save energy. Then, sm can be decided as

sm = min
{∑

k∈K
xmk, 1

}
= max

k∈K
xmk, ∀m ∈M. (11)

Problem formulation: For the given system, the maximum
EE and optimal configuration problem is represented by

P1 : η∗ = max
φ,W,x,s

∑
k∈K rk(W,φ)

p (s,x,W,φ)
(12)

s.t.: rk (W,φ) ≥ ro,∀k ∈ K (13)

‖wmk‖2 ≤ xmkPm,∀m ∈M (14)
| φi |= 1,∀i ∈ I (15)

arg{φi} ∈ Ai,∀i ∈ I (16)

s ∈ DM ,x ∈ DMK (17)
(4), (8), (10), (11),

where η∗ has the unit of bit/J/Hz. The constraints (13) are
SE guarantees of ro bits/s/Hz per UE. In (14), the BS m
that is not selected by UE k (xmk = 0) does not need to
align beams to it as well as no power is allocated to this
pair. The unit-modulus and argument constraints for the RIS
phase-shifts are given by (15) and (16), respectively, where
Ai

∆
= [ψli, ψ

u
i ] ⊆ [0, 2π] is the continuous set of phases

θi. P1 is a non-convex mixed-boolean non-linear problem
since 1) the utility function is not jointly concave on the
variables, 2) constraints (13) and (15) are non-convex and non-
linear and 3) the boolean variables s and x are mixed with
continuous variables in (4), (12) and (14). P1 is untractable
via Dinkelbach or FP transformations, however, note that (4)
and (10) are explicit monotonic constraints (m.c.’s). In the next
section, by using MO [11] and recent SDR methods [12], the
monotonicity of P1 is exploited and its non-convex part is
relaxed aiming to find the solution via a Branch-Reduce-and-
Bound (BRnB) procedure.

III. ENERGY-EFFICIENT COORDINATED BEAMFORMING
AND BS-UE ASSOCIATION VIA RIS

Monotonic optimization and BRnB algorithm design: Be-
sides the non-convex mixed-boolean nature of the feasible set
of P1, some of the constraints can be also seen as monotonic
mixed-boolean and continuous, as we study below. Also,
since BRnB is an optimization method that, by including
monotonicity-based cuts and bounding [11], results particu-
larly suitable for monotonic problems of large dimensions
(as our C-RAN model), and can also be used over boolean
sets by using boolean adjustments [11], we use it to tackle
all the m.c.’s of P1. Also, as long as an efficient BRnB-
aimed transformation can be applied to the non-convex set
and subject to the existence of efficient performance bounds
over the resulting region, as it is investigated in this paper,
BRnB can also work on the non-convex part of P1 imposed

by the RIS phase-shift constraints. We can unfold the hidden
monotonic structure of P1 by replacing

∑
k∈K‖wmk‖2 by

its epigraph tm,∀m ∈ M, in the denominator of (12),
introducing slack variables r̂k in (13), ∀k ∈ K, and replacing
the utility function by its epigraph ηe. Also, if we replace (11)
by its equivalent discrete m.c.’s (23) and (24), and replace
p̂ (s,x, r̂, t) = ηFH

∑
m∈M

∑
k∈K xmkr̂k +

∑
m∈M sm∆P +

1
ηPA

∑
m∈M tm + Pconst, the equivalent problem is then

P2 : η∗ = max
ηe,φ,W,x,s,r̂,t

ηe (18)

s.t.: r̂k ≥ ro,∀k ∈ K, (19)
log2 (1 + γk (W,φ)) ≥ r̂k,∀k ∈ K, (20)

ηep̂ (s,x, r̂, t)−
∑

k∈K
r̂k ≤ 0, (21)∑

k∈K
‖wmk‖2 ≤ tm,∀m ∈M, (22)

sm ≥ xmk,∀k ∈ K,∀m ∈M, (23)

sm ≤
∑

k∈K
xmk,∀m ∈M, (24)

(4), (8), (10), (14), (15), (16), (17).

