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Abstract—We consider an energy harvesting (EH) transmitter
communicating with a receiver through an EH relay. The har-
vested energy is used for data transmission, including the circuit
energy consumption. As in practical scenarios, the system’s state,
comprised by the harvested energy, battery levels, data buffer
levels, and channel gains, is only partially observable by the EH
nodes. Moreover, the EH nodes have only outdated knowledge
regarding the channel gains for their own transmit channels.
Our goal is to find distributed transmission policies aiming
at maximizing the throughput. A channel predictor based on
a Kalman filter is implemented in each EH node to estimate
the current channel gain for its own channel. Furthermore, to
overcome the partial observability of the system’s state, the EH
nodes cooperate with each other to obtain information about their
parameters during a signaling phase. We model the problem as a
Markov game and propose a multi-agent reinforcement learning
algorithm to find the transmission policies. We show the trade-off
between the achievable throughput and the signaling required,
and provide convergence guarantees for the proposed algorithm.
Results show that even when the signaling overhead is taken into
account, the proposed algorithm outperforms other approaches
that do not consider cooperation.

Index Terms—Two-hop communications, energy harvesting,
decode and forward, multi-agent reinforcement learning, linear
function approximation.

I. INTRODUCTION

W Ireless communication nodes play an important role in
many applications of wireless sensor networks such

as health monitoring, surveillance or intelligent buildings.
However, depending on the specific application, charging or
replacing the batteries of the wireless communication nodes
can be too expensive or sometimes infeasible [1], e.g., when
the nodes are located inside the human body, in remote loca-
tions or even inside structures. In order to provide sustainable
service or to reduce the operating expenses, energy harvesting
(EH) has been considered as a promising energy source for
such wireless communication nodes. In EH wireless commu-
nication networks, the EH capability of the nodes increases
the network lifetime and can lead to perpetual operation
because the nodes can use the harvested energy to recharge
their batteries [2,3]. However, the benefits of EH are not
limited to an increased network lifetime. The fact that the EH
nodes can collect energy from natural or man-made sources,
e.g., solar, chemical or electromagnetic radiation, helps to
reduce greenhouse gas emissions. Furthermore, since the EH

This work has been performed in the context of the LOEWE Center
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nodes can work independently of the power grid, EH wireless
communication networks can be deployed in areas that are
usually hard to reach. In this paper, we address the problem
of how to efficiently use the harvested energy and we tackle the
problem from a communications perspective, i.e., we discuss
how to efficiently transmit data using the harvested energy as
the only energy source.

In an EH scenario, the communication range depends on the
amount of harvested energy at the EH transmitter. This amount
of harvested energy varies according to the energy source that
is considered. For example, for energy harvesting based on
electromagnetic radiation, the power density is in the order of
fractions of nW/cm2, and for solar energy, it is in the order of
hundreds of mW/cm2. To increase the limited communication
range in an EH communication scenario, relaying techniques
can be considered since they are cost effective solutions for
increasing the coverage, throughput and robustness of wireless
networks [4,5]. By using relaying techniques, the communica-
tion between a transmitter and a receiver which are located far
apart can be achieved by introducing one or more intermediate
relays for reducing the communication range of each hop. The
reduction of the communication range implies a reduction of
the amount of energy required for data transmission in each
hop. We focus on the case where only a single EH relay is used
to assist the communication between an EH transmitter and
a receiver, i.e., EH two-hop communications. This scenario is
the essential building block of more complicated EH multi-hop
communication networks and exhibits all important challenges
that need to be addressed when using relaying techniques,
i.e., the design of transmission policies for the EH transmitter
and the EH relay considering the amount of energy that is
available to each of them. Our goal is to design transmission
policies aiming at an efficient use of the harvested energy
at the transmitter and at the relay in order to maximize the
throughput. This problem is equivalent to the minimization of
the time required to transmit a given amount of data [6].

A. Related Work

For EH two-hop scenarios, offline approaches have been the
major direction of state-of-the-art research [6]–[12]. Offline
approaches assume that perfect non-causal knowledge about
the system dynamics is available. This means, all the amounts
of energy to be harvested, the amounts of incoming data and
the channel gains to be experienced are perfectly known before
the data transmission starts. In [7], the throughput maximiza-
tion problem within a deadline is studied and two cases are
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distinguished, namely, a full-duplex and a half-duplex relay.
For the case of a full-duplex relay, the optimal transmission
strategy is provided. However, in the half-duplex case, the
optimal transmission strategy is only found for a simplified
scenario in which a single energy arrival is considered at
the transmitter. This scenario is extended in [6], where two
energy arrivals at the transmitter node and the relay station
are considered. For this case, the authors derive transmission
policies to maximize the data transmitted to the receiver within
a deadline. An amplify-and-forward relay is considered in
[8] where two relaying protocols are proposed based on time-
switching and power-splitting architectures. The throughput
maximization problem when the transmitter harvests energy
multiple times and the decode-and-forward relay has only one
energy arrival is investigated in [11]. A similar scenario is
considered in [12]. However, in [12], the impact of a finite
data buffer at the relay is investigated. Multiple parallel relays
in a decode-and-forward EH two-hop scenario are investigated
in [9,10], where the authors formulate a convex optimization
problem to find the optimal offline transmission policy that
maximizes the throughput. In [13], an EH two-scenario with
a full-duplex amplify-and-forward relay is considered and the
authors propose a two-phase protocol for efficient energy
transfer and information relaying.

In [14]–[16], simultaneous wireless information and power
transfer in a two-hop scenario with multiple relays is consid-
ered. In [14], the authors assume randomly located relays and
analyze the performance of the system considering the impact
of the number of relays. In [15], the concept of distributed
space-time coding is applied to multiple relays which assist the
communication between the transmitter and the receiver, and
the authors in [16] aim at minimizing the transmission time
and propose a harvest-then-decode-and-forward algorithm at
the relays. Energy cooperation is introduced in [17] for the
EH relay, two-way and multiple access channels in order
to find offline energy management policies that maximize
the throughput. (R2.1) In [18], the throughput maximization
problem in an EH multi-hop scenario with full-duplex relays
is considered.

In [19]–[21], online approaches for EH two-hop scenarios
are considered. In this case, only statistical knowledge of the
system dynamics is assumed. In [19], a half-duplex amplify-
and-forward relay in an EH two-hop scenario is studied. The
authors assume statistical knowledge about the EH process
and find the transmission policy using discrete dynamic pro-
gramming. A similar scenario is considered in [20,21], where
a power allocation policy aiming at maximizing the long-
time average throughput is found using Lyapunov optimization
techniques. In [22], an EH multi-hop scenario with full-duplex
EH relays is investigated. Assuming Bernoulli distributed EH
processes, the authors design power control policies based on
the retransmission-index following an online approach.

In real scenarios, perfect non-causal knowledge or statistical
knowledge of the system dynamics is usually not available,
especially if non-stationary EH, data arrival and channel
fading processes are considered [23]. In such cases, learning
techniques, specifically reinforcement learning (RL), can be
exploited to find transmission policies that aim at maximizing

a given objective, e.g., the throughput. Learning techniques,
although promising for EH scenarios, have hardly been used
so far in EH two-hop scenarios [23]–[26]. In [24], a learning
approach for an EH two-hop scenario is considered where the
authors optimize the average delay of the packets sent by the
source in a scenario with multiple half-duplex EH relays. In
our previous work [23,25], a blind approach is considered,
and the two-hop communications scenario is separated into
two independent point-to-point scenarios. In this paper, we
overcome the limitation on the performance imposed by this
blind approach and propose the introduction of a signaling
phase in which the transmitter and the relay cooperate with
each other to observe the system state and to improve the
achievable throughput while taking into account both, the
energy required for transmission and the energy consumed
by the circuit of each of the nodes. A different problem
is considered in [26], where the authors optimize the relay
operation mode to maximize the throughput in a two-hop
scenario with an EH relay and a non-EH transmitter.

B. Contributions

We focus our work on EH two-hop communications. We
consider a realistic scenario in which the state of the system
is only partially and causally observable to the EH nodes.
This means, the proposed approach does not require previous
knowledge about the statistics of the EH, data arrival or
channel fading processes. In each time interval, each EH node
only knows its own previous and current states. The state
of a node consists of the values of its own parameters, i.e.,
the amount of incoming energy, the battery level, the data
buffer level and the channel gain for its own transmit channel.
Additionally, we investigate the case when only outdated
channel state information is available. To this aim, we leverage
the use of a channel predictor based on a Kalman filter in each
EH node in order to obtain a current estimate of the channel
gain. Furthermore, inspired by the information exchange in
wireless sensor networks [27], we propose a signaling phase
in which the EH nodes share information about their current
parameters in order to overcome the partial observability of
the system’s state. We are interested in a distributed solution
where each EH node finds its own transmission policy taking
into account its observation of the system’s state and the
knowledge obtained during the signaling phase. Considering
that the problem consists of two agents, the transmitter and the
relay, who should make simultaneous decisions to achieve a
common goal, i.e., decide on the transmit powers in order
to maximize the throughput, we model this scenario as a
Markov game. This is because Markov games provide a
framework to include multiple decision making agents with
interacting or competing goals [28]. Additionally, to find the
distributed transmission policies at the transmitter and at the
relay, we propose a cooperative multi-agent RL algorithm
termed cooperative SARSA. The use of RL is motivated by
the fact that complete non-causal knowledge is unavailable.
As a consequence, standard optimization techniques cannot
be used. To validate our proposed cooperative SARSA, we
derive convergence guarantees for the case when the EH nodes
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Fig. 1. Two-hop communication scenario with an EH trans-
mitter and an EH relay.

are able to observe the system’s state, i.e., when the channel
prediction and the transmission of the signaling are successful.
By means of a computational complexity analysis, we show
that the leading factor of the complexity of the proposed
cooperative SARSA increases only linearly with the number
of transmit power values the nodes can select. Moreover,
by numerical results we show that the performance of the
proposed algorithm has only a small degradation compared to
the offline case which requires complete non-causal knowledge
of the system’s state. Furthermore, we show that even when the
overhead caused by the signaling phase is taken into account,
cooperative SARSA outperforms other approaches that do not
consider cooperation among the EH nodes, and therefore do
not require a signaling phase.

