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Abstract—Cooperative BS transmission via unmanned aerial
vehicles (UAVs)-airborne reconfigurable intelligent surface (RIS),
also known as aerial-RIS, is a promising solution for providing
connectivity in emergency areas where network access is unavail-
able. The RIS requires low power in reflecting the impinging base
station (BS) signals towards the direction of the user equipment
(UE), and the cooperative transmission can provide a more
stable connection that guarantees quality-of-service (QoS). In this
work, we investigate the energy efficiency (EE) maximization of a
multiple-BS single-UE single-aerial-RIS setup and the usefulness
of cooperation to prevent outages. The BSs can be turned either
on or off depending on their contribution to the EE, and the
system is subject to QoS, power, capacity, and RIS specific
constraints. We formulate a problem that jointly optimizes the
selection of the BSs and the beamforming weights of BSs and RIS,
and solve it with a Branch-Reduce-and-Bound (BRnB) algorithm
that uses monotonic optimization and semidefinite relaxation
steps. Simulation results for an illustrative setup show that the
aerial-RIS increases the EE by 50% when doubling the number
of its elements and cooperative aerial-RIS transmissions help to
solve outages of single-BS cases.

Index Terms—UAV-communications, reconfigurable intelligent
surfaces, energy efficiency, beamforming, monotonic optimiza-
tion, semi-definite relaxation.

I. INTRODUCTION

Responding to emergency situations where a communica-
tion infrastructure is either unavailable or destroyed by a
natural disaster requires an easy-to-deploy and cost-effective
radio access for information sharing and coordination between
first responders and the affected people (see earthquake in
Peru in 2007, and floods in Brasil in 2019 and Germany
in 2021). It is also often necessary to run diverse wireless
applications, for instance, to provide connectivity to indi-
vidual user equipments (UEs) in confined areas, such as a
trapped firefighter, a person’s vital signs monitor or a remote-
controlled rescue robot. In these cases, using an unmanned
aerial vehicle (UAV) equipped with a base station (BS) can be
a temporary solution due to its fast and flexible deployment
[1]. However, carrying and operating the BS can reduce the
energy available for the rest of its functions, as well as the
channel path loss can impact the performance [2]. On the other
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Fig. 1. Aerial-RIS-aided cooperative wireless communication system

hand, reconfigurable intelligent surfaces (RISs)-aided links are
energy-efficient alternatives to increase channel gains, and thus
increase the data rate and reduce the power consumption of
the communication system [3]. An RIS operates by inserting
phase shifts to the signals impinging on its surface such that
they are reflected in desired directions, and coherently added
at the receivers. A UAV airborne RIS, also known as an
aerial-RIS, eliminates the use of power amplifiers (PAs) and
signal processing units, which reduces the power required for
carrying communication equipment onboard, and also enables
three-dimensional signal reflections from the sky [4]. In order
to guarantee the quality-of-service (QoS) of the application,
BS cooperative transmission can be used to set a stable BS-
RIS-UE connection. Moreover, new fabrication technologies
[5] might reduce the weight of RISs so that they can be
mounted on drones. Due to the interesting advantages and
challenges of the cooperative aerial-RIS setup, this work aims
to assess its EE performance.

A. Related works

An application example of an aerial-RIS to assist the
communication between one UE and one BS is studied in
[4], which iteratively optimizes the BS and RIS beamformers,
and the UAV placement for maximum signal-to-noise ratio
(SNR). It shows that the SNR increases by 6 dB when doubling
the number of RIS elements. For the same application, the
work in [6] addresses the aerial-RIS in a multi-BS scenario
and shows that even if the BS transmit powers increase,
this does not translate to a higher SNR level if the phase-
shifts are not optimized. Regarding the UAV-UE propagation
channel, the study in [2] shows that it can be modeled as a



composition of free space propagation with high line-of-sight
(LoS) probability plus random scattering and shadowing due
to ground structures surrounding the UE and the BS. Based on
an outage probability (OP) predictor for an aerial-RIS single-
BS setup, the work in [7] shows that the power needed to
achieve a target OP is reduced with the number I of RIS
elements. For example, it drops by 8.2 dB when doubling I
from 15 to 30 for an OP of 0.01. Then it concludes that the
EE is also improved. Furthermore, the authors showed that
this setup outperforms several dual-hop relay schemes.