The objective function of (18) is a monotonic increasing
function (m.i.f.) on ηe. Each inequality in (4), (10), (19),
(21), (23), and (24) can be expressed using either a m.i.f.
or a difference of m.i.f.’s over the search set for s,x, r̂ and
t. Also, for the case that these variables are fixed, we can
compute the objective as ηe =

∑
k∈K r̂k

p̂(s,x,r̂,t) , and we can avoid
branching on ηe. If the m.c.’s define an Ns-dimensional search
set S, with Ns = Nd + Nc, where Nd = M + MK is the
number of discrete monotonic (d.m.) variables to be optimized
corresponding to s and x and Nc = K + M is the number
of continuous monotonic (c.m.) variables from r̂ and t, we
can define an Nt-dimensional box that contains both S and
A ∆

= {Ai}i∈I , where Nt = Ns+ I , such that each monotonic
variable and RIS phase is represented by one vertex. If we
express the inequalities involving m.i.f.’s as a single one by
means of their equivalent pointwise maximum [11, Corollary
6], the monotonic structure of P2 can be represented as

max
v

f(v)|g(v) ≤ h(v),v ∈ [p, q] ⊆ S, (v1, ..., vNd
) ∈ DNd ,

where v ∆
= [v1, ...vNd

, vNd+1, ..., vNs
]T is composed of the

d.m. and c.m. variables, whose lower and upper bounds are
given by p ∆

= [sT ,xT , r̂T , tT ]T and q ∆
= [sT ,xT , r̂

T
, t
T

]T ,
respectively, and g(v) and h(v) are m.i.f.’s on v.

Branching: At each iteration, the chosen box B = [p, q], is
divided on its longest edge n = arg maxm=1,...,Ns

(qm − pm),
s.t. d = (qn − pn) /2, into boxes B− and B+ as

B− =

{
[p, bq − dencn/D], if n ≤ Nd,
[p, q − den], if Nd < n ≤ Ns,

(25)

B+ =

{
[dp+ denen/D, q], if n ≤ Nd,
[p+ den, q], if Nd < n ≤ Ns.

Reduction: at each iteration, we remove points of B =
[p, q], that are not in S, and achieve a local performance



below the best global ηglobale obtained until that iteration, while
not losing any optimal solution in B [11]. We represent the
reduction as fr : B → B′, which returns a reduced box
B′ = [p′, q′] ⊂ B containing points v ∈ [p, q]∩S s.t. f(v) >
ηglobale if g(p) ≤ h(q), and if p′ = q−

∑Ns

n=1 αn(qn− pn)en
and q′ = p−

∑Ns

n=1 βn(pn − qn)en, where αn = sup{α|0 ≤
α ≤ 1, g(p) ≤ h(q−α(qn−pn)en), f(q−α(qn−pn)en) ≥
ηglobale } and βn = sup{β|0 ≤ β ≤ 1, g(p−β(pn− qn)en) ≤
h(q), f(q) ≥ ηglobale }. We compute αn and βn for every
n = 1, ..., Ns, via bisection.

Boolean adjustment: For each n ≤ Nd, p′n and q′n are
replaced by dp′neD and bq′ncD, respectively.

Bounding: Although ηe(v) is not a m.i.f. on v, local lower
bound (l.b.) and upper bound (u.b.) can be still computed
from the monotonicity of its numerator and denominator as

ηllbe (B) =

∑
k∈K r̂k

p̂
(
s,x, r̂, t

) , ηlube (B) =

∑
k∈K r̂k

p̂ (s,x, r̂, t)
. (26)

Note that we use both lower and upper corners of B. At each
iteration i, we reduce the search space by removing the boxes
that provide a local u.b. for ηe below the best global l.b., i.e.
B is discarded if ηlub

e (B) < ηglb
e,i and also the global bound

can be updated as ηglbe,i = max(ηglbe,i−1, η
llb
e (B)).