The rest of the paper is organized as follows. In Sec. II, the
system model is presented. In Sec. III, the power allocation
problem for throughput maximization in the EH two-hop
communication scenario is formulated. The proposed cooper-
ative SARSA algorithm is described in Sec. IV. Convergence
guarantees and a computational complexity analysis of the
proposed algorithm are presented in Sec. IV-H and Sec. IV-H,
respectively. Numerical performance results are presented in
Sec. VI and Sec. VII concludes the paper.

II. SYSTEM MODEL

In this section, we describe the EH two-hop communication
scenario. A summary of all the considered parameters is given
in Table I. The scenario consists of three single-antenna nodes
N1, N2, and N3, as depicted in Figure 1, where the EH
transmitter N1 wants to transmit data to the non-EH receiver
N3. It is assumed that the link between N1 and N3 is weak
and the nodes cannot communicate directly. Therefore, N2

acts as an EH decode-and-forward relay in order to enable
the communication between N1 and N3.

In our scenario, N1 and N2 harvest energy from the environ-
ment and use it for data transmission. An amount of harvested
energy, denoted by E1,i and E2,i, is received by N1 and N2,
respectively, at the end of time interval i, i = 1, ..., I . The
harvested energy is stored in batteries with finite capacities
given by Bmax,1 and Bmax,2 for N1 and N2, respectively.
Furthermore, the battery levels B1,i and B2,i are measured
at the beginning of time interval i. For simplicity, the energy
E

Circ

1,i consumed by the circuit at N1 is assumed to be constant
for all the time intervals, i.e., ECirc

1,i = E
Circ

1
, 8i. Similarly, for

N2, ECirc

2,i = E
Circ

2
, 8i. However, the model can be extended

to consider a variable decoding cost at N2, as in [29].
A data arrival process is assumed at N1 in which an

amount M1,i of incoming data is arriving at N1 at the end

of each time interval i and it is stored in a finite buffer with
capacity Dmax,1. The data buffer level D1,i is measured at
the beginning of time interval i and indicates the amount of
data available for transmission. In the considered EH two-
hop scenario, the communication between N1 and N3 is as
follows. In each time interval i, N1 selects a transmit power
p
Tx

1,i to transmit data to N2 for a duration �⌧ of the time
interval, i.e., an amount ETx

1,i = �⌧pTx

1,i of energy is used for
data transmission. The value of the prelog factor � depends
on the relay’s transmission mode and it is defined as � = 1 if
N2 operates in full-duplex mode and � = 0.5 if it operates in
half-duplex mode.1 This definition accounts for the fact that
when the relay operates in full-duplex mode, the total duration
of the time interval is used for the transmission from N1 to
N2 and from N2 to N3. On the contrary, when half-duplex
is considered, we assume that one half of the time interval
is reserved for the transmission from N1 to N2 and the other
half is used for the transmission from N2 to N3. Note that
the operation mode of N2 is selected at the beginning of the
first time interval i = 1 and cannot be changed throughout the
operation, i.e., � is fixed for all time intervals. The throughput
R

DF

1,i is the amount of data received at N2 in time interval i.
When there is sufficient data in the data buffer of N1, RDF

1,i is
approximated using Shannon’s capacity formula as

R
DF

1,i = �W ⌧ log
2

 
1 +

g1,ip
Tx

1,i

�2

2

!
, (1)

where W denotes the available bandwidth, g1,i is the channel
gain for the link between N1 and N2 and �2

2
is the noise power

at N2. Otherwise, RDF

1,i is limited by the amount of data stored
in the data buffer. Additionally, note that for full-duplex it is
assumed that the relay is able to perfectly cancel the self-
interference caused by its transmission. The battery level at
N1 is updated at the beginning of each time interval as

B1,i+1 = min
�
Bmax,1, B1,i ��⌧pTx

1,i + E1,i � E
Circ

1

 
.

(2)
Similarly, the data buffer level at N1 is updated at the
beginning of each time interval as

D1,i+1 = min
�
Dmax,1, D1,i �R

DF

1,i +M1,i

 
. (3)

The EH relay N2 only forwards the data from N1 to N3

and it does not have any own data to transmit to the receiver.
Therefore, the data arrival process at N2 depends solely on the
data transmitted by N1. This means that the amount M2,i of
incoming data at N2, which arrives at the end of time interval
i, corresponds to the throughput RDF

1,i , i.e., M2,i = R
DF

1,i . The
received M2,i is stored in a finite data buffer with size Dmax,2

and the data buffer level D2,i is measured at the beginning of
each time interval i. Similar to the previous case, N2 selects
a transmit power p

Tx

2,i to use for the transmission of data to
N3 for a duration �⌧ of the time interval. The throughput
R

DF

2,i is the amount of data received at N3, measured in bits.
In case there is enough data available for transmission, RDF

2,i

1Note that the value of ECirc
2 depends on the operation mode of the relay

N2. In case N2 is a full-duplex relay, ECirc
2 additionally includes the energy

required for self-interference cancellation.
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TABLE I. Parameters associated to the EH two-hop communication scenario.

Parameter Description
G

en
er

al
i Index of the time interval
I Total number of time intervals
N1 EH transmitter node
N2 EH relay node
N3 Non-EH receiver node
⌧ Time interval duration
� Prelog factor depending on the relay’s transmission mode

En
er

gy

Bn,i Battery level of EH node Nn, measured at the beginning of time interval i
Bmax,n Battery capacity of EH node Nn

En,i Amount of harvested energy, received at the end of time interval i, by EH node Nn

ECirc

n,i Amount of energy consumed by the circuit of EH node Nn in time interval i
ETx

n,i Energy of the signal transmitted by EH node Nn in time interval i
Emax,n Maximum amount of energy that can be harvested by EH node Nn

pTx

n,i Transmit power used by EH node Nn in time interval i

D
at

a

Dmax,n Data buffer size of EH node Nn

Dn,i Data buffer level of EH node Nn, measured at the beginning of time interval i
Mn,i Amount of incoming data, arriving at the end of time interval i, at EH node Nn

RDF

n,i Amount of data transmitted from Nn to Nn+1 in time interval i

C
ha

nn
el gn,i Channel gain of the link between Nn and Nn+1

W Bandwidth
�2

n Noise power at Nn

is approximated using Shannon’s capacity formula as

R
DF

2,i = �W ⌧ log
2

 
1 +

g2,ip
Tx

2,i

�2

3

!
, (4)

where g2,i is the channel gain for the link between N2 and N3

and �
2

3
is the noise power at N3. Otherwise, RDF

2,i is limited
by the amount of data available in the data buffer. As done
for N1, the battery level and the data buffer level at N2 are
updated using (2) and (3), respectively, by replacing the index
n = 1 by n = 2. Additionally, N3 is assumed to be connected
to a fixed power supply and it is always available to receive
the transmitted data.

It is assumed that the transmitter side channel state informa-
tion is only causally known and could be outdated. This means
that at the beginning of time interval i, only the channel gains
up to time interval i�1 are known at the transmitter and at the
relay. Furthermore, it is assumed that the EH transmitter does
not know the channel gains associated to the link between the
EH relay and the receiver.

III. PROBLEM FORMULATION

In this section, the power allocation problem for the EH two-
hop scenario with a decode-and-forward relay is formulated.
Our goal is to find a transmission policy at N1 and at N2 that
maximizes the throughput, i.e., the amount of data transmitted
to N3. Considering the system model of Sec. II, the power
allocation problem is written as

⇣
p
Tx

n,i
opt

⌘

n,i
= argmax

{pTx

n,i, n={1,2},i={1,...,I}}

IX

i=1

R
DF

2,i (5a)

subject to
JX

i=1

�⌧pTx

n,i +
JX

i=1

E
Circ

n 
J�1X

i=1

En,i, (5b)

JX

i=1

En,i�
JX

i=1

�⌧pTx

n,i �
JX

i=1

E
Circ

n Bmax,n,

(5c)

JX

i=1

R
DF

n,i 
J�1X

i=1

Mn,i, (5d)

JX

i=1

Mn,i �
JX

i=1

R
DF

n,i  Dmax,n, (5e)

p
Tx

n,i � 0, (5f)
n = 1, 2, i = 1, ..., I, J = 1, ..., I, (5g)

where R
DF

1,i and R
DF

2,i are defined in (1) and (4), respectively,
(5b) is the energy causality constraint that ensures that only
the energy stored in the battery can be used, (5c) is the battery
overflow constraint, (5d) is the data causality constraint that
ensures that only data already stored in the data buffers can
be transmitted and (5e) is the data buffer overflow constraint
for N1 and N2, respectively. By examining the problem in
(5), it can be seen that perfect non-causal knowledge of the
system’s state for all time intervals i = 1, ..., I is required to
find the optimal solution. The amount of data to be transmitted
by N2 depends on its own EH, data arrival and channel fading
processes as well as the ones associated to N1. Moreover, N1

should adapt its transmission based on the EH and channel
fading processes associated to N2 to avoid data buffer overflow
situations. As a result, the state of each EH node affect the
power allocation policy of the other.

