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Abstract—Lately, Reinforcement Learning (RL) solutions ap-
pear as a tool with great potential to solve wireless commu-
nications problems. In this work, the scheduling problem in
multiuser massive Multiple Input Multiple Output (MIMO)
systems is investigated using RL-based techniques, wherein we
propose a novel approach to multiuser scheduling in massive
MIMO as a contextual bandit problem. The scheduler aims at
maximizing the system throughput considering Quality of Service
(QoS) constraints and multiple services. Firstly, we use the User
Equipments (UEs)’ spatial covariance matrices as the input of the
K-means algorithm to split the UEs into spatially compatible clus-
ters. Then, the scheduler defines each cluster as a virtual agent
capable of making its own decision, which drastically reduces
the search space. Lastly, the scheduler uses past information to
learn how to satisfy the QoS requirements and maximize the
system throughput. Our simulation results show that our solution
outperforms a baseline algorithm obtaining 22.5% and 20% more
throughput and system satisfaction, respectively. Furthermore,
our solution also reduces the UEs’ Channel State Information
(CSI) feedback.

Index Terms—Reinforcement Learning, Contextual Bandits,
Scheduling, Massive MIMO.

I. Introduction

Massive Multiple Input Multiple Output (MIMO) is ex-

pected to play an important role in the 5th Generation (5G)

of wireless communications [1]. With it, Base Stations (BSs)

are equipped with tens to hundreds of antennas, enabling

them to create many narrow beams to serve multiple User

Equipments (UEs) at the same time-frequency Resource Block

(RB). However, massive MIMO using classical digital beam-

forming requires a dedicated Radio Frequency (RF) chain

per antenna, which leads to high hardware costs and low

energy-efficiency. In order to reduce hardware cost and energy

consumption, hybrid analog/digital beamforming appears as

an alternative to the fully digital architecture [2]. Hybrid

beamforming splits precoding into analog and digital domains,

with beam generation performed by a concatenation of two

matrices. The first one for the analog part, and the second one

for digital beamforming with a reduced dimension compared

to the analog part, which leads to a lower number of RF chains.

One of the major issues in Frequency Division Duplex

(FDD) massive MIMO systems is the acquisition of Chan-

nel State Information (CSI) at the transmitter side, due to

the massive number of antennas at BS [1]. Therefore, the

schedulers in massive MIMO needs to operate under a lack

of information. Reinforcement Learning (RL) tools emerge

as a promising solution to lead with this issue since it is

capable of works without accurate information and a complete

model of the environment [3]. Also, RL solutions are very

suitable for scheduling since it aims to make an agent learn

how to behave in an environment to optimize a predetermined

objective, such as the system performance metrics considered

by the scheduler, such as Quality of Service (QoS) [3]. In the

sequel, we will discuss the special case of RL solutions called

Contextual Bandits (CB) [4]. The CB is a sequential decision-

making solution where a learning agent has to take an action

according to a context aiming at maximizing the long-term

rewards and receives a reward for it. Then, at each time step,

the agent repeats the process of observing contexts, taking

actions, and receiving rewards accumulating information about

them. Afterward, the agent has to estimate the action values,

which determine the quality of the actions based on their

average reward. Therefore, the agent learns through trials about

how to make better long-term decisions.

II. Related Works and Contributions of the Paper

The works in [1], [5]–[10] consider the two-stage precoding

scheme to reduce the CSI feed back overhead of massive

MIMO systems. Aiming at maximizing the system throughput,

the authors in [1] propose a schedule based on Signal to

Leakage plus Noise Ratio (SLNR). In [6], the authors pro-

posed a schedule based on reinforcement learning aiming at

maximizing the system throughput with fairness guarantee.

In [7], the authors proposed a scheduling based on deep-

learning for capacity, QoS, and coverage optimization. Aiming

at maximizing the system throughput and fairness, the authors

in [8] proposed a schedule based on graph theory. However,

the authors in [1], [6]–[8] consider available the instantaneous

channel of all UEs in the system. In [5], UEs are firstly

clustered based on their spatial channel covariance using K-

means. Afterward, a subset of the UEs of each cluster is pre-

selected to feed back their CSI. This approach reduces the

CSI feed back used by the scheduler to decide which ones

are being scheduled. However, still, a considerable number of

UEs needs to feed back their CSI. Also, another drawback of

the aforementioned works [1], [5]–[8] is the consideration of

full digital beamforming, which can be unpractical in massive

MIMO systems. The works in [9], [10] propose new schedul-

ing methods for hybrid precoding massive MIMO systems.

In [9], after the clustering step, a different way to schedule

UEs is proposed aiming at maximizing the system throughput.

Therein, UEs are chosen based on a metric that balances



spatial channel correlation and channel gain using a parameter

β, whose optimal value is scenario-dependent and therefore

chosen based on trials. In [10], the authors proposed a new

scheduling method to maximize system throughput. However,

the works [9], [10] do not deal with QoS nor multiple service

scenarios that are mandatory features of modern wireless

networks.

