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Abstract—In this work, an optimum communication resource
allocation for sensor value transmission of wireless networked
control systems consisting of independent linear subsystems is
calculated. To use new service types of upcoming mobile radio
standards in an optimal way, the communication resources used
by each subsystem have to be adapted to the current individual
subsystem requirements. In our case, the scheduling of the
transmission of fresh sensor values to the controller of the
subsystems is optimized. The quality of scheduling is directly
related to the deviation of a subsystem from its control goal.
A proof for the optimality of a regular updating scheme for
minimizing this deviation is given. Based on this regularity, the
optimum communication resource allocation for a limited amount
of resources and a set of control systems with different given
characteristics is derived. Using the resulting resource shares for
the subsystems from this optimization, an algorithm to schedule
the actual transmissions during runtime is given. This split
approach saves computational effort during system operation.
To simplify the evaluation of different scheduling policies, a
deterministic calculation of the expected cost with mean absolute
error cost function for each subsystem is presented, which
removes the need of Monte-Carlo experiments for evaluation.

Index Terms—Cyber-Physical Systems, Communication and
Control, Networked Control Systems, Internet of Things

I. INTRODUCTION

The current roll-out of 5G mobile networks will greatly

influence the types of services used over mobile networks.

While the growth of the number of personal devices is

already slowing down, the fraction of traffic of autonomous

devices communicating with each other is rapidly growing

[1]. While previous generations of mobile networks focused

on human users and high data rates, 5G networks will also

provide communication channels particularly suited for in-

dustrial communication and control applications [2], as well

as connected cars and autonoumous driving [3]. Despite the

ever-growing number of devices per cell and increased data

rates, also latency and reliability guarantees can be established

[4]. This allows for new services, especially from the control

domain, which heavily depend on latency guarantees [5]. One

important application from the control domain is autonomous

driving, where information from sensors in the vehicles and

along the road has to be transmitted between vehicles and

central entities to manage traffic. Obviously, the amount of

data to be exchanged varies heavily, depending on the number

of vehicles per area, the weather conditions etc.

For Industry 4.0, a shift to wireless instead of the current

wired connections is desired. Wireless systems are fastly

reconfigurable and can be easily adapted to current production

requirements. The real-time requirements of industrial control

systems imply challenges on the communication system design

very different from previous generations of communication

systems. The control counterpart also has to be adapted to

the specific characteristics of wireless connections. Current

control systems rely on high data rates, low latency, and low

error probabilities. The combination of control and wireless

communication systems, called Wireless Networked Control

Systems (WNCS), is an important area of current research,

especially the joint optimization of both, to adapt either part

to possibly varying conditions of each other. If, for example,

an autonomous vehicle drives along a straight and empty road,

the communication can be reduced. In a crowded city scenario

with a lot of intersections, the communication effort is much

higher. At the same time, the speed of the vehicle can be

adapted to the available communication resources.

WNCS are composed of subsystems which communicate

over a shared wireless communication channel to exchange

sensor values and control commands. The subsystems either

work cooperatively to achieve a common task, or they compete

for communication and other resources.

WNCS can generally be divided into two types, centralized

and decentralized, as shown in [6]. The subsystems of de-

centralized WNCS compete for communication resources in

a shared communication medium such as a frequency band.

Centralized WNCS, however, have a central scheduler (CS)

which allocates resources to the individual subsystems. In

this paper, the second type is considered. The allocation of

communication resources to subsystems with different control

parameters is optimized by a CS. The goal is to schedule

measurement transmissions from sensors to controllers to

minimize the plant state estimation error at the controller. The

CS can request measurements from the distributed sensors and

transmit them to the corresponding controller. Examples for

sensors remote from the plants might be cameras, infrared

thermometers or ultrasonic distance sensors. In the well-known

inverted pendulum example from control theory, the sensor

could be a camera observing the pendulum inclination and

position.