IV. MULTI-AGENT RL FOR EH TWO-HOP
COMMUNICATIONS WITH PARTIALLY OBSERVABLE

SYSTEM STATE

A. Cooperation in multi-agent RL

As mentioned before, both N1 and N2 have only causal,
and possibly outdated, knowledge regarding their own state.
While En,i, Bn,i and Dn,i, n = {1, 2}, are causally known
by the corresponding node Nn, only outdated channel state
information is available at N1 and N2. This means, at time
interval i, we know the values of En,j , Bn,j and Dn,j , 8j  i,
whereas for the channel gains gn,j , only the values up to
time interval i � 1 are assumed to be known. As a result,
the only outdated parameters are the channel gains. However,
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knowledge about the system’s state is required at both nodes
in order to achieve optimum performance. To this aim, in
this section we propose a cooperative multi-agent learning
approach, termed cooperative SARSA, to find power allocation
policies at N1 and at N2 that aim at maximizing the amount of
data transmitted to N3. Note that in addition to the challenge
posed by the partial observability of the system’s state, the
nodes might not be able to observe the decision made by
the other node before making their own, e.g., if a full-duplex
relay is considered. For this reason, in the following we
focus on a full-duplex decode-and-forward relay. Note that
the same approach can be used for a half-duplex relay. The
only difference is that the nodes will not make simultaneous
decisions.

Our proposed cooperative SARSA includes mechanisms to
overcome the limitation that N1 and N2 are only able to
partially observe the system’s state. Specifically, we consider
that the channel state information might be outdated and use
a channel predictor based on a Kalman filter in each EH
node in order to obtain a current estimate of the channel
gain. Furthermore, we propose a signaling phase in which
the EH nodes cooperate which each other by exchanging
information about their current state. Based on their knowledge
of their own state and the knowledge they have obtained during
the signaling phase, N1 and N2 find their own transmission
policies.

B. Markov game for multi-agent learning

In this section, we model the power allocation problem in
the EH two-hop communication scenario as a Markov game.
This model is motivated by the fact that in the cooperative
SARSA approach, N1 and N2 decide on the transmit power to
use based on the system state, i.e., the value of the parameters
associated to both of them. Such decision-making situations,
in which more than one agent is involved, can be modeled as a
Markov game. Markov games are a generalization of Markov
decision processes (MDPs) to the case when multiple agents,
which make decisions based on observations of a common
environment, are considered [28].

A Markov game of n players is defined by the tuple
hS,A1, ...,An,P,R1, ...,Rni. The set S corresponds to all
the possible states in which the system can be, the sets
A1, ...,An contain the actions of each player, P is the
transition model and R1, ...,Rn are the reward functions
for each player [30]. In our case, the players are N1 and
N2. Therefore, n = 2 is considered. Each state Si 2 S
corresponds to the system state and it is defined as the tuple
hE1,i, E2,i, B1,i, B2,i, D1,i, D2,i, g1,i, g2,ii. Note that the set
S comprises an infinite number of states Si because the
parameters can take values in a continuous range. The sets
An of actions are formed by the possible transmit power
values p

Tx

n,i that can be selected. As in practical settings
[31], we define A1 and A2 for N1 and N2, respectively,
as finite sets given by p

Tx

n,i 2 An = {0, �, 2�, ..., Bmax,n},
where � is the step size. The transition model P is defined as
P : S⇥A1⇥A2 ! S and it specifies that, given state Si, the
system reaches state Si+1 after the EH nodes have selected

p
Tx

1,i 2 A1 and p
Tx

2,i 2 A2, i.e., Si+1 = P(Si, p
Tx

1,i , p
Tx

2,i ). The
reward function Rn gives the immediate reward obtained by
Nn when p

Tx

n,i is selected while being in state Si. In our case,
the nodes aim at maximizing the throughput, i.e., the amount
of data received by N3. Consequently, N1 and N2 share the
same objective, thus R1 = R2 = R. In each time interval,
the reward is calculated using (4).

Similar to MDPs, in the Markov game formulation we need
to find the transmission policies ⇡n, l 2 {1, 2} for N1 and N2

which correspond to the transmit powers to be used for data
transmission in each time interval. Each ⇡n, is a mapping
from a given system state Si to the action p

Tx

n,i that should
be selected, i.e. pTx

n,i = ⇡n(Si), and it is evaluated using the
so-called action-value function Q⇡n(Si, p

Tx

n,i) [32]. However,
as Nn has only causal knowledge about the system state, it
does not know how much energy will be harvested, how much
data will arrive or what the channel gain will be in future time
intervals. We consider this uncertainty by defining the discount
factor of future rewards �, 0  �  1, which quantifies the
preference of achieving a larger throughput in the current time
interval over future ones. Our goal is to select pTx

n,i, 8n, i, in
order to maximize the expected throughput

R
DF = lim

I!1
E
"

IX

i=1

�
i�1

R
DF

2,i

#
. (6)

C. Action-value function update

The proposed cooperative SARSA algorithm is based on
the RL algorithm SARSA [32]. Therefore, to facilitate its
description, in this section we first consider the single-agent
case by assuming that an ideal central entity has, in each
time interval, perfect knowledge about Si and uses RL to find
the combined policy ⇧ = (⇡1,⇡2). Next in this section, we
describe the case when the two EH nodes are considered.

The policy ⇧ can be evaluated using the action-value
function Q⇧(Si, P

Tx

i ), with P
Tx

i = (pTx

1,i , p
Tx

2,i ). However,
this action-value function cannot be calculated before the data
transmission starts because only causal knowledge is available
at the nodes and the statistics of the EH, data arrival and
channel fading processes are unknown. As a result, the RL
algorithm builds an estimate of the action-value function Q⇧

using SARSA as

Q⇧

i+1
(Si, P

Tx

i ) =Q⇧

i (Si, P
Tx

i )(1� ⇣i)

+ ⇣i

⇥
R

DF

i �Q⇧

i (Si+1, P
Tx

i+1
)
⇤

(7)

[32], where ⇣i is a small positive fraction which influences the
learning rate.

In our scenario, the nodes have a common objective, which
is to maximize the expected throughput given in (6), and
in every time interval they make independent decisions that
aim at achieving this objective taking into account the system
state. However, as the nodes do not know in advance the
transmit power which will be selected by the other node,
they cannot build an estimate of the centralized action-value
function Q⇧(Si, P

Tx

i ). Consequently, instead of the action-
value function Q⇧(Si, P

Tx

i ), in the proposed cooperative
SARSA algorithm, each node builds an estimate of its own
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action-value function q⇡n
n (Si, p

Tx

n,i), which is termed the local
action-value function. In order to guarantee the convergence of
the proposed learning approach, the local action-value function
q⇡n
n (Si, p

Tx

n,i) is designed such that it is a projection of the
centralized Q⇧(Si, P

Tx

i ) onto the corresponding state-action
space (Si, p

Tx

n,i). For this purpose, the EH nodes will only
update their current estimate of q⇡n

n (Si, p
Tx

n,i) when the value
of the update is larger than the current one. This ensures
that the local action-value policy is only updated when higher
rewards are achieved. The relation between Q⇧(Si, P

Tx

i ) and
q⇡n
n (Si, p

Tx

n,i) and its effect on the convergence guarantees
of cooperative SARSA is presented in detail in Sec. IV-H.
Furthermore, the proposed updating rule for q⇡n

n (Si, p
Tx

n,i) is
given by

q⇡n
n,i+1

(Si, p
Tx

n,i) = max
�

q⇡n
n,i(Si, p

Tx

n,i),

(1� ⇣i)q⇡n
n,i(Si, p

Tx

n,i)+

⇣i

⇥
R

DF

i + �q⇡n
n,i(Si+1, p

Tx

n,i+1
)
⇤ 

.

(8)

D. Linear function approximation

The update of the action-value function, presented in Sec.
IV-C, does not take into account the fact that in our scenario,
the number of states is infinite. Therefore, in this section we
exploit the use of linear function approximation for the repre-
sentation of the action-value function when an infinite number
of states are considered. With linear function approximation,
q⇡n
n (Si, p

Tx

n,i) is approximated as the linear combination of a
set of F feature functions. Each feature function ff (Si, p

Tx

n,i),
f = 1, ..., F , maps the state-action pair (Si, p

Tx

n,i) onto a
feature value. Moreover, for a given pair (Si, p

Tx

n,i), the feature
values are collected in the vector fn 2 RF⇥1 and the
contribution of each feature is included in the vector of weights
wn 2 RF⇥1. Using linear function approximation, the local
action-value function qn is approximated as

q̂⇡n
n (Si, p

Tx

n,i,wn) = fTnwn ⇡ q⇡n
n (Si, p

Tx

n,i). (9)

When SARSA with linear function approximation is
applied, the updates of the local action-value function
q⇡n
n (Si, p

Tx

n,i) are performed on the weights wn because
they control the contribution of each feature function on
q̂⇡n
n (Si, p

Tx

n,i,wn). In every time interval, the vector wn is
adjusted in the direction that reduces the error between
q⇡n
n (Si, p

Tx

n,i) and q̂⇡n
n (Si, p

Tx

n,i,wn), following the gradient
descent approach presented in [32]. Considering the update
for q⇡n

n (Si, p
Tx

n,i) given in (8), we propose to update wn as

wn,i+1 =wn,i + max
n
0, ⇣i

h
R

DF

i + � fTnwn,i � fTnwn,i

i
fn
o
.