In comparison to terrestrial RIS setups, where an EE gain
of a factor of 3 w.r.t. an Amplify-and-Forward (AF) relay was
obtained [3], studies for EE in aerial-RIS systems are scarce.
Also, there are only a few works devoted to optimal solutions
for the RIS or multiple-BS beamforming, as for example the
algorithms in [8] and [9] for SNR and EE maximization,
respectively. Finally, regarding RIS implementation, it has
been studied that the degree of adjustment of the phase-shifts
depends on the antenna circuits impedance [5].

B. Scope and contributions

We investigate the EE of an aerial-RIS-aided network for
disaster relief where a number of geographically distributed
UAV ground control stations, each with a BS, cooperatively
create downlinks to the UE located in a remote area without
coverage. This scenario is illustrated in Fig. 1. We consider
that the BSs are turned on depending on the communication
requirement and its contribution to the EE, otherwise they are
put into a sleep mode of low power consumption. We optimize
which BSs should be selected to serve the UE jointly with
the BS and RIS beamformers for maximum EE which, as far
as we know, has not been studied before. We also consider
QoS, fronthaul capacity, and power constraints, as well as
constraints on the range of values of the possible RIS reflection
phases, which come from hardware implementation [5]. The
formulated EE problem is verified to be non-convex and is
solved by using discrete monotonic optimization (MO) [10]
and semidefinite relaxation (SDR) [11] methods.

C. Paper outline and notation

Section II introduces the system model of the aerial-RIS-
aided communication system, including the models for power
consumption, BS activations and fronthaul capacity, as well
as the problem formulation. Section III addresses the devel-
opment of the optimization algorithm. Section IV presents the
simulation results and Section V concludes this paper.

We use the following notations: bold lower case, bold upper
case and calligraphic letters denote vectors, matrices, and sets,
respectively. (·)T

, (·)H
, ‖·‖, diag (·) , arg (·) , tr (·), denote the

transpose, Hermitian, Euclidean norm, diagonal, argument and
trace operators. For any vector v, vi represents its ith element
and if v and z ∈ RN , v ≤ z means vi ≤ zi,∀i. A box is
expressed as [x, z], where any vector y within the box satisfies
x ≤ y ≤ z. The set of positive semidefinite n × n matrices
is denoted by Sn+ and given two n × n matrices A and B,
A � B means (A − B) ∈ Sn+. The floor and ceil rounded

values of a number x on a set D are denoted as bxcD and
dxeD, respectively, whereas bxci/D and dxei/D are vectors
of which only the ith element is rounded. ei is a vector such
that ei = 1 and ej = 0,∀j 6= i.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Scenario

The communication scenario consists of M base stations,
each with N antennas, that aim to serve a ground single-
antenna UE via one aerial-RIS as presented in Fig. 1. The BS
transmissions are in the same time-frequency resources. The
RIS is equipped with I antenna elements with configurable
phase-shifts of unit-amplitude for reflecting the incoming BS
signals towards the direction of the UE. We consider that the
downlink UE data d, which has unit variance, is available at the
BSs, which are connected via fronthaul links to a CPU. From
information about the channel responses, the CPU calculates
the BS and RIS beamformers and BS activation decisions
in order to meet QoS requirements. Each BS is indexed by
m ∈ M ∆

= {1, ...,M} and for every BS, wm ∈ CN×1 and
Hm ∈ CI×N denote its beamforming vector and its channel to
the RIS, respectively. The RIS-UE channel is denoted by g ∈
C1×I . Therefore, the equivalent channel between the UE and
the BSs can be modeled by h(φ)

∆
= gΦH ∈ C1×MN , where

H
∆
= [H1, ...,HM ], Φ ∆

= diag (φ), and φ ∆
= [ejθ1 , ..., ejθI ]T ,

with θi being the phase shift at RIS antenna i ∈ I ∆
= {1, ..., I}.