II. RELATED WORK

A very general solution to minimize the overall time passed

since the last update of the sensor value at the controller

is investigated in [7]. This ensures a timely update of the

state information for all subsystems, but does not consider

the individual subsystem dynamics. If the system has a CS to



schedule the updates, which is aware of the dynamics, the

scheduling decision can be further optimized. This system

layout is investigated in [8], where the CS transmits the sensor

values to the subsystems according to a precalculated schedule,

which is based on the uncertainty about the current subsystem

states. In each time step, a fixed number of transmission

slots is available. The required optimization is a mixed-integer

problem, which only gives a schedule for a fixed time horizon

and is considerably hard because of its nonconvex structure.

The restriction of the time limited schedule is relieved in [9],

where the time passed since the last transmission of the sensor

value for a subsystem is used to find the most outdated values.

This approach is compared to a scheduling based on the error

covariance of the current state estimate at the controller. The

variance-based approach considers different dynamics of the

subsystems. In [10], the problem is modeled as a Markov

Decision Process (MDP) with the time passed since the last

transmission for each subsystem as the state and the scheduling

decision for the current time step as action. The model also

incorporates packet-loss probabilities for the communication

links, which results then in a deterministic scheduling policy.

In [11], the optimum scheduling is done for WNCSs with lossy

links, where the loss probability depends also on the number

of sending subsystems.

In this paper, the focus is on the deterministic case without

packet loss. There are multiple control loops and a CS, which

is aware of the subsystems characteristics and schedules the

transmissions from sensors and to controllers. The optimality

of a fixed update frequency scheme for a minimum mean-

square estimation error at the controller is shown. For deriva-

tion of the frequencies and the actual scheduling, we propose

a two-step approach. In the first step, the individual update

frequency for each subsystem is determined based on the

system noise power and the subsystem dynamics. We show

in Section IV, that this resource allocation problem is in fact

a convex problem, which can be solved existing optimization

frameworks like [12]. For the second step, we developed an

algorithm in Section V, which schedules the available commu-

nication resources in each time step fairly to the subsystems

according to the derived update frequencies from the first step.

The main advantage of this two-step approach is the reduced

effort during runtime, because only the second step has to be

carried out during runtime. Finally, we show the advantage of

our approach with numerical results in Section VI.

III. SYSTEM MODEL

A. Notations

The expected value of a random variable is denoted by

E(·), the variance by Var(·). Vectors and matrices are set in

boldface, matrices with capital letters and vectors with small

letters. The ith element of vector x is denoted by xi. x(t)
denotes the value of a vector time instant t.

B. Control System Model

The overall control system consists of Nsys independent

subsystems as shown in Fig. 1. Each subsystem i consists

Central 

Scheduler

Uplink

Downlink

Fig. 1: System model of the WNCS

of a plant Pi, a controller Ci and a sensor Si. A central

scheduler polls measurements yi from the sensor Si (uplink)

and forwards them to the controller Si (downlink). Each

subsystem i ∈ 1, . . . , Nsys is modeled as a discrete time

linear system with a scalar state xi(k) at time instant k,

a system coefficient ai, measurement noise wi(k) and the

control variable is ui(k). Each subsystem i follows a linear

system equation

xi(k + 1) = aixi(k) + ui(k) + wi(k). (1)

The system noise wi(k) is assumed to be zero-mean Gaussian

i.i.d. for all times k and all systems i with variance Wi.

The subsystems can be observed according to the observation

equation

yi(t) = xi(k) + vi(t) (2)

with the measurement noise vi(k) ∼ N (0, Vi). Since the

system is linear with Gaussian noise, the Kalman filter [13]

gives the minimum-mean-square error (MMSE) estimate x̂ of

the system state x based on the observation y. The estimation

error is ei(k) = xi(k)− x̂i(k). The control variable ui is then

calculated according to a deadbeat law, i.e. ui(k) = −aix̂i(k),
to achieve the control goal xi = 0 for all subsystems. A cost

function

J(k) := |x(k)| (3)

for deviating from this goal is assumed. The limited commu-

nication resources only allow for sensor readings of scheduled

time slots. The Kalman filter is modified to predict the inter-

mediate values. The availability of a new value is described

by a binary scheduling decision variable πi(k), which is set

to 1, if the system i is scheduled in time slot k and to 0

otherwise. The expression x(a|b) is used to denote quantity x
at time instant a with the knowledge from time instant b. The

modified Kalman filter with the estimation error covariance Pi

of ei, and the Kalman gain gi is then given as

x̂i(k|k − 1) = aix̂i(k − 1|k − 1) + ui(k − 1) (4)