(10)

E. Partially observable states

In this section, we describe the mechanisms proposed to
overcome the fact that the EH nodes are only able to partially
observe the system state. Specifically, we describe the channel
predictor based on a Kalman filter which is used by every EH
node Nn to estimate its own channel coefficients hn,i, with

gn,i = |hn,i|2, when only outdated channel state information
is available, and the signaling phase in which N1 and N2

exchange the current values of their own parameters in order
to be able to observe the system state.

Channel predictor: To obtain channel state information at
the receiver, a known symbol xn,i is assumed to be transmitted
from Nn to Nn+1. The received signal yn+1,i at Nn+1 in
the low-pass domain is yn+1,i = xn,ihn,i + wn+1,i, where
wn+1,i accounts for the receiver noise and interference, and
has variance �2. This received signal yn+1,i is used by Nn+1

to determine the channel coefficient hn,i. However, in order to
have channel state information at N1 side, it is assumed that
Nn+1 feeds back the channel coefficients to Nn. Since these
channel coefficients might be outdated, channel prediction can
be exploited at N1 to determine an estimate of hn,i. For this
purpose, the past channel coefficients hn,j , j < i, which have
been fed back by Nn+1 are used.

The magnitude |hn,i| of the channel coefficient hn,i is
assumed to follow a Rayleigh distribution and the Jakes’ model
[33] is used to model the autocorrelation function ACF of the
channel coefficients [34,35] as

ACF = J0(2⇡fD,max⌧), (11)

where J0 is the zeroth order Bessel function of the first
kind and fD,max is the maximum Doppler frequency. As
extensively reported in literature [34]–[36], for the channel
prediction at each Nn, the dynamics of the channel coefficient
are modeled as an autoregressive process with order o and
parameters cn,1, ..., cn,o, n. Specifically, hn,i is modeled as

hn,i = �
oX

j=1

cn,jhn,i�j +  nzn,i, (12)

where zn,i is additive white Gaussian noise. The parameters
cn,1, ..., cn,o, n are calculated at Nn by means of solv-
ing the Yule-Walker equation considering the ACF in (11).
Considering yn,i and (12), the state-space model for hn,i

can be built. For this purpose, let us define the vectors
hn,i = [hn,i, hn,i�1, ..., hn,i�o]T, an = [ n, 0, ..., 0] and
xn,i = [xn,i, 0, ..., 0] such that

hn,i = Cnhn,i�1 + anvn,i, (13)
yn+1,i = xn,ihn,i + wn+1,i (14)

where vn,i is white Gaussian noise and

Cn =

0

BBB@

�cn,1 �cn,2 · · · �cn,o

1 0 · · · 0
...

...
. . .

...
0 · · · 1 0

1

CCCA
. (15)

Considering (14), each Nn can estimate its own channel
coefficient in time interval i using the Kalman filter described
in Algorithm 1. The algorithm is initialized by considering
that no past channel coefficients are available, i.e., hn = 0o,
where 0o is a vector of length o full of zeros. Note that in
Algorithm 1, Io represents the identity matrix of size o and
aHn is the conjugate transpose of vector an. Furthermore, the
estimate ĥn,i of the channel coefficient of Nn in time interval
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Algorithm 1 Kalman filter based channel predictor
1: initialize hn,1 = 0o and set Mn,1 = Io
2: for every time interval i = 1, ..., I do
3: set Mn,i = CnMn,i�1C

H

n + ana
H

n
4: set ⌥ = xn,iMn,ix

H

n,i + �2

5: calculate the Kalman gain kn,i = Mn,ix
H

n,i/⌥
6: update hn,i = Cnhn,i�1 + (yn,i � xn,iCn,ihn,i�1)kn,i

7: update Mn,i = (Io � kn,ixn,i)Mn,i

8: obtain ĥn,i = [1, 0, ..., 0]hn,i

9: end for

i is given by ĥn,i = [1, 0, ..., 0]hn,i.
Signaling: The purpose of the signaling phase is to allow

the nodes to exchange the value of their current parameters
in order to observe the current system state Si. Thus, we
consider a transmission scheme which consists of a signaling
phase and a data transmission phase. During the signaling
phase of duration ⌧Sig, N1 transmits hE1,i, B1,i,D1,ii and N2

transmits hE2,i, B2,i, ĝ2,i, D2,ii, where ĝn,i = |ĥn,i|2, for
n = 1, 2. Note that N1 does not transmit ĝ1,i because h1,i,
and consequently g1,i, are already known at N2. During the
data transmission phase of duration ⌧Data = ⌧ � ⌧

Sig, the EH
nodes transmit the data stored in their data buffers. To facilitate
the coordination among the nodes, we keep ⌧Sig fixed and in
each time interval i, calculate the power pSign,i required for the
transmission of the signaling. In the following, we describe
how to compute p

Sig

n,i .
Let un,i be a variable that represents any parameter asso-

ciated to Nn, i.e., un,i 2 {En,i, Bn,i, ĝn,i, Dn,i}. Then, the
number Zun,i of bits required for the transmission of each un,i

depends on the type of quantizer that is used. For simplicity,
we consider a uniform quantizer. Consequently, Zun,i depends
on the tolerable quantization error equant,un,i , the maximum
value Vmax,un,i and the minimum value Vmin,un,i each un,i

can take. The number Zun,i of bits is calculated as

Zun,i =

⇠
log

2

✓
Vmax,un,i � Vmin,un,i

equant,un,i

◆
� 1

⇡
, (16)

where d·e is the rounding operation to the next integer value
greater than or equal to the evaluated number. Since Vmax,un,i

and Vmin,un,i are assumed to be fixed for each un,i, the number
of bits required for signaling is constant for all the time
intervals and it is given by Zn =

P
8un,i

Zun,i . Given Zn,
the power p

Sig
n,i required to transmit the signaling from Nn to

Nm is

p
Sig
n,i =

�
2

gn,i

⇣
2

Zn
W⌧Sig � 1

⌘
. (17)

It should be noted that the amount of energy ⌧SigpSig
n,i used

by each node for the transmission during the signaling phase
is deducted from the battery level Bn,i and the rest is available
for data transmission. Moreover, if for any of the EH nodes the
energy in the battery is lower than the value required to send
the signaling and the tolerable quantization error is fixed, then
the number of parameters sent during the signaling phase is
reduced.2 The order in which this reduction is done is given
by the impact each parameter has on the feature functions

2Another approach to deal with cases when the energy in the battery is not
enough to send the signaling, is to decrease the quality of the quantization.

described in Sec. IV-F and the approximation of the action-
value function. First, the transmission of En,i is skipped. If
the energy in the battery is not sufficient, then the transmission
of Dn,i is skipped as well. Finally, if the energy is still not
sufficient, also the transmission of Bn,i is skipped. When
Nn cannot transmit the signaling, Nm, m 2 {1, 2}, m 6= n,
assumes that Nn has harvested an amount of energy equal to
its own, i.e., En,i = Em,i, and that the signaling was not sent
because the battery level of Nn is zero, i.e., Bn,i = 0. Addi-
tionally, since there is no knowledge about the channel gain,
it is assumed that ĝn,i = ĝn,i�1. For the data buffer level of
node Nn, it is assumed that Dn,i = max{0, Dn,i�1�R

DF

n,i�1
},

where R
DF

n,i�1
is the number of bits transmitted by Nn in time

interval i� 1.

F. Feature functions

The feature functions used for the linear function approx-
imation exploit the characteristics of the offline solution for
the problem in (5). They are defined considering the EH,
data arrival and channel fading processes at the EH nodes,
as well as the finite size of the batteries and data buffers. For
the proposed cooperative SARSA, we consider F = 6 binary
feature functions. The first four feature functions are defined
in our previous work [23,25], and we reproduce them here for
readability. The first feature function f1(Si, p

Tx

n,i) takes into
account the energy causality and battery overflow constraints
in (5b) and (5c), respectively. It indicates if a given p

Tx

n,i avoids
the overflow of the battery. Additionally, it evaluates if the
given p

Tx

n,i fulfills the energy causality constraint.

f1(Si, p
Tx

n,i) =

8
><

>:

1, if (B0
n,i  Bmax,1)^

(⌧pTx

n,i + E
Circ

n  Bn,i)

0, else,
(18)

where ^ represents the logical conjunction operation and

B
0
n,i = Bn,i + En,i � ⌧p

Tx

n,i � E
Circ

n . (19)

The second feature function f2(Si, p
Tx

n,i) addresses the power
allocation problem by leveraging a water-filling approach that
considers the current channel gain and the mean value ḡn,i of
the past channel gains. The use of water-filling is motivated
by the water-filling-like characteristic of the offline approach
in the EH single hop scenario [37]. As described in [23,25],
the water level ⌫n,i is calculated as

⌫n,i =
1

2

✓
Bn,i � E

Circ

n

⌧Data
+

En,i

⌧Data
+ �

2

✓
1

ḡn,i
+

1

gn,i

◆◆
,

(20)
and the power pTx

n,i given by the water-filling solution is given
by

p
WF

n,i = min

⇢
B1,i � E

Circ

1

⌧Data
,max

⇢
0, ⌫i �

�
2

g1,i

��
. (21)

As p
tx

n,i has to be selected from the set An, the second feature
function f2(Si, p

Tx

1,i ) is written as

f2(Si, p
Tx

n,i) =

8
<

:
1, if �

j
pWF

n,i

�

k
= p

Tx

n,i

0, else,
(22)
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where bxc is the rounding operation to the nearest integer less
than or equal to x and � is the step size used in the definition
of the action set A.