First, we define an initial Nt-dimensional box B0 ⊇ S ∪
{Ai}i∈I as B0

∆
= [p, q] with I vertices for the RIS phases

θ. We can initialize sm = 0, sm = 1, xmk = 0, xmk =
1, tm = 0, tm = Pm, r̂k = ro, r̂k = max{Cm}m∈M, θi = ϕli
and θi = ϕui . Then, B0, and henceforth in general a box B,
is branched and reduced to B′. Next, the search of feasible
solutions forW and φ in the region defined by (8), (14), (15),
(16), (20) and (22) shaped by the corners of B′ is the problem

P3 :{WB ,φB} = find {W,φ}

s.t.:
∑

k∈K
‖wmk‖2 ≤ min{Pm, tm},∀m ∈M, (27)

{(14), (15), (16), (20)} ∩ fr(B),

where (27) is the convex intersection of (8) and (22). If
{WB ,φB} 6= ∅, the local l.b. and u.b. of ηe can be computed
with (26). However, certifying the feasibility of P3 is not trivial
due to its non-convex constraints (15), (16) and (20). In this
case, P3 can be tackled as an optimization problem and we
consider the minimization of the radiated signal power as

P4 :{W∗B ,φ
∗
B} = min

W,φ

∑
m∈M

∑
k∈K
‖wmk‖2 (28)

s.t.:{(14), (15), (16), (20), (27)} ∩ fr(B).

Since P2 is subject to power, SE and fronthaul constraints and
of these only the two first are in P4, we check that∑

k∈K
r̂k ≤

∑
m∈M

smCm, (29)

before solving P4 which is due to
∑
m∈M smCm ≥∑

m∈M
∑
k∈K xmkr̂k ≥

∑
k∈K r̂k

∑
m∈M xmk ≥

∑
k∈K r̂k.

If (29) does not hold, B does not contain any feasible solution
and we can discard it. P4 can be solved alternately on W and
φ. The optimization is performed over the convex expansion

of the RIS phase set A aiming to ease the feasibility check of
P3, i.e., if there is no feasible point in the expanded region,
over which P4 can be solved, it means there is also no solution
within the original smaller set. This relaxation provides us an
optimistic l.b. for t that we can use to compute new local
bounds for ηe. For fixed φ, P4 reduces to

P5 :W∗B = min
W

∑
m∈M

∑
k∈K
‖wmk‖2, s.t.: (30)

hkwk ≥
√
γk
∑

k′∈K\{k}
(|hkwk′ |2 + σ2),∀k, (31)

=(hkwk) = 0,∀k, (32)

‖wmk‖2 ≤ xmkPm,∀m,∀k, (33)

smtm ≤
∑

k∈K
‖wmk‖2 ≤ sm min{Pm, tm},∀m, (34)

where γk
∆
= 2r̂k − 1 is the SINR corresponding to r̂k and

hk = dk + qkdiag(φ)B is the combined channel from all
BSs to UE k via the RIS. Then, for fixed W , P4 reduces to

P6 : φ∗B = find φ, s.t.:

|dkk + φT bkk|2∑
k′ 6=k |dkk′ + φT bkk′ |2 + σ2

k

≥ 2r̂k − 1,∀k ∈ K, (35)

(15), (16),

where d̄kk′ = dkwk′ ∈ C and b̄kk′ = diag(qk)Bwk′ . For
every k ∈ K, (35) can be transformed to the quadratic form
vHRkkv+ |d̄kk|2 ≥ γk

∑
k∈K\{k′}(v

HRkk′v+ |d̄kk′ |2 +σ2
k),

where Rkk′
∆
=

[
b̄kk′ b̄kk′

H
b̄kk′ d̄∗kk′

d̄kk′ b̄kk′
H

0

]
and v ∆

= [φT , 1]T

is an auxiliary variable [6]. Aiming at faster convergence of
P4, the power achieved in P5 can be further reduced by
minimizing the SINR residuals in (31) via auxiliary variables
αk. If V ∆