If w ∆
= [wT

1 , ...,w
T
M ]T denotes the composite beamforming

vector, and n ∼ CN (0, σ2) is the noise of variance σ2, the
received signal can be modeled as y = hwd+n, and the SNR
as

γ (w,φ) = |hw|2
σ2 . (1)

Therefore, the spectral efficiency (SE) is

r (w,φ) = log2 (1 + γ (w,φ)) bit/s/Hz. (2)

B. Fronthaul capacity

We represent the activation of BS m for serving the UE by
a variable sm ∈ B

∆
= {0, 1} and assume that the fronthaul rate

of each BS to the CPU cm is limited by a maximum capacity
Cm, i.e.,

cm = smr (w,φ) ≤ Cm bit/s/Hz, ∀m ∈M. (3)

We consider that several digital signal processing (DSP) tasks
as encoding, beamforming and fronthauling are performed at
the CPU and consume a power that depends on the fronthaul
rate as

pDSP = ηFH

∑
m∈M

cm, (4)

where ηFH is a constant factor in W/Gbit/s/Hz.



C. Hardware power consumption

Each BS m has two operational modes selectable by
sm, where sm = 1 indicates an active mode with power
consumption P run

BS from its hardware components, such as
microprocessors, memory and backhaul circuitry, and sm = 0
indicates its sleep low power consumption mode with power
P sl

BS [9], [12]. Also, if PE is the power spent by the RIS antenna
circuitry, the hardware power consumption is

pHW =
∑

m∈M
(smP

run
BS +(1− sm)P sl

BS) + IPE. (5)

D. Radiated power

We assume that the transmit signal power from each BS is
limited by Pm, i.e. ,

‖wm‖2 ≤ Pm, ∀m ∈M (6)

and by assuming PAs of constant efficiency ηPA, the power
spent for radiation can be expressed as

pRADm = 1
ηPA
‖wm‖2, ∀m ∈M. (7)

Thus, the total power consumption can be modeled as

p(s,w,φ) = pDSP + pHW +
∑

m∈M
pRADm (8)

= ηFHr (w,φ)
∑

m∈M
sm +

∑
m∈M

sm∆P+

1
ηPA

∑
m∈M

‖wm‖2 + Pconst,

with s ∆
= [s1, ..., sM ], Pconst

∆
= MP sl

BS +IPE and ∆P
∆
= P run

BS −
P sl

BS.

E. BS selection

In order to guarantee the application QoS, at least one BS
has to be selected to transmit to the RIS and serve the UE
and thus put into active mode. Otherwise, the BSs that are not
selected can stay in sleep mode to save energy, so that∑

m∈M
sm ≥ 1. (9)

F. Problem formulation

The EE maximization problem can be formulated as

P1 : η∗ = max
φ,w,s

r(w,φ)

p(s,w,φ)
, (10)

s.t.: r(w, φ) ≥ ro, (11)

‖wm‖2 ≤ smPm,∀m ∈M, (12)
| φi |= 1,∀i ∈ I, (13)

arg{φi} ∈ Fi,∀i ∈ I, (14)

s ∈ BM , (15)
(3), (9),

where η∗ is the optimal EE with unit bit/J/Hz. Constraint
(11) is to guarantee an SE of at least ro bit/s/Hz. In (12),
if the BS m is not selected (sm = 0), it does not need to
transmit. The unit-modulus and argument constraints for the
RIS phase-shifts are given by (13) and (14), respectively,
where Fi

∆
= [ψli, ψ

u
i ] ⊆ [0, 2π] is the continuous set for the

phases θi. Since the utility function is not jointly concave,
the constraints (11) and (13) are non-convex, and the boolean
variable s is mixed with the continuous variables in (3),
(10), and (12), we can conclude that P1 is a non-convex
mixed-boolean non-linear problem (MBNLP). Even though
P1 is untractable via Dinkelbach or fractional programming
transformations, (3) and (9) are monotonic constraints (m.c.’s)
that we can exploit. In the next section, we exhibit the rest
of the monotonic structure of P1, manage it via monotonic
optimization [10], and apply a custom relaxation method based
on [11] to find the optimal RIS phase-shifts. These steps are
presented in a Branch-Reduce-and-Bound (BRnB) algorithm.