Pi(k|k − 1) = a2iPi(k − 1) +Wi (5)

gi(k) = πi(k)
Pi(k|k − 1)

Pi(k|k − 1) + Vi

(6)

x̂i(k|k) = x̂i(k|k − 1) + gi(k) (yi(k)− x̂i(k)) (7)

Pi(k|k) = (1− gi(k))Pi(k|k − 1) (8)



Because the instantaneous value xi(k) is not known at the CS,

πi can only be based on Pi. The scheduling should minimize

the uncertainty about the system state at the controller, which

is induced by the system noise and results in the estimation

error ei(k), which is also Gaussian distributed with zero-mean

and variance Pi. So minimizing the uncertainty corresponds to

minimizing
∑Nsys

i=1 Pi(k) ∀k. The transmission of the current

observation reduces the uncertainty. Henceforth, the measure-

ment noise is assumed to be negligible, i.e. Vi = 0. This

results in gi(t) being either 1 or 0 and the system state xi(k)
as well as the error covariance Pi is set to zero every time

a transmission to the controller is scheduled. After this, the

system noise wi(k) adds uncertainty in every system time step

k. If the system has been scheduled last in time step l ≤ k,

the variance Pi is

Pi = Var(ei,k) =

{

Wi(k − l) if |ai| = 1

Wi
1−a

2(k−l)
i

1−a2
i

else.
(9)

Since only the time duration d = k − l between consecutive

transmissions at time steps k and l determines the error co-

variance Pi, a function fi(d) to calculate the sum of variances

Pi after d timeslots without transmission can be written, as

fi(d) :=

k
∑

m=l

Pi(m) =

{

Wi
d(d+1)

2 if ai = 1

Wi
1

1−a2
i

(

1− 1−a2d

1−a2
i

)

else.

(10)

The control cost function (3) can be minimized for each

time step individually to minimize the overall cost. Because

of the deadbeat control, the state xi is always zero-mean

Gaussian distributed. The remaining deviation from the control

goal xi = 0 after application of the control variable ui

derived from x̂i is almost equal to the estimation error ei, i.e.

Var(xi(k)) ≈ Var(ei(k)) = Pi(k). The approximation comes

from the fact that the measurement is received with delay

due to latency induced by the communication. It is possible

that more recent information is available at the CS, reducing

the estimation error there, but it could not be used for better

control, since it has not been transmitted to the controller

yet. The expected value of the cost function J can then be

calculated from the standard normal distribution function as

E{|xi(k)|} =

√

2

π

√

Var(xi(k)). (11)

The overall control objective with respect to the scheduling is

argmin
π

∑Nsys

i=1

∑Tsim

k=1 Var(xi(k)). (12)

C. Communication System Model

The communication time slots, denoted by t, are shorter

than the control time slots, denoted by k. In each of the control

system time slots k for subsystem i, T s
i communication time

slots t take place. Additionally, a sampling offset T 0
i between

the subsystems is used. The relation between t and k is then

given like in [9] as ki(t) = ⌊ t−T 0
i

T s
i

⌋. The communication

system is based on the scheduling decisions πi made by a

CS and is used to transmit measurements from sensors to

controllers, which are directly attached to the plants. Transmis-

sion takes place in a packet based fashion with equally sized

packets. In one communication time step t, RUL packets can

be transmitted in the uplink and RDL packets in the downlink.

The system is assumed to have no packet loss. The scheduling

decision is modeled by the variable πUL(t) ∈ R
Nsys×1 and

πDL(t) ∈ R
Nsys×1 for uplink and downlink, respectively.