= vvH , P6 can be reformulated as

P7 : {vB ,V B} = max
v,V �0,α

∑
k∈K

αk (36)

s.t.: tr(RkkV ) + |d̄kk|2 ≥ γk
∑

k′ 6=k
tr(Rkk′V )+

γ
k
(
∑

k′ 6=k
|d̄kk′ |2 + σ2

k) + αk,∀k ∈ K, (37)

V = vvH , (38)
V ii = 1, i = 1, ..., I + 1, (39)

arg(vi) ∈ VBi ,∀i ∈ I, (40)
vI+1 = 1, (41)
αk ≥ 0,∀k ∈ K, (42)

where VBi
∆
= [lBi , u

B
i ] ∈ [0, 2π],∀i ∈ I is the search set for the

argument of vi in box B with lower and upper corners li and
ui, respectively. Note that a solution for φ can be recovered
directly from vB . We conveniently map the initial search sets
Ai to Vi as li = (2π − ψui ) and ui = (2π − ψli),∀i ∈ I,
for the purpose of branching over arg(vi), i.e., arg(vi) are
the vertices to be included in B0. The convexity of P7 is
prevented by the rank-one condition in (38). By dropping it,
P7 gets independent of v, thus can be tackled via SDP and



an approximate solution for vB can be extracted from V B ,
e.g., via eigenvalue decomposition or randomization methods
[13], [14]. However, it is not guaranteed that the obtained vB
meets (40). A common method is dropping (40), however
this might cause feasible solutions to be lost. Therefore,
instead of it, we replace these constraints by semidefinite and
linear inequalities, respectively, derived from a tight convex
expansion of {VBi }i∈I as follows.

Enhanced SDP relaxation: For each box B, omitting the
superscripts, the arc on each argument set Vi

∆
= [li, ui] ⊂

[0, 2π] can be expanded to its circular segment as V ′i = {vi ∈
C | <(a∗i vi) ≥ cos(ui−li

2 ), |vi| ≤ 1}, where ai
∆
= e

ui+li
2 ,∀i ∈

I [12]. Also, |vi| ≤ 1 can be realized implicitly by relaxing
(38) to V � vvH . Then P7 can be reformulated as

P8 : {ṽB , Ṽ B} = max
v,V �0,α

∑
k∈K

αk (43)

s.t.: V � vvH (44)

<(a∗i vi) ≥ cos(
uB
i −l

B
i

2 ),∀i ∈ I, (45)
(37), (39), (41), (42).

The new introduced constraints (44) and (45) enable solving
P8 straightforwardly with an SDP solver. Then, the solvers
for P5 and P8 can be alternated, as long as rank(H) ≥ K,
with H

∆
= [hT1 , ...,h

T
K ]. Branching over arg (vi) is based

on the fact that if for each vertex i, the width of Vi :
(ui − li) → 0 ⇒ |vi| → 1, for any feasible solution vi
within V ′i . Also, if ṽ is the feasible solution of P8, with
|ṽi| = 1,∀i ∈ I, then ṽ is also feasible for P7 [12].
That means that V has to be sucessively branched across
BRnB iterations in order to move ṽ, thus φ, towards the
circle contour, i.e., satisfying (15) and (16). Therefore, in the
selection of the longest edge for branching box B into B−
and B+, the candidate among the edges n = Ns + 1, ..., Nt,
is the phase i given by imax = arg maxi∈I{|unt(ṽi) − ṽi|},
i.e., this length is compared with those of the vertices of the
monotonic variables. IfW∗ is the solution of the relaxed P4, t̃,
with t̃m =