III. JOINT BEAMFORMING AND BS SELECTION

A. Monotonic optimization

The solution search set of P1 is shaped by monotonic
mixed-boolean and continuous constraints which can be tack-
led by monotonicity-based cuts, bounding, and boolean ad-
justments with BRnB [10]. BRnB can also be applied to the
non-convex search region of the RIS phase-shifts by exploring
the solution in its relaxed region based on the performance
bounds that can be achieved locally. If we replace ‖wm‖2 by
its epigraph tm,∀m ∈ M, in the denominator of (10), and
then the utility function by its epigraph ηe, and also introduce
an auxiliary variable u in (11), we can reformulate P1 as

P2 : η∗ = max
ηe,φ,w,s,u,t

ηe, (16)

s.t.: u ≥ ro, (17)
log2 (1 + γ (w,φ)) ≥ u, (18)
ηep̂ (s, u, t)− u ≤ 0, (19)

‖wm‖2 ≤ tm,∀m ∈M, (20)
(3), (9), (12), (13), (14), (15),

where p̂ (s, u, t)
∆
= ηFHu

∑
m∈M sm +

∑
m∈M sm∆P +

1
ηPA

∑
m∈M tm + Pconst. Then, we observe that the objective

function (16) is a monotonic increasing function (m.i.f.) on
ηe and that constraints (3), (9), (17) and (19) can be ex-
pressed as difference of m.i.f.’s that depend on s, u and t.
If these variables are determined, we can compute the EE as
ηe = u

p̂(s,u,t) . Thus we can avoid branching on ηe. Let Nd be
the number of discrete monotonic (d.m.) variables in s and
Nc, the number of continuous monotonic (c.m.) variables in
u and t. We consider that they belong to an Ns-dimensional
box S, with Ns = Nd + Nc, where each vertex corresponds
to one variable. Also, we create a super Nt-dimensional box
containing both S and I. If we express the m.i.f. inequalities as
a single difference of two m.i.f.’s g(·) and h(·) [10, Corollary
6], the monotonic structure of P2 can be represented as

max
v

f(v)|g(v) ≤ h(v),v ∈ [p, q] ⊆ S, (v1, ..., vNd) ∈ BNd ,

where g(v) and h(v) are m.i.f.’s on v ∆
= [v1, ..., vNs ]

T , which
contains the variables s, u and t, whose lower bounds (with
underline notation) and upper bounds (with overline notation)



are given by p ∆
= [sT , u, tT ]T and q ∆

= [sT , u, t
T

]T , respec-
tively. In the following, we briefly describe the branching,
reduction, and bounding steps.

1) Branching: At each iteration, the largest edge of the
chosen box B = [p, q] is divided in half. This edge is
given by n = arg maxm=1,...,Ns (qm − pm). If we define
d

∆
= (qn − pn) /2, the two descendant boxes named as B−

and B+ are given by

B− =

{
[p, bq − dencn/B], if n ≤ Nd,
[p, q − den], if Nd < n ≤ Ns,

(21)

B+ =

{
[dp+ denen/B, q], if n ≤ Nd,
[p+ den, q], if Nd < n ≤ Ns.

2) Reduction: We can remove parts of each descendant box
V = [a, b] that are not in S or achieve a local performance
below the current best global ηglobale as to reduce the search
space in the next iterations. The reduction step, here denoted as
fr(V ) = V ′, shrinks a box V = [a, b] to a box V ′ = [a′, b′]
without losing any feasible solution (in case it exists in V )
[10], i.e., provided that g(a) ≤ h(b), V ′ contains the points
v′ ∈ [a, b] ∩ S that satisfy f(v′) > ηglobale . We can replace
a by a′, which can be obtained as a′ = b −

∑Ns
n=1 αn(bn −

an)en, where αn = sup{α|0 ≤ α ≤ 1, g(a) ≤ h(b−α(bn−
an)en), f(b−α(bn−an)en) ≥ ηglobale } and en is the nth unit
vector. Also, b can be replaced by b′ = a −

∑Ns
n=1 βn(an −

bn)en with βn = sup{β|0 ≤ β ≤ 1, g(a− β(an − bn)en) ≤
h(q), f(q) ≥ ηglobale }. The values of αn and βn can be found
via bisection for every n = 1, ..., Ns. Likewise, without loss
of optimality, the values of the reduced corners a′n and b′n, for
n ≤ Nd, can be rounded to da′neB and bb′ncB [10].

3) Bounding: Since both the numerator and denominator
of ηe are m.i.f’s on B = [p, q], we can calculate a local lower
bound (l.b.) and a local upper bound (u.b.) for ηe as

ηllbe (B) =
u

p̂
(
s, u, t

) , (22)

ηlube (B) =
u

p̂ (s, u, t)
. (23)

At each iteration i, we update the best l.b. of ηe, also known as
the global l.b., as ηglbe,i = max(ηglbe,i−1, η

llb
e (B)), where ηglbe,i−1

is the highest feasible EE obtained until the previous iteration.
Also, in order to reduce the search space defined by the stored
boxes, we can eliminate each box B having ηlub

e (B) < ηglb
e,i .