Therefore, in this work, we proposed novel RL-based

scheduling for massive MIMO systems that jointly consider

hybrid precoding, QoS requirements, multiple services and a

scheduler that does not use instantaneous CSI. Firstly, we apply

a clustering algorithm to split the UEs into low-correlated

clusters based on their statistical channel. After that, we

consider the BS as a physical agent responsible for scheduling

the UEs and each cluster as a logical virtual agent responsible

for selecting the UEs to be scheduled at the BS. Each virtual

agent acts independently without sharing information, and

the compatibility check to select the UEs is made based

on the sum throughput (reward) of UEs scheduled together

in the past. This strategy drastically reduces the scheduler

search space since the selection of UEs is divided among

different clusters. Next, the scheduler uses the outdated CSI

(context) of the previously scheduled UEs to model a utility

function determining weights to the UEs based on their QoS

requirements. Also, depending on the system requirements, the

proposed scheduler is dynamically adapted to prioritize either

the system throughput or QoS satisfaction. Afterward, only the

scheduled UEs feed back their CSI, which leads to a reduction

in the signaling overhead. We show in our results that this

approach learns fast and outperforms the baseline solution in

terms of system throughput and QoS provisioning.

III. System Model

In this work, we consider the downlink (DL) of an Orthog-

onal Frequency Division Multiple Access (OFDMA) system

composed of a single cell whose BS is equipped with a

Uniform Planar Array (UPA) having a large number N of

antenna elements. The BS covers a cell sector serving J

omnidirectional single-antenna UEs, which are distributed

uniformly within hot spots of a given radius. The hotspots, for

instance, are evenly distributed within the sector area. We also

assume S different services which have different throughput

requirements. For simplicity, we consider that each user is

using only one service.

In the sequel, we define the signal model and related metrics

adopted in this work. Let H ∈ CJ×N denote the DL channel

frequency response between the N antennas of the BS and the

J single-antenna UEs for a given OFDMA subcarrier, whose

index is omitted herein and in the sequel for simplicity of

notation. Notice that in this work, we adopt row vectors to

represent the channels of the UEs. Indeed, each row of H

corresponds to the channel between the BS antennas and the

the j-th UE.

We consider an RB composed of Nsc adjacent OFDMA

subcarriers and Nsymb consecutive Orthogonal Frequency Divi-

sion Multiplexing (OFDM) symbols and consider the channel

frequency response to be nearly flat within a RB. Thus, we

represent H for an RB by the frequency response of its

middle subcarrier and first OFDM symbol. In the sequel, when

referring to channel and precoding matrices, these will be

associated to a specific RB.

We consider that the BS can spatially multiplex K dif-

ferent UEs at the same RB using a linear precoding matrix

W ∈ CN×K to transmit the information vector x ∈ CK×1 to

K UEs (selected out of the J ones). Since we consider hybrid

precoding [11], W = WRFWBB is composed of the product of

two factors: WRF ∈ CN×K , which is the analog precoder, and

WBB ∈ CK×K which is the digital precoder.

Through this approach, we can create a reduced equivalent

channel Heq = H̃WRF ∈ CK×K to be used as the effective

DL channel, where H̃ ∈ CK×N is the channel matrix of the

K UEs selected out of the J existing UEs. The matrix H̃ is

formed by taking the K rows of H corresponding to the K

UEs selected out of the J existing ones. Indeed, Heq has a

much lower dimension than H̃ , since, in general, K ≪ N .

As previously mentioned, we assume that H is nearly

constant during the Nsymb OFDM symbols of an RB, i.e.,

during one Transmission Time Interval (TTI). Moreover, we

assume that ∥WRFWBB

√
P∥2

F
= PRB to satisfy the power

constraint, where P ∈ RK×K
+

is a diagonal power matrix with

the power allocated to each selected UE and PRB is the power

available at the BS for an RB. More details on the definitions

of WRF and WBB will be given in Section V.

The receive signal vector y ∈ CK×1 of the K served UEs is

given by

y = H̃W
√
Px + z, (1)

where z ∈ CK×1 is an additive Gaussian noise vector whose

elements are Independent and Identically Distributed (IID) as

CN(0,σ2IK ) and IK is a K×K identity matrix, with standard

deviation σ.

Now, defining M = [m]i, j = H̃W
√
P ∈ CK×K , we can

calculate the average Signal to Interference-plus-Noise Ratio

(SINR) perceived by the k-th selected UE as

γk =

��mk,k

��2

σ2
+

K∑

j,k

��mk, j

��2
. (2)

We consider that the data rate rk of the k-thUE on an RB is

given according to Shannon’s formula and is upper bounded

by the data rate achievable using 256-Quadrature Amplitude

Modulation (QAM), which is the highest modulation order

supported by 5G New Radio (NR) systems [12], i.e.,

rk = NscNsymb min
{
log2(1 + γk),8

}
bits/TTI. (3)

IV. User Clustering

Among the many existing clustering methods for Multi-User

(MU) MIMO systems, we focus here on [5], which uses the

statistical CSI as the main input for the classical K-means

user clustering algorithm [5]. For MU MIMO systems, the

main motivation to split the UEs into clusters is to reduce the



problem search space by selecting the served UEs individually

per cluster [9], as we are going to explain later in Section VI.