The third feature function f3(Si, p
Tx

n,i) handles the case when
En,i � Bmax,n. From (5c), it is clear that in such situations,
battery overflow is unavoidable. Therefore, the battery should
be depleted in order to minimize the energy losses due to
battery overflow. f3(Si, p

Tx

n,i) is given by

f3(Si, p
Tx

n,i) =

8
>><

>>:

1, if (En,i � Bmax,n)^⇣
p
Tx

n,i = �bBn,i�ECirc

n
⌧� c

⌘

0, else.

The fourth feature function f4(Si, p
Tx

n,i) addresses the data
causality and data buffer overflow constraints in (5d) and (5e),
respectively. For its definition, let R

(pTx

n,i)

n,i be the throughput
that would be achieved if p

Tx

n,i is selected. Then, f4(Si, p
Tx

n,i)

indicates if R
(pTx

n,i)

n,i fulfils both, the data causality and the data
buffer overflow constraints. f4(Si, p

Tx

n,i) is defined as

f4(Si, p
Tx

n,i) =

8
>>>><

>>>>:

1, if
✓
R

(pTx

n,i)

n,i  Dn,i

◆
^

✓
Dn,i +Mn,i �R

(pTx

n,i)

1,i  Dmax,n

◆

0, else.

Additionally, we propose two new feature functions to take
into account the knowledge obtained during the signaling
phase. Similar to f4(Si, p

Tx

n,i), these feature functions consider
the constraints in (5d) and (5e). The fifth feature function
f5(Si, p

Tx

n,i) takes the available information Nn has about Nm,
n,m 2 {1, 2}, n 6= m into consideration and uses it to
avoid data buffer overflows at N2. We focus on the data
buffer overflow of N2 because the data buffer level D2,i

depends on the throughput of N1 and N2. On the contrary,
Dn,1 depends only on the throughput of N1 and its data
arrival process which we cannot control. Each Nn determines
an estimate of the power p̄

Tx

m,i to be selected by the other
node Nm, n 6= m using the water-filling procedure in (20)-
(22). With p̄

Tx

m,i, the corresponding throughput R
(p̄Tx

m,i)

m,i is
calculated and it is compared to the data buffer level Dm,i.
If R

(p̄Tx

m,i)

m,i > Dm,i, then p̄
Tx

m,i is scaled down to the minimum
power value p̄

Tx

m,i 2 Am that can be used to deplete the data
buffer at Nm. The feature function is then defined for n = 1
as

f5(Si, p
Tx

n,i) =

8
>>>>>><

>>>>>>:

1, if
✓
R

(pTx

n,i)

n,i +D2,i �R
(p̄Tx

m,i)

m,i  Dmax,2

◆

^
✓
R

(pTx

n,i)

n,i +D2,i �R
(p̄Tx

m,i)

m,i � 0

◆
,

n = {1, 2}, n 6= m

0, else.

In the case n = 2, the indices n and m should be interchanged.
The sixth feature function f6(Si, p

Tx

n,i) aims at the depletion
of the data buffers as a preventive measure against data buffer
overflows. With this feature function, we push for the selection

Algorithm 2 Cooperative SARSA
1: initialize �, ⇣, ✏ and wn

2: predict own channel coefficient . Sec. IV-E
3: exchange parameters and observe state Si . Sec. IV-E
4: select pTx

n,i using the ✏-greedy policy . Eq. 24
5: for every time interval i = 1, ..., I do
6: transmit using the selected pTx

n,i

7: calculate corresponding reward RDF

2,i . Eq. (4)
8: predict own channel coefficient . Sec. IV-E
9: exchange parameters and observe state Si+1 . Sec. IV-E

10: select next pTx

n,i+1
using the ✏-greedy policy . Eq. (24)

11: update wn . Eq. (10)
12: set Si = Si+1 and pTx

n,i = pTx

n,i+1

13: end for

of higher power values that will reduce the probability of data
buffer overflow situations. f6(Si, p

Tx

n,i) is defined as

f6(Si, p
Tx

n,i) =

8
><

>:

1, if pTx

n,i = argmin
p̄Tx

n,i2An

⇢
Dn,i �R

(p̄Tx

n,i)

n,i

�

0, else.
(23)

G. Action selection policy

To select pTx

n,i, each node follows the ✏-greedy policy [32],
i.e., with probability 1�✏, node Nn selects the transmit power
p
Tx

n,i that maximizes q̂⇡n
n (Si, p

Tx

n,i) for a given state Si. This
means,

Pr

"
p
Tx

n,i = max
pTx

n,i2An

q̂⇡n
n (Si, p

Tx

n,i)

#
= 1�✏, 0 < ✏ < 1. (24)

Furthermore, with probability ✏, Nn will randomly select a
transmit power value from the set An. This method provides
a trade-off between the exploration of new transmit power
values and the exploitation of the known ones [32].

H. Cooperative SARSA algorithm

The proposed cooperative SARSA algorithm is summarized
in Algorithm 2. Note that this algorithm is run at both, N1 and
N2. First, each Nn initializes the values for the discount factor
�, the learning rate ⇣, and the probability ✏ (line 1). Then,
the EH node predicts its own channel coefficient (line 2) and
exchanges its parameters En,i, Bn,i, Dn,i, gn,i during ⌧Sig in
order to observe Si (line 3). According to Si and using the
✏�greedy policy, the node selects its own p

Tx

n,i (line 4). After
the data transmission phase, the node calculates the obtained
reward (line 7), predicts its own next channel coefficient (line
8), and exchanges its updated parameters during the next
signaling phase in order to observe the next state Si+1 (line 9).
Each node selects the new p

Tx

n,i+1
using the ✏�greedy policy

and updates its weights wn (lines 10-11). The same procedure
is repeated in every time interval for as long as N1 and N2

are operative.

V. ANALYSIS OF COOPERATIVE SARSA
A. Convergence guarantees

In this section, we provide convergence guarantees for the
proposed cooperative SARSA algorithm for the case when the
EH nodes are able to perfectly observe the current system
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state, i.e., when the signaling is successfully sent. Furthermore,
as the EH, data arrival and channel fading processes might
be non-stationary, we consider a constant learning rate ⇣i to
ensure that the new obtained rewards are considered in the
learning process given by the update of (8) [32]. Inspired
by the work of [38], we show that the local action-value
function q⇡n

n (Si, p
Tx

n,i) is a projection of the centralized action-
value function Q⇧(Si, P

Tx

i ) onto the corresponding state-
action space (Si, p

Tx

n,i). This means, the use of the local
action-value function q⇡n

n (Si, p
Tx

n,i) leads to the selection of
the transmit power that maximizes the throughput, i.e., the one
that would be selected if the centralized action-value function
Q⇧(Si, P

Tx

i ) were available.
Proposition 1. Consider an n-player Markov game, which is
defined by the tuple hS,A1, ...,An, T ,R1, ...,Rni and where
the nodes have the same reward function R1 = ... = Rn = R,
R � 0. For this game Q⇧

i (Si, P
Tx

i ) and q⇡n
n,i(Si, p

Tx

n,i) are
the values of the centralized and local action-value func-
tion in time interval i, respectively. Moreover the values
of Q⇧

i (Si, P
Tx

i ) and q⇡n
n,i(Si, p

Tx

n,i) are updated in each time
interval using (7) and (8), respectively, and by considering
⇣i = 1. Let P (l)

i bet the l
th element in P

Tx

i which corresponds
to the action of player n in time interval i according to
the centralized policy ⇧. Then, for such Markov game, the
equality

q⇡n
n,i(Si, p

Tx

n,i) = max
PTx

i =(pTx

1,i,...,p
Tx

n,i)

P (l)
i =pTx

n,i

Q⇧

i (Si, P
Tx

i ), (25)

holds for any player n, any Si, and any individual action p
Tx

n,i

in time interval i.

Proof. As in [38], the proof is done by induction on i. At
i = 1, no reward has been obtained. Therefore, Q⇧ and q⇡n

n are
zero for every state S1 2 S and p

Tx

n,1 2 An, n 2 {1, ..., n} and
(25) holds. For arbitrary i, (25) holds for any pair (Sj , p

Tx

m,j),
Sj 6= Si, pTx

m,j 6= p
Tx

n,i and n 6= m, because the updates in (7)
and (8) are only performed on the particular pair (Si, p

Tx

n,i).
Now, to prove (25) for the pair (Si, p

Tx

n,i), we include the right
side of (25) in the update of q⇡n

n,i(Si, p
Tx

n,i) in (8) as

q⇡n
n,i+1

(Si, p
Tx

n,i) = max

8
>><

>>:
max
PTx

i

P (l)
i =pTx

n,i

Q⇧

i (Si, P
Tx

i ),

Ri + �max
PTx

i+1

Q⇧

i (Si+1, P
Tx

i+1
)

)
.