∑
k∈K‖w∗mk‖2, can be interpreted as the optimistic

minimum power required to achieve r̂, i.e., t ≤ t̃ ≤ t∗, where
t∗ represents the exact optimal minimum power. Therefore,
as a l.b. for t, t̃ is tighter than t. If we replace t by t̃, 1)
branching over t can be skipped, and 2) a new u.b. for ηe
tighter than ηlub

e in (26) can be computed. For this purpose, a
new l.b. for p̂(s,x, r̂, t) over box B can be computed as

p̂(s,x, r̂, t̃) = 1
ηPA

∑
m∈M

t̃m + ∆P max (1,
∑

m∈M
sm)+

ηFH max(
∑

k∈K
r̂k,
∑

m∈M

∑
k∈K

xmkr̂k) + Pconst, (46)

where the first term comes from the optimistic SDR solution
of P5, the second is because at least one BS should be
enabled to serve the UEs, and the third is due to (10),
and

∑
m∈M

∑
k∈K xmkrk ≥

∑
k∈K rk. Since p̂(s,x, r̂, t̃) ≥

p̂ (s,x, r̂, t), a new local u.b. for ηe is given by

ηlub
e

(B) =

∑
k∈K r̂k

p̂(s,x, r̂, t̃)
≤ ηlube . (47)

The local bound ηllbe , which is based on monotonicity, can
be improved via any feasible solution of P2, say v̄

∆
=

(s̃, x̃, r̂, t̃) ∈ B, as long as it can be obtained, otherwise
we can still compute ηllbe using (26). We use the heuristic
in [10] to find a candidate point x̃ from W∗ as x̃mk = 1 if
‖w∗mk‖ > 0, and x̃mk = 0 if ‖w∗mk‖ = 0 and if it meets (4)
and (10), thus the minimum rate r̂ in B, from (11), we have
s̃m = maxk∈K x̃mk and a new l.b. on B can be computed as

ηllbe (B) =

∑
k∈K r̂k

p̂(s̃, x̃, r̂, t̃)
≥ ηllbe . (48)

The steps for solving P1 are summarized in Algorithm 1. The
convergence is guaranteed since at each iteration we check
the l.b. provided by each of the two descendant boxes and
update ηglb

e,i only when a higher l.b. is found and also since ηe
is upper-bounded by capacity and power constraints. We can
claim only probable optimality since P4 is not jointly convex
on W and φ and we use an alternating method to compute t̃.

IV. NUMERICAL RESULTS

We consider an example setup of 2 three-antenna BSs, 3
single-antenna UEs and a four-antenna RIS in LoS of the
BSs, i.e. M = 2, N = 3,K = 3 and I = 4. We assume
uniform-linear antenna arrays (ULAs) with half-wavelength
spacing at the RIS and each BS. The BSm-RIS, BSm-UEk,
and RIS-UEk channel path losses are βBm, βdmk, and βqk,
respectively, and follow the 3GPP Urban Micro parameters in
[15, Table B.1.2.1-1] at 2.5 GHz. We use the LoS version plus
Rician fading for the BS-RIS channel and the NLoS version
plus Rayleigh fading for the rest. The channels are given
by Bm =

√
βBm

(√
ρBm/(ρ

B
m + 1)B̄m +

√
1/(ρBm + 1)B̃m

)
,

qk =
√
βqkq̃k and dmk =

√
βdmkd̃mk, where the elements of

the NLOS components B̃m, q̃k and d̃mk follow CN (0, 1). The
ULA response is αN (Ω) =

[
1, ejπ sin Ω, ..., ejπ(N−1) sin Ω

]
and B̄m = αI (ΩAoA,m)αN (ΩAoD,m)

H , where ΩAoA,m is
the AoA at the RIS from BS m and ΩAoD,m is the AoD
at the BS m to the RIS. We assume an inter-BS distance
of 200m, UEs randomly positioned in an area of 400m2,
σ2 = −126dBW, ro = 3bits/s/Hz, PE = 10mW, PUE = 0.1W,
ϕli = 3π