We create an initial box T0
∆
= [a0, b0] s.t. T0 ⊇ (S ∪ F),

where a0
∆
= [sT , u, tT ,θT ] and b0

∆
= [sT , u, t

T
,θ
T

] represent
the initial lower and upper bound values for the variables given
as sm = 0, sm = 1, u = ro, u = max{Cm}m∈M, tm =
0, tm = Pm, θi = ψli and θi = ψui . This box is then
successively branched and reduced across the iterations. Given
a feasible reduced box B′, the aim is then to find a feasible

solution for w and φ that satisfies (12), (13), (14), (18) and
(20), which can be formulated as

P3 :{wB ,φB} = find {w,φ},
s.t.:
{
‖wm‖2 ≤ sm min{Pm, tm},∀m ∈M, (24)

(13), (14), (18)
}
∩ fr(B),

where (24) is the convex intersection of (12) and (20). If
the problem is feasible, we can calculate the l.b. and u.b.
of ηe achieved by this box using (22) and (23), respectively,
otherwise we can discard it from further partitioning. Due to
its non-convex constraints (13), (14), and (18), the feasibility
check of P3 is complicated. We express P3 as a transmit power
minimization since it can greatly contribute to the EE

P4 :{w∗B ,φ
∗
B} = min

w,φ
‖w‖2, (25)

s.t.:{(13), (14), (18), (24)} ∩ fr(B).

If φ is determined, P4 can be expressed as

P5 : w∗B = min
w
‖w‖2, (26)

s.t.: |hw|2 ≥ γσ2, (27)

smtm ≤‖wm‖2 ≤ sm min{Pm, tm},∀m, (28)

where γ
∆
= 2u − 1 is the SNR required for u and h(φ) =

gdiag(φ)H is the combined channel from all the active
BSs, where H = [s1H1, ..., sMHM ]. We can express the
beamforming solution for each BS m as the matched filter

w∗m = sm
√
pm

hHm
‖hm‖

, (29)

therefore the cost function of P5 results in
∑
m smpm. By in-

specting constraint (27), we can obtain the following inequality∑
m
smpm ≥

γσ2

‖h‖2
, (30)

since γσ2 ≤
∣∣∑

m

√
pmsm‖hm‖

∣∣2 ≤ (∑
m smpm

)
‖h‖2.

From (30), we see that in order to minimize the power
consumption, the channel gain ‖h(φ)‖2 has to be maximized
by φ. Then, we can allocate a power pm for each BS with a
feasible value that meets (28) and satisfies the minimum SNR
requirement subject to the channel gain ‖h‖2max given by a
feasible φ. This feasibility problem can be formulated as

P6 :{pB} = find {p}, (31)

s.t.:
∑

m
smpm ≥

γσ2

‖h‖2max
, (32)

smtm ≤ pm ≤ sm min{Pm, tm},∀m ∈M. (33)

First, we formulate the channel gain maximization problem as

P7 : φ∗B = max
φ
‖gdiag(φ)H‖2 (34)

s.t. (13), (14).

We expand the set F in P7 to a convex circular region such
that we can keep the box for further partitioning only if the ex-
panded region contains at least one feasible solution, otherwise



we can discard it. By making Q = diag(g)H H
H

diag(gH) ∈
SI+ and introducing the auxiliary variables x ∆

= φH and
X

∆
= xxH , P7 is equivalent to

P8 : {xB ,XB} = max
x,X�0

tr(QX), (35)

s.t.: X = xxH , (36)
Xii = 1,∀i ∈ I, (37)

arg(xi) ∈ XBi ,∀i ∈ I, (38)

where XBi
∆
= [lBi , u

B
i ] ∈ [0, 2π],∀i ∈ I, represents the

search set for the argument of xi in box B with lower and
upper bounds li and ui, respectively. Since θ can be directly
recovered from x, we can map the initial values of Fi to Xi
as li = (2π − ψui ) and ui = (2π − ψli),∀i ∈ I and include
them into T0 instead of the arguments defined by F . P8 is
non-convex due to the rank-one constraint (36). If we drop
it, P8 can be solved as a convex semidefinite problem (SDP).
Then, from XB , we can extract an approximate solution for
xB via eigenvalue decomposition or randomization methods
[13], [14]. However, in this case, it is not guaranteed that
the obtained xB will satisfy (38). On the other hand, we
cannot drop (38), otherwise feasible solutions might be lost.
Therefore, (36) and (38) are replaced by semidefinite and
linear inequalities, respectively, derived from the relaxation
of {XBi }i∈I .