(26)

By considering the equality max{f(x)+ a} = a+max{f(x)},
(26) can be rewritten as shown in (26). From (7), it is clear that
the second term on the right side of (26) corresponds to the
centralized action-value function Q⇧

i+1
(Si, P

Tx

i ). Therefore,
assuming enough exploration has already been made such that
P

Tx

i+1
is selected by acting greedily with respect to Q⇧

i , we
can rewrite (26) as in (27). Now, by expanding the term on
the right side of (27), we obtain the expression in (28). The
first term on the right side of (28) is equal to Q⇧

i+1
(Si, P

Tx

i )

because for PTx

j 6= P
Tx

i there is no update. The second term is
always smaller than or equal to Q⇧

i+1
(Si, P

Tx

i ) because, as the
rewards are always greater than or equal to zero, Q⇧(Si, P

Tx

i )
is monotonically increasing. With this in mind, q⇡n

n,i(Si, p
Tx

n,i)
is then written as in (29).

B. Computational complexity analysis

In this section, we evaluate the computational complexity of
one iteration of the proposed cooperative SARSA algorithm.
For this purpose, we use the O(·) notation. By examining Al-
gorithm 2, it is clear that the most computationally demanding
tasks are the estimation of the channel coefficients (Lines 2
and 7), the selection of the transmit power pTx

n,i (Lines 3 and 8)
and the update of wn (Line 9). The complexity of the Kalman-
filter based channel estimator scales as O(o3) [39], where o is
the order of the filter. Furthermore, for the selection of p

Tx

n,i,
the ✏-greeedy policy is considered. In this case, the highest
complexity is due to the calculation of q⇡n(Si, p

Tx

n,i) for all
the possible actions and the selection of the p

Tx

n,i that leads
to the maximum q⇡n(Si, p

Tx

n,i). The computational complexity
for the calculation of q⇡n(Si, p

Tx

n,i) is O(|A|F ) while the
selection of the maximum value scales as O(|A|). Lastly,
the update of wn using (10) has a complexity of O(F 2).
As in our model o is fixed, the computational complexity
of one iteration of the algorithm scales linearly with |A|
and polynomially with the number of feature functions F

as O(2|A|F + F
2). In our proposed cooperative SARSA,

F = 6 and usually |A| >> F , e.g., |A| ⇡ 100 when a step
size � = 2% is considered. This means, the leading factor
in the computational complexity of the proposed cooperative
SARSA is |A|. The extra factor 2F in the expression of the
complexity, which is caused by the use of the linear function
approximation, is the price to be paid for the improvement in
the performance compared to reference schemes. An additional
advantage of the iterative nature of our proposed cooperative
SARSA is that it reduces the memory requirements on the
system compared to traditional learning approaches. Note that
even though a continuous state is considered, the use of linear
function approximation causes that only the vector of weights
needs to be stored in addition to the vector of features used
to describe the state in time interval i.

VI. PERFORMANCE EVALUATION

In this section, we present numerical results for the evalua-
tion of the proposed cooperative SARSA. For the simulations,
the parameters listed in Table II are considered, unless it is
otherwise specified.

It is assumed that En,i at time interval i is taken from a
uniform distribution with maximum value Emax,n. We consider
solar energy as our EH source with an average power density
⇢ = 10mW/cm2 and an EH panel size ⌦ = 16cm2 [3].
Consequently, Emax,n = 2⇢⌦⌧ .

We define the average signal to noise ratio (SNR), denoted
by �, as the ratio between the average power of the received
signal and the noise at the receiver as � = ⇢⌦ḡn

�2 = 5dB,
where ḡn is the average channel gain on the link between Nn

and Nn+1. The channel coefficients are modeled as complex
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Gaussian processes using the model described in [40]. To
compare the performance of the proposed cooperative SARSA,
we consider the following reference schemes:

• Offline optimum: It assumes that a central entity has
perfect non-causal knowledge of the EH, data arrival
and channel fading processes and solves the optimization
problem in (5).

• No-Cooperation Learning [25]: This approaches assumes
the nodes have only causal knowledge of their own states.
No cooperation between the nodes is exploited and each
node aims at maximizing its own throughput.

• Centralized Learning: Using the signaling phase to ob-
serve the system state, a centralized RL problem is
considered in which N2 decides jointly on the transmit
powers of N1 and N2. Note that this approach also con-
siders the use of Kalman filter based channel estimators
at the nodes in order to obtain an estimate of the current
channel coefficients.

• Hasty policy: This approach depletes the battery of N1

in each time interval to transmit the maximum possible
amount of data to N2. At N2, the policy aims at depleting
the data buffer by selecting the maximum transmit power
value that fulfills the data causality constraint.

In Figures 2(a) and 2(b), we compare the average sum
throughput, i.e., the amount of data received by N3, measured
in bits, for different values of the fraction ⌧

Sig
/⌧ of the

duration of the time interval assigned for the signaling phase,
considering an infinitely full data buffer at N1. In this case, we
have reduced the number of time intervals to I = 100 in order
to be able to calculate the offline optimum as a reference for
the case when E

Circ

n = 0. Moreover, the offline optimum, no-
cooperation learning and hasty policy approaches are depicted
with dashed lines because they do not consider a signaling
phase and use the complete duration ⌧ of the time interval for
the transmission of data. Consequently, they are only defined
for the value ⌧Sig/⌧ = 0. Figure 2(a) considers that ECirc

n = 0
and as expected, the largest throughput is achieved by the
offline optimum approach which provides the upper bound
of the performance assuming perfect non-causal knowledge
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TABLE II. Simulation set-up.

Parameter Value Description
G

en
er

al

equant,un,i 1% Quantization error
I 1000 Number of time intervals
T 1000 Number of realizations
o 2 Order of the autoregressive process
⌧ 10ms Time interval duration

⌧Sig 0.1ms Signaling phase duration

En
er

gy

Bmax,n &Emax,n Battery capacity of EH node Nn

ECirc

n 1mJ Energy consumed by the circuit of EH node Nn

⇢ 10mW/cm2 Power density of the EH source
& 5 Battery size factor for EH nodes Nn

⌦ 16cm2 Size of EH panel

D
at

a

d 10 kbit Packet size
Dmax,1 50kbits Data buffer size of EH node N1

Dmax,2 W⌧ log
2
(1 + �) Data buffer size of EH node N2

� 10 Average number of packets arriving per time interval

C
ha

nn
el f0 2.4 GHz Carrier frequency

W 1 MHz Bandwidth
↵ 3 Path loss exponent
� 5dB Average SNR per link

Le
ar

ni
ng

� 0.9 Discount factor
� 2% Step size
✏ 1/i Exploration probability
⇣ 1/i Learning rate

of the system dynamics. The achieved throughput of the
cooperative SARSA and the centralized learning depends on
the time assigned for the signaling. For ⌧Sig/⌧ < 15%, the
cooperative SARSA outperforms the other approaches which
also consider only causal knowledge. The reason for this
improvement is that by including the signaling phase, N1 and
N2 overcome the partial observability of the system state and
are able to learn a transmission policy that adapts to the battery
levels, data buffer levels and channel gains of both nodes.
Moreover, the cooperative SARSA outperforms the centralized
approach because in a distributed solution, a smaller action
space needs to be considered, which increases the learning
speed. In Figure 2(a), the largest throughput of the cooperative
SARSA is achieved at approximately ⌧

Sig
/⌧ = 0.3%. For

⌧
Sig

/⌧ < 0.3%, the throughput is reduced because, as shown
in (17), the relation between ⌧Sig and p

Sig
n,i required to transmit

the signaling is not linear and the smaller ⌧Sig, the over-
proportionally larger pSig

n,i. As pSig
n,i increases, the probability of

not having enough energy in the battery to fulfill this require-
ment increases. Consequently, the nodes do not have enough
energy to transmit during the signaling phase and to exchange
their causal knowledge. When ⌧

Sig
/⌧ increases to values

beyond 0.3%, the achieved throughput slowly decreases. Even
though for increasing values of ⌧Sig/⌧ , the EH nodes have
a longer signaling phase to exchange their causal knowledge,
and can therefore use less power for the transmission of the
signaling and save energy for data transmission, less time is
left for the transmission of data. As a result, the power required
to transmit a certain amount of data increases.

In Figure 2(b), the energy E
Circ
n consumed by the circuit is

considered. In this case, the offline optimum is not included
because for such scenario, the feasibility cannot be guaranteed.
When E

Circ
n 6= 0, the throughput of all the approaches is

reduced because less energy is available for data transmission
compared with the case when E

Circ

n = 0. Note that all
the learning approaches outperform the hasty policy. This is
because they take into account the energy consumed by the

circuit when allocating the power. However, as the cooperative
SARSA and the centralized learning approaches are able
to overcome the partial observability of the system state,
their corresponding achieved throughput is higher compared
to the one achieved by the other schemes. Specifically, for
⌧
Sig

/⌧ = 1%, the cooperative SARSA approach achieves
a throughput which is 17% larger than for the centralized
approach, 42% larger than for the no-cooperation learning
approach and 51% larger than for the hasty policy.