IV. OPTIMUM RESOURCE ALLOCATION

A. Influence of Long-Term evaluation of subsystem variances

In [9], the error covariance Pi is used as Value of Informa-

tion (VoI) to derive the scheduling πi in a greedy fashion. This

minimizes the uncertainty about subsystem i in the current

time step, but (12) rather asks for the minimization of the

overall sum of uncertainty. This means, a greedy scheduling

decision might be suboptimal. A subsystem i with a system

coefficient ai can accumulate a large Pi over time, while

another subsystem j with system constant aj and ai < aj has

a lower Pj . The greedy policy will then schedule subsystem

i first, but in the next time step, Pj might increase more than

Pi of subsystem i is reduced. This results in an increased
∑

i

∑

t Pi(t), which leads to larger estimation errors.

The functions fi are used to consider this in the scheduling.

Their exponential shape makes a regular scheduling of each

subsystem desirable. The individual slope of fi suggests an

update rate depending on the system constant ai, the sys-

tem noise covariance Wi, and the available communication

resources. Stable systems with |ai| < 1 get a low or zero rate,

while system with large ai are scheduled more often.

B. Optimality of a Regular Update Scheme

To show the optimality of a regular update scheme, we

consider a single subsystem i with system constant ai 6= 1,

a system noise variance of Wi, and a finite operation time

horizon Tsim, i.e. k = 1, . . . , Tsim. During the operation time,

N + 1 sensor values are transmitted, where the first and last

transmission take place at k = 0 and k = Tsim, respectively.

The time durations between two consecutive transmissions are

denoted by di,1, . . . , di,N with di,n ≥ 0, n = 1, . . . , N . Now,

the scheduling minimizing the sum of error variances over

k up to Tsim is to be found. Using (10), this leads to the

optimization problem

argmin
di

∑N
n=1 fi(di,n) (13)

s.t.
∑N

n=1 di,n = Tsim (13a)

with the Langragian

L(d, µ) = inf
µ

N
∑

n=1

Wi

1− a2i

(

1−
1− a

2di,n

i

1− a2i

)

+ µ (di,n − Tsim)

(14)

and its partial derivatives with respect to the di:

∂L

∂di,n
=

Wi

(1− a2i )
2

(

−2 log (ai)a
2di,n

i

)

+ µ. (15)



Since µ,Wi and ai are not depending on n, they are equal for

all partial derivatives of L(µ,di). This results in equal di,n
to bring all components of the gradient to zero, i. e., equal

durations between the transmissions for a single subsystem

are optimal for reducing the sum of error variances over time,

but are not necessarily integer multiples of the time slot du-

ration. This is also applicable in case of multiple subsystems.

Henceforth, scalar di will be used for the durations between

consecutive transmissions of subsystem i.

C. The rate optimization problem

To find the optimum duration di for each subsystem, the

optimization problem (13) is modified to use an update rate

ri = 1
di

. The results from [9] suggest a resource allocation,

which is defined by the min{RDL, RUL}, since there is no gain

in receiving information at the CS, which cannot be forwarded

to the systems. On the other hand, if no data was received from

the sensors, the downlink capacity RDL cannot be fully used.

Since the data itself does not influence the scheduling decision,

but rather the calculated error variance, the scheduling for

uplink and downlink is always the same. Then, the sum of

the average variances per timeslot k is minimized:

argmin
r

∑Nsys

i=1 ri max (Wi, fi(1/ri)) (16)

s.t. 0 ≤ ri, i = 1, . . . , Nsys (16a)

R = T s min{RUL, RDL} (16b)

R ≥
∑Nsys

i=1 ri. (16c)

The maximum in the objective (16) sets the lower bound of

uncertainty to the system noise covariance Wi.Constraint (16a)

ensures positive rates, while (16c) limits the sum rate to the

available communication resources given by (16b).

V. SCHEDULING ALGORITHM

After calculating the rates, the actual scheduling is derived.