B. Enhanced SDP relaxation
Each argument search set Xi

∆
= [li, ui] ⊂ [0, 2π] can be

expanded to its circular segment defined as X̃i = {x̃i ∈
C | <(a∗i x̃i) ≥ cos(ui−li2 ), |x̃i| ≤ 1}, where ai

∆
= e

ui+li
2 ,∀i ∈

I [11]. Also, |x̃i| ≤ 1 can be realized implicitly by relaxing
(36) to X̃ � x̃x̃H . Then P8 is relaxed as

P9 : {x̃B , X̃B} = max
x̃,X̃�0

tr(QX̃), (39)

s.t.: X̃ � x̃x̃H , (40)

<(a∗i x̃i) ≥ cos(
uBi −l

B
i

2 ),∀i ∈ I, (41)

X̃ii = 1,∀i. (42)

The newly introduced constraints (40) and (41) enable solving
P9 with an SDP solver such as CVX [15]. Branching over
arg (xi) is based on the fact that if for each vertex i, the width
of Xi : (ui − li)→ 0 then |x̃i| → 1, for any feasible solution
x̃i within the relaxed circular region X̃i. Also, if x̃ is the
feasible solution of P9, with |x̃i| = 1,∀i ∈ I, then x̃ is also
feasible for P8 [11]. That means that X has to be successively
branched across BRnB iterations in order to move x̃, thus
φ, towards the circle contour, i.e., satisfying (13) and (14).
Therefore, the feasible value for the channel gain is ‖h‖2max =
x̃HQx̃, where x̃′i is the projection of x̃i onto the unit-circle.
Furthermore, to decide the edge to branch a box B into B−
and B+, the candidate among the edges n = Ns + 1, ..., Nt,
is the phase i given by imax = arg maxi∈I{|x̃′i − x̃i|}, which
is then compared with the edges defined by the monotonic
variables u, s, and t and then we take the longest. P1 can be
optimally solved following Algorithm 1.

Algorithm 1: BRnB algorithm for solving P1

Result: η∗, s,φ, {wm}
initialize T0 = [p, q] for s, u, t and arg(x), reduce and

assign it to the box set B0 ← fr(T0), ηglbe = 0, and i = 1

while (ηgube,i − η
glb
e,i )/η

gub
e,i > ε1 do

select box B that provides the highest upper bound
select edge n = arg max

m=1,...,Nt
(qm − pm) giving priority to

s until s = s and branch B into B1 and B2 using (21)
for r = 1 : 2 do

reduce Br to B′r via bisection with precision ε2
if reduction is feasible then

if ηlube (B′r) > ηglbe then
solve P9 and get x̃ and φB

if infeasible then discard B′r
else

solve P6 and get p
compute ‖h‖2max

compute wB
m using (29)

compute ηllbe (B′r) using (22)
compute ηlube (B′r) using (23)
update ηglbe,i ← max(ηglbe,i−1, η

llb
e (B′r))

else discard B′r , new optimal is not here

else discard Br , no feasible points

update box set Bi � (Bi−1 \B)∪{B′r|ηlube (B′r) ≥ ηglbe,i }
update ηgube,i ← maxb∈Bi(η

lub
e (b)) and i � i+ 1.