The number of data buffer overflows at N2 versus the
data buffer size of the EH relay N2 is shown in Figure
3. To evaluate different values of the data buffer size at
N2, we consider the data buffer size factor � and calculate
Dmax,2 = W ⌧ log

2
(1 + ��) and an infinitely full data buffer

at N1. Note that the result of the offline optimum is omitted
because the feasibility of the optimization problem cannot be
guaranteed for all the considered data buffer sizes. It can be
seen that, as the data buffer size increases, the number of data
buffer overflows is reduced for all the approaches, as expected.
For � = 1, the cooperative SARSA approach has 22% less
data buffer overflows than the centralized learning approach,
44% less than the no-cooperation learning approach and 43%
less than the hasty policy. The better performance of the
cooperative SARSA results from the fact that by exchanging
the causal knowledge during the signaling phase, N1 knows the
data buffer level of N2 and can limit the amount of transmitted
data when the data buffer of N2 is almost full. It should
be noted that although the cooperative SARSA is able to
significantly reduce the number of data buffer overflows, it
cannot reduce it to zero. This is because non-causal knowledge
would be required to adapt the transmission policy according
to the amounts of energy that will be harvested as well as the
future channel gains.

Figure 4 shows the impact of the data arrival process at
N1. For this simulation, we consider that the data arrival
process at N1 consists of an average number � of data packets
arriving in each time interval i. We assume that the number
of packets arriving is taken from a Poisson distribution with
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parameter �, and consider a packet size of 10kbit. The offline
optimum policy is not considered because the feasibility of the
optimization problem depends on each particular realization
of the data arrival process. In Figure 4, it can be seen that
for � = 1, all the approaches achieve almost the same
performance. This is because for � = 1, the data buffer is
almost empty all the time. Therefore, data buffer overflows
are unlikely and the data packets received by N1 can be
retransmitted by N2 to N3. As the number of data packets
received per time interval increases, the cooperative SARSA
outperforms the reference approaches because it prevents data
buffer overflows at N2, as previously observed in Figure 3.
In this case, the performance of the centralized learning is
further decreased because the consideration of the state of
the data buffer at N1 increases the dimensions of the state-
action space and reduces the learning speed. As a result, the
centralized approach ends up in a local maximum.

The impact of the battery size on the achieved through-
put is evaluated in Figure 5. As expected, the cooperative
SARSA approach outperforms the reference schemes when
Bmax,n > Emax,n, i.e., & > 1. For & = 5, it is able to achieve
a throughput 30% higher than the no-cooperation learning
approach. Moreover, its performance is 13% and 47% higher
than for the centralized approach and for the hasty policy,
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respectively.
In Figure 6, we compare the performance of the offline

optimum policy and the cooperative SARSA as a function of
the average SNR per link, i.e., from N1 to N2 and from N2 to
N3. Note that the no-cooperation learning approach is not con-
sidered because, as it can be observed in the previous results,
the cooperative SARSA approach consistently outperforms it.
To be able to calculate the throughput achieved by the offline
optimum, I = 100 time intervals and E

Circ = 0 are considered.
We additionally evaluate the effect of the maximum amount
of energy which N1 and N2 can harvest. For this purpose,
we consider three different cases, i.e., Emax,2 = 10Emax,1,
Emax,2 = Emax,1 and Emax,2 = 0.1Emax,1. For the first case,
i.e. Emax,2 = 10Emax,1, the offline optimum policy cannot be
applied because battery overflows cannot be avoided at N2

when it harvests much more energy than N1. This is due
to the fact that N2 has more energy available in its battery
than what is needed to retransmit the data it receives from
N1. To allow battery overflows at N2, a different optimization
problem would need to be considered. In all the three cases,
the throughput increases when the average SNR increases. The
largest throughput is achieved by the cooperative SARSA for
the case when Emax,2 = 10Emax,1 and this throughput is close
to the offline optimum performance for Emax,2 = Emax,1. This
is because harvesting more energy at N2 cannot lead to a larger
throughput if the amount of harvested energy is not increased
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at N1. The throughput is limited by the amount of data N1

can transmit which in turn is limited by the amount of energy
N1 harvests, which for the two cases, Emax,2 = 10Emax,1
and Emax,2 = Emax,1, is in a similar order of magnitude. For
Emax,2 = Emax,1, the performance of the cooperative SARSA
is reduced compared to the case when Emax,2 = 10Emax,1.
This is because there is less energy available at N2. As a
result, in each time interval, N2 allocates less energy for
data transmission. For the case when Emax,2 = 0.1Emax,1,
the performance of the cooperative SARSA is close to the
performance of the offline optimum policy in the low SNR
regime, i.e., SNR < 10dB. This is due to the fact that in this
case, N2 is the bottleneck because it harvests on average much
less energy than N1. Both approaches, the offline optimum
policy and the cooperative SARSA, limit the amount of data
N1 transmits while aiming at maximizing the throughput in
each time interval.

Finally, in Figure 7, we evaluate the convergence of the
proposed learning approaches. For this purpose, we compare
the average throughput per time interval versus the number
I of time intervals. In addition to the cooperative SARSA,
the centralized approach and the no-cooperation learning ap-
proach, we evaluate the performance of the proposed feature
functions by implementing the cooperative SARSA using
two standard approximation techniques, namely, fixed sparse
representation (FSR) and radial basis functions (RBF) [41].
Both, FSR and RBF are low-complexity techniques used to
represent the continuous states. For each Nn, n 2 {1, 2},
the state Si, observed after the signaling phase, lies in an
8-dimensional space given by the parameters En,i, Bn,i, gn,i
and Dn,i of both nodes. In FSR, each dimension is split in tiles
and a binary feature function is assigned to each tile. A given
feature function is equal to one if the corresponding variable is
in the tile and zero otherwise [41]. In our implementation, the
tiles are generated by quantizing each dimension using the step
size � used in the definition of the action spaces An. In RBF,
each feature function has a Gaussian shape that depends on
the distance between a given state and the center of the feature
[32,41]. In contrast to FSR, in RBF a given state is represented
by more than one feature function. In Figure 7, it can be seen
that the cooperative SARSA, the centralized approach and the
no-cooperation learning approach converge at approximately
the same number of iterations. This is due to the fact that the
three approaches are based on the SARSA update. However,
since the cooperative SARSA considers the full cooperation
among the EH nodes to exchange their causal knowledge,
it can achieve a larger throughput. Note that the number of
feature functions required by a learning approach impacts the
performance. This is due to the fact that by increasing the
number of feature functions used to represent the state space,
a larger amount of weights have to be learned. Consequently,
the cooperative SARSA approach outperforms FSR and RBF
because they require a larger number of feature functions
compared to the cooperative SARSA which only needs six.

To summarize the simulation results, it can be seen that
with a proper selection of ⌧Sig, the cooperative SARSA, which
considers cooperation between the EH nodes, outperforms
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other approaches which also only consider causal knowledge
but without cooperation between the nodes. This means that re-
serving a fraction of time for the exchange of signaling among
the nodes is more beneficial than assuming no cooperation at
all, even though the time dedicated to data transmission is
reduced in order to include the signaling phase.Furthermore,
the cooperative SARSA reduces the number of data buffer
overflows at N2 as compared to the other approaches. This
implies a reduction in the number of required retransmissions.

VII. CONCLUSION

We have investigated an EH two-hop communication sce-
nario where only partial causal knowledge regarding the EH
processes, the data arrival processes and the channel fading
processes was assumed at the EH transmitter and at the EH
relay. We considered the case when a signaling phase is
available in each time interval. This signaling phase is used
by the EH nodes to cooperate with each other by exchanging
their own causal knowledge. After the signaling phase, the
EH nodes exploit the obtained knowledge to find transmission
policies which adapt to the battery levels, data buffer levels and
channel gains of the EH nodes and which aim at maximizing
the throughput. We modeled the problem as a Markov game
and proposed a multi-agent RL algorithm to find the transmis-
sion policies at the transmitter and at the relay. Furthermore,
we have provided convergence guarantees for the proposed
algorithm. Through several simulation results we have shown
that a larger throughput can be achieved when cooperation
among the EH nodes is considered, compared to the case when
no cooperation is assumed even after the signaling overhead is
subtracted from the number of bits transmitted. Moreover, we
have shown the trade-off between the duration of the signaling
phase and the performance of the proposed algorithm and we
have shown that the number of data buffer overflows is reduced
when our proposed algorithm is considered. The distributed
nature of our proposed algorithm makes it suitable for more
complex relay networks, e.g., multi-hop networks.
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[7] D. Gündüz and B. Devillers, “Two-hop communication with energy

harvesting,” in Proc. IEEE Int. Workshop Comput. Advances Multi-

Sensor Adaptive Process. (CAMSAP), San Juan, December 2011, pp.
201–204.

[8] A. A. Nasir, X. Zhou, S. Durrani, and R. A. Kennedy, “Relaying
protocols for wireless energy harvesting and information processing,”
IEEE Trans. Wireless Commun., vol. 12, no. 7, pp. 3622–3636, July
2013.

[9] O. Orhan and E. Erkip, “Throughput maximization for energy harvesting
two-hop networks,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT),
Istanbul, July 2013, pp. 1596–1600.

[10] ——, “Energy harvesting two-hop communication networks,” IEEE J.