2 and ϕui = 2π,∀i. For both BSs, ρBm = 10,
Pm = 0.25W, Cm = 10bits/s/Hz, P run

BS = 10W, P sl
BS = 2W,

ηPA = 0.25 and ηFH = 0.2. Algorithm precision ε1 =
10−4, ε2 = ε3 = 10−5. We consider two benchmarks. The
first is a non-RIS aided C-RAN (baseline) that is optimized for
EE using a variant of Algorithm 1, derived from considering
only the direct channels dk and solving the auxiliary P4 as a
second-order cone problem since the RIS-related constraints
can be omitted. The second is a fully connected system (C-
RAN full-connection) also optimized by Algorithm 1 with
fixed sm = 1 and xmk = 1, ∀m, k. The system parameters are
kept the same for the benchmarks. For one channel realization,
Fig.1 presents the convergence of Algorithm 1 for our RIS C-
RAN setup as well as for the benchmarks using their respective
lower and upper bounds for η∗. We see that the bounds
converge to the optimal value along the iterations and RIS



Algorithm 1: BRnB algorithm for solving P1

Result: η∗,φ,W,x, s
initialize B0 = [p, q] for s,x, r̂, t and arg(v), the box set
B0 = fr(B0), ηglbe = 0 and iteration index i = 1

while (ηgube,i − η
glb
e,i )/ηgube,i > ε1 do

select box B=argmax
b∈Bi−1

ηlube (b)

select edge n = arg max
m=1,...,Nt

(qm − pm) giving priority to

s until s = s and branch B into B1 and B2 using (25)
for r = 1 : 2 do

reduce Br to B′r via bisection with precision ε2,
discard it if reduction is infeasible

if B′r meets (29) then
if optimistic ηlube (B′r) > ηglbe then

initialize φ = ej(θ+θ)/2 and l = 0
repeat solve P5 for fixed φl and get W l

solve P7 for fixed W l and get φl

l � l + 1
until relative decrease of power ≥ ε3 or
P7 is infeasible

if infeasible then discard B′r
else

obtain t̃, W∗, φ∗
update vertices t � t̃ in B′r
compute ηlube (B′r) using (47)
compute point v̄ and check (4) (10)
if candidate v̄ is feasible then

compute ηllbe (v), (48)
ηllbe (B′r) � ηllbe (v)

else compute ηllbe (B′r) using (26).
update ηglbe,i = max(ηglbe,i−1, η

llb
e (B′r))

else discard B′r , new optimal is not here

else discard B′r , no feasible points

update set Bi � (Bi−1 \B) ∪ {B′r|ηlube (B′r) ≥ ηglbe,i }
update ηgube,i = maxb∈Bi(η

lub
e (b)) and i � i+ 1.

C-RAN is more energy efficient than the two benchmarks in
30% and 80%, respectively. This is due to better link activation
decisions and beamformers are obtained with the RIS channels
and less power is needed to be transmitted from the BSs, i.e.
each term pm in (9) was reduced. The fully connected case
has the lowest EE since it is the most affected by interference.
Also, by using the SDR-based lower and upper bounds for ηe,
the algorithm converges faster for the RIS case and it might
be due to a larger degree of freedom provided by the RIS
to search the beamformers. Further simulations on different
channel realizations showed that the BS cooperation can be
relaxed and only one BS needs to be active whereas the second
can be put into sleep mode, which saves energy equivalent to
∆P , as well as the SEs can be increased w.r.t. the benchmarks.

V. CONCLUSION

We investigated the benefits of RIS signal reflections in EE
of C-RANs composed of multiple BSs and UEs subject to
SE, power and capacity constraints. By using MO and SDR
methods, we optimized the link activations and the BS and
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RIS beamformers for maximum energy efficiency to reduce the
radiated and operational BS power while providing adequate
SE. In simulation, we observed an EE in bits/J/Hz 30% and
80% higher than in its non-RIS activation-optimized and fully-
connected versions, respectively.
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