IV. SIMULATION RESULTS

We consider a setup in an area AB of 800m × 800m,
where M = 4 BSs, each with N = 3 antennas, located
at the vertices and at a height of HB,m = 4m, ∀m, aim
to serve a ground UE located at an inner area AU of
800
3 m× 800

3 m via a hovering aerial-RIS. The position of
each BS m is denoted by vB,m, the position of the UE is
vU = [x, y, 0], and the position of the first element of the RIS
is vR = [400, 400, HR], with HR =50m being the altitude of
the UAV. Similar as in [4], we consider uniform-linear arrays
(ULAs) at both the BSs and the RIS, but extending to uniform
planar array (UPA) is also possible. The ULAs have response

α(L, da,Ω) =
[
1, e−j2π

da
λ sin Ω, ..., e−j2π

da
λ (L−1) sin Ω

]T
,

where L is the number of elements, λ is the wavelength,
da is the antenna interspacing, and Ω is the reference angle.
We assume da = λ/2 at each BS and da = λ/10 at the
RIS. The channels are Rician with path-losses BSm-RIS
and RIS-UE βB,m = β0

‖vR−vB,m‖2 and βq = β0

‖vR−vU‖2 ,
respectively [4], where β0 = −40dB is the channel power
at the distance of 1m. The channels are given by Hm =√
βB,m

(√
ρB,m/(ρB,m + 1)Ĥm +

√
1/(ρB,m + 1)H̃m

)
,

and g =
√
βq

(√
ρq/(ρq + 1)ĝk +

√
1/(ρq + 1)g̃k

)
,

where ρB , and ρq are Rician factors with value of 10,
and Ĥm = α

(
I, λ10 ,ΩAoA,m

)
αH

(
N, λ2 ,ΩAoD,m

)
and

ĝ = αH
(
I, λ10 ,ΩAoD,RIS

)
. ΩAoA,m and ΩAoD,m are the



10
0

10
1

10
2

10
3

BRnB iteration

0
0.1540

0.5

1
E

E
 

 (
b
it
s
/J

/H
z
) 

I=8

upper bound

lower bound

10
0

10
1

10
2

10
3

10
4

10
5

BRnB iteration

0

0.2332

0.5

1

E
E

 
 (

b
it
s
/J

/H
z
) 

I=16

upper bound

lower bound

Fig. 2. Energy Efficiency Optimization using Algorithm 1.
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Fig. 3. Comparison of EE for different RIS and BS configurations

AoA and AoD of the signal from BS m to the RIS, and
ΩAoD,RIS is the AoD of the signal from the RIS to the
UE. H̃m and g̃ represent scattering whose elements follow
CN (0, 1). The rest of parameters are set as σ2 = −110 dBm,
ro = 1 bit/s/Hz, PE = 10 mW, ψli = π and ψui = 2π,∀i,
Pm = 2 W, Cm = 4 bit/s/Hz, P run

BS = 5 W, P sl
BS = 1 W,

ηPA = 0.4, ηFH = 0.3, and Algorithm precision ε1 = 10−3

and ε2 = 10−5. Fig. 2 presents the algorithm convergence
for a particular channel realization and two different numbers
I of RIS elements. The UE position is the same in both
cases. As seen, in each case, the lower and upper bounds of
η converge to the same value. However, since the dimension
of the problem in the second case, Ns = 2M + I + 1 = 25,
is higher than in the first case, Ns = 17, BRnB needs more
iterations for a feasible solution within the given precision.
Also, on the convergence, we see that the EE when I = 16 is
approximately 50% higher than when I = 8. This is because
with a larger RIS, less transmit power and only one BS
were needed, whereas two BSs were needed when I = 8. In
each case, the Algorithm selected the BSs with the highest
channel gains. Fig. 3 compares the EE cumulative density
function (CDF) from 100 random locations of the UE in AU
when I = 4 and I = 8, and for the cases 1) the system is
fully optimized with Algorithm 1, 2) the BS selections are
optimized but the RIS phase-shifts are set randomly, and

3) selection of only one BS. In this case, the trend is the
same as in Fig. 2, where a larger RIS provides higher EE for
every UE location. We observe a performance loss caused by
random RIS phase-shifts, which is higher for the larger RIS.
Also, even though the one BS setup is the best option in
some cases, it can suffer from outage. For instance, 40% of
the cases were infeasible due to QoS and power constraints,
whereas this problem is solved by our cooperative scheme.

V. CONCLUSION

In this paper, we proposed an aerial-RIS-aided cooperative
wireless communication system for emergency relief and
studied its energy efficiency (EE) for the single user case
considering RIS phase-shifts, QoS, transmit power and fron-
thaul capacity constraints. We proposed a BRnB algorithm to
maximize the EE by optimizing the BS and RIS beamformers
jointly with the selection of the BSs that participate in the
transmission. It was shown that the EE increases with the
number of RIS elements as well as our scheme has better
EE and outage performance than the single BS case.
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