Sel. Areas Commun., vol. 33, no. 12, pp. 2658–2670, December 2015.
[11] Y. Luo, J. Zhang, and K. B. Letaief, “Optimal scheduling and power

allocation for two-hop energy harvesting communication systems,” IEEE

Trans. Wireless Commun., vol. 12, no. 9, pp. 4729–4741, September
2013.

[12] B. Varan and A. Yener, “Two-hop networks with energy harvesting: The
(non-)impact of buffer size,” in Proc. IEEE Global Conf. Signal Inform.

Process. (GlobalSIP), Austin, December 2013, pp. 399–408.
[13] Y. Zeng and R. Zhang, “Full-duplex wireless-powered relay with self-

energy recycling,” IEEE Wireless Commun. Lett., vol. 4, no. 2, pp. 201–
204, April 2015.

[14] A. Zanella, A. Bazzi, and B. M. Masini, “Analysis of cooperative
systems with wireless power transfer and randomly located relays,” in
Proc. IEEE Int. Conf. Commun. Workshop (ICCW), London, June 2015,
pp. 1–6.

[15] Y. Liu, “Wireless information and power transfer for multirelay-assisted
cooperative communication,” IEEE Commun. Lett., vol. 20, no. 4, pp.
784–787, April 2016.

[16] L. Tang, X. Zhang, and X. Wang, “Joint data and energy transmission in
a two-hop network with multiple relays,” IEEE Commun. Lett., vol. 18,
no. 11, pp. 2015–2018, September 2014.

[17] B. Gurakan, O. Ozel, J. Yang, and S. Ulukus, “Energy cooperation in
energy harvesting communications,” IEEE Trans. Commun., vol. 61,
no. 12, pp. 4884–4898, December 2013.

[18] M. Rezaee, M. Mirmohseni, V. Aggarwal, and M. R. Aref, “Optimal
transmission policies for multi-hop energy harvesting systems,” IEEE

Trans. Green Commun. and Networking, vol. 2, no. 3, pp. 751–763,
March 2018.

[19] A. Minasian, S. ShahbazPanahi, and R. S. Adve, “Energy harvesting
cooperative communication systems,” IEEE Trans. Wireless Commun.,
vol. 13, no. 11, pp. 6118–6131, November 2014.

[20] F. Amirnavaei and M. Dong, “Online power control for cooperative
relaying with energy harvesting,” in Proc. Asilomar Conf. Signals, Syst.

Computers, Pacific Grove, November 2015, pp. 817–822.
[21] M. Dong, W. Li, and F. Amirnavaei, “Online joint power control for

two-hop wireless relay networks with energy harvesting,” IEEE Trans.

Signal Proces., vol. 66, no. 2, pp. 463–478, February 2018.
[22] M. K. Sharma and C. R. Murthy, “Distributed power control for multi-

hop energy harvesting links with retransmission,” IEEE Trans. Wireless

Commun., vol. 17, no. 6, pp. 4064–4078, June 2018.
[23] A. Ortiz, H. Al-Shatri, X. Li, T. Weber, and A. Klein, “A learning based

solution for energy harvesting decode-and-forward two-hop communica-
tions,” in Proc. IEEE Global Commun. Conf. (Globecom), Washington,
December 2016, pp. 1–7.

[24] V. Hakami and M. Dehghan, “Distributed power control for delay
optimization in energy harvesting cooperative relay networks,” IEEE

Trans. Veh. Technol., vol. 66, no. 6, pp. 4742–4755, September 2016.
[25] A. Ortiz, H. Al-Shatri, X. Li, T. Weber, and A. Klein, “Reinforcement

learning for energy harvesting decode-and-forward two-hop communi-
cations,” IEEE Trans. Green Commun. and Networking, vol. 1, no. 3,
pp. 309–319, September 2017.

[26] J. Gong, X. Chen, and M. Xia, “Transmission optimization for hybrid
half/full-duplex relay with energy harvesting,” IEEE Trans. Wireless

Commun., vol. 17, no. 5, pp. 3046–3058, February 2018.
[27] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy-

efficient, collision-free medium access control for wireless sensor net-
works,” Wireless Networks, vol. 12, no. 1, pp. 63–78, February 2006.

[28] M. L. Littman, “Markov games as a framework for multi-agent reinforce-
ment learning,” in Proc. Int. Conf. Machine Learning, New Brunswick,
July 1994, pp. 157–163.

[29] A. Arafa and S. Ulukus, “Optimal policies for wireless networks with
energy harvesting transmitters and receivers: Effects of decoding costs,”
IEEE J. Sel. Areas Commun., vol. 33, no. 12, pp. 2611–2625, December
2015.

[30] M. L. Littman, “Value-function reinforcement learning in Markov
games,” J. Cognitive Syst. Research, vol. 2, no. 1, pp. 55–66, October
2001.

[31] N. Instruments, “National Instruments Specification USRP-2954,” May
2017. [Online]. Available: http://www.ni.com/pdf/manuals/375725c.pdf

[32] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. MIT Press, 2018.

[33] W. C. Jakes, Microwave Mobile Communications. Wiley-IEEE Press,
1974.

[34] B. Y. Shikur and T. Weber, “Channel prediction using an adaptive
Kalman filter,” in Proc. Int. ITG Workshop Smart Antennas (WSA),
Ilmenau, March 2015, pp. 1–7.

[35] W. Chen and R. Zhang, “Kalman-filter channel estimator for OFDM
systems in time and frequency-selective fading environment,” in Proc.

IEEE Int. Conf. Acoust,, Speech, Signal Process. (ICASSP), Montreal,
May 2004, pp. 377–380.

[36] M. McGuire and M. Sima, “Low-order Kalman filters for channel
estimation,” in Proc. IEEE Pacific Rim Conf. Commun., Computers and

Signal Process. (PACRIM), Victoria, August 2005, pp. 1–4.
[37] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmis-

sion with energy harvesting nodes in fading wireless channels: Optimal
policies,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1732–1743,
September 2011.

[38] M. Lauer and M. Riedmiller, “An algorithm for distributed reinforcement
learning in cooperative multi-agent systems,” in Proc. Int. Conf. Machine

Learning, Stanford, June 2000, pp. 535–542.
[39] F. Daum, “Nonlinear Filters: Beyond the Kalman Filter,” IEEE

Aerospace and Electronic Syst. Mag., vol. 20, no. 8, pp. 57–69, August
2005.

[40] A. Kühne, “Analysis of hybrid adaptive/non-adaptive multi-user ofdma
systems with imperfect channel knowledge,” Ph.D. dissertation, Tech-
nische Universität Darmstadt, Darmstadt, April 2011.

[41] A. Geramifard, T. J. Walsh, S. Tellex, G. Chowdhary, N. Roy, and
J. P. How, “A tutorial on linear function approximators for dynamic
programming and reinforcement learning,” Found. and Trends in Mach.

Learning, vol. 6, no. 4, pp. 375–454, December 2013.

Dr. Andrea Ortiz (S’14 M’20) received the Mas-
ter degree in Information and Communication En-
gineering and Dr.-Ing. (Ph.D.) degree in Electri-
cal Engineering from Technische Universität Darm-
stadt, Darmstadt, Germany. Currently she is post-
doctoral researcher at the Communications Engi-
neering Lab, Technische Universität Darmstadt, Ger-
many. Her research interests include reinforcement
learning for wireless communications, signal pro-
cessing for wireless communications and energy
harvesting communications.



15

Tobias Weber received the Dipl.-Ing. degree in
electrical engineering, and the Ph.D. and Habilita-
tion degrees from the University of Kaiserslautern,
Kaiserslautern, Germany, in 1996, 1999, and 2003,
respectively. From 1996 to 2005, he was a Member
of the Staff of the Research Group for RF Commu-
nications, University of Kaiserslautern. From 1996
to 1999, he was active in the development of a
hardware demonstrator for a 3rd generation mobile
radio system, where his work focused on future
signal processing concepts. In 2005, he became a

Professor of Microwave Technology with the University of Rostock, Rostock,
Germany. His research interests include future mobile radio systems, OFDM
mobile radio systems, MIMO techniques, and localization techniques. He is
a member of Verband Deutscher Elektrotechniker—Informationstechnische
Gesellschaft (VDE/ITG) and a senior member of IEEE.

Prof. Dr.-Ing. Anja Klein (M’96) received the
Diploma and Dr.-Ing. (Ph.D.) degrees in electrical
engineering from the University of Kaiserslautern,
Germany, in 1991 and 1996, respectively. In 1996,
she joined Siemens AG, Mobile Networks Division,
Munich and Berlin. She was active in the standard-
ization of third generation mobile radio in ETSI
and in 3GPP, for instance leading the 3GPP RAN1
TDD group. She was director of a development de-
partment and a systems engineering department. In
2004, she joined the Technische Universität Darm-

stadt, Germany, as full professor, heading the Communications Engineering
Laboratory. Her main research interests are in mobile radio, including inter-
ference management, cross-layer design, relaying and multi-hop, computation
offloading, smart caching and energy harvesting. Dr. Klein has authored over
280 peer-reviewed papers and has contributed to 12 books. She is inventor and
co-inventor of more than 45 patents in the field of mobile communications.
In 1999, she was named the Inventor of the Year by Siemens AG. She is
a member of Verband Deutscher Elektrotechniker - Informationstechnische
Gesellschaft (VDE-ITG).