As discussed in Subsection IV-C, the uplink and downlink

scheduling is equal. The primary goal of the scheduling

algorithm for the possibly non-integer duration values di is to

bring the individual durations as close to the desired values as

possible. As shown in Subsection IV-B, the duration between

consecutive transmissions is more important than the average,

so the Alg. 1 only considers the time since the last scheduling.

The first transmission for all subsystems is assumed to take

place at t = 0. Then, in each communication time slot t,
Alg. 1 is run to find the RUL or RDL subsystems, which have

the longest time passed since their respective last transmission,

relative to their desired duration di. The resulting vector π has

elements for every subsystem.

VI. NUMERICAL RESULTS

In this section, numerical results are derived for four system

classes, each of them containing one quarter of the subsystems,

with ai ∈ {0.75, 1, 1.25, 1.5}. The noise variance for all

systems is set to Wi = 1. The number of communication

time slots per system time slot is set to Ts,i = 10. First,

we want to investigate, how this constraining environment

Algorithm 1 Transmission scheduling

Rremain ← min{RDL, RUL} {Remaining resources for this

time slot}
π(t)← 0

while Rremain 6= 0 do

δn ←
1
δr

(t1− tl) {Normalized time since last TX}
ni ← argmaxi δn(i)
πni

(t) ← 1 {Schedule subsystem with longest duration

since last transmission}
tl,ni
← t {Save current transmission time step}

Rremain ← Rremain − 1
end while

return π(t){Return the scheduling for the current time slot}
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Fig. 2: Duration between transmissions for RUL = 1

influences the time duration between two transmissions of

the different subsystem classes. By increasing Nsys while

keeping RUL and RDL constant, the resources per subsystem

are reduced, which leads to increasing durations between

transmissions. Additionally, the share of resources changes

between the subsystem classes; subsystems with smaller ai
get a smaller share. Fig. 2 shows the average duration between

transmissions for different numbers of subsystems Nsys with

resources RUL = RDL = 1. The optimization shown in (16)

reduces the resources assigned to the systems with a low

system constant, when Nsys increases, resulting in longer times

between two subsequent transmissions. For the stable subsys-

tems with ai = 0.75, almost no transmissions are scheduled

for Nsys ≥ 60. For small ri, even small changes result in great

changes of the corresponding di and lead to fluctuations. For

comparison, the results from [9] are shown. The difference

between the two schemes are significant especially for the

subsystems with ai = 1, which are scheduled more often with

the results from (16).

Next, the control performance of the different scheduling

algorithms is compared in terms of the mean absolute esti-

mation error Σe(k) =
1

Nsys

∑Nsys

i=1 α
√

Pi(k). Fig. 3 shows the

results for RUL = RDL = 1 and RUL = RDL = 3. With
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k Σe for RUL = RDL = 1 and RUL = RDL = 3
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RUL = RDL = 3, both algorithms achieve the same Σe. In the

more constrained case (RUL = RDL = 1), the reduction of Σe

of the proposed method compared to [9] becomes apparent.

Next, the behavior of Σe(k) of the subsystems over time

is investigated. Exemplarily, Σe for Nsys = 160 and RUL =
RDL = 1 is shown in Fig. 4 for each control system time step

k. Since the subsystems are assumed to have been reset at

k = 0, multiple systems have to be scheduled in the first time

slots, which results in a transient phase for both algorithms.

Our algorithm is very stable after this phase, while the one

from [9] fluctuates more as described in Subsection IV-A.

In Fig. 5 the same experiment is conducted with RDL =
RUL = 3. While in Fig. 3 both, the proposed and the method

from [9], seem almost equivalent, Fig. 5 reveals the lower

variance of the proposed method. The small spike around k =
3900 of the proposed method comes from the fact, that at this

time the subsystems with ai = 0.75 are scheduled the first

time, resulting in a small disturbance, which can be viewed as

a very long transient phase. The much smaller fluctuation in

Σe of the proposed method is also clearly visible.
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