Following [5], [9], we represent the statistical CSI by the

spatial covariance matrix

R j =
1

T

T∑

t=1

hH
t, j ht, j , (4)

where h j,t ∈ C1×N is the channel of the j-th UE ( j-th row of

H) at TTI t and T is the number of TTIs considered to average

(and hence approximate) the channel covariance matrix. Then,

we can decompose

R j = U jΛjU
H
j , (5)

where U j ∈ CN×N and Λj ∈ RN×N contain the eigenvectors

and eigenvalues of R j , respectively.

In the sequel, we describe how clustering is performed

in our work using the K-means algorithm, which is a well-

known iterative algorithm that splits the J UEs into C

clusters. Other clustering algorithms could have been used,

such as agglomerative clustering in [1]. Like other clustering

algorithms, K-means requires beforehand the number C of

clusters to be created [13]. In this work, the dominant column

eigenvector u j,1 of each UE j is used as input by the K-means

algorithm [5] to cluster the UEs. The centroid of each cluster

is updated using the mean of the dominant eigenvectors of the

UEs currently belonging to that cluster. Then, the association

of UEs to the clusters is updated by assigning each UE to

the cluster whose centroid is closest (in Euclidean distance

terms) to its dominant eigenvector u j,1 . This process repeats

until there are no more significant changes in the clusters’

centroids. Due to space limitations, we refer the reader to [5]

for more detailed information about K-means.

V. Design of Hybrid Precoder

For hybrid beamforming, the analog part is, in general, im-

plemented by phase shifters. After clustering, when selecting a

UE k from a cluster c, its analog precoder wRF,k is built using

only the phases of the components of the dominant eigenvector

uk,1 , which we denote by wRF,k =
1√
N

ej∠uk,1 . Consequently,

the analog precoder for the K selected UEs is given as

WRF =
1
√

N

[
ej∠u1,1 ej∠u2,1 . . . ej∠uK,1

]
. (6)

To suppress the residual MU interference, we use the Zero-

Forcing (ZF) for digital precoder WBB, which is given by [14]

WBB =

HH
eq(HeqH

H
eq)
−1

∥HH
eq(HeqH

H
eq)
−1∥F
. (7)

In Section VI, we are going to see that we can exploit the ZF

precoder characteristics to reduce the problem complexity.

VI. Proposed Scheduling

In this section, we describe the search space reduction

through clustering, digital precoder, and virtual agents. Af-

terward, we present the modeling of the scheduler priority.

Finally, we show the proposed scheduling based on CB.

A. Search Space Reduction

In the sequel, we describe how the ZF precoder can reduce

the interference among clusters. As stated in Section V, ZF

is used as the digital precoder herein, thus each UE signal

is sent in the joint null space of the other UEs signals so

that the served UE effective channel gain is tightly related to

the channel correlation among UEs [14]. Since UEs belong-

ing to different clusters are supposed to be low-correlated,

interference among UEs’ from different clusters becomes

negligible [9].

Besides, this assumption drastically reduces the number of

possible compositions of groups of UEs to be served on a

given TTI, as discussed in the sequel. Let the BS be the

learning agent (physical) that schedules K UEs as to achieve

a reward d, which is defined herein as the system data rate

achieved by the K scheduled UEs. Thus, there are

A =

(
J

K

)
. (8)

possible actions, making the action set become impractical due

to its combinatorial increase in J and K .

Using the previous assumption of negligible interference

among UEs of distinct clusters, each cluster can be seen as

a virtual agent (logical) that selects UEs belonging to it to

compose the group of UEs scheduled by the BS. Each virtual

agent c has its own set of actionsAc (with Ac = |Ac | actions),

which is given by

Ac =

(
Jc

Kc

)
, (9)

where Jc and Kc are the total number of UEs and the number

of scheduled UEs of cluster c, respectively. Since usually
C∑
c

Ac ≪ A, the search space is strongly reduced. Also, each

virtual cluster has its action values stored in dc ∈ RAc×1
+

. The

real action value of an action is defined as the mean received

reward when that action is selected. By the law of large

numbers, if the number of selected actions goes to infinity,

the action value converges to the optimal one. This way, using

the incremental average updating method we can define the

action values dc as [4]

dc(ac) = dc(ac) +
1

nc(ac)
(d − dc(ac)), (10)

where ac is a given action and nc ∈ ZAc×1
+

is the vector

containing the number of times that each action was selected.

B. Modeling the UEs Priority

In the following, we describe how UEs priority is modeled.

We also consider that a UE is satisfied when it achieves a

throughput target. We aim to use a function capable of map-

ping three behaviors. Almost no priority after the UE exceeds

its target (step function), UE priority decreases rapidly when

its throughput approaches or exceeds its target (sigmoidal

function), and UEs have almost the same priority (flat line).

In order to cope with UEs QoS requirements, we propose to



use, as in [15], a sigmoidal function to model UEs’ priority

as

Pj(vj) =
1

1 + e
−δ(vj−vreq

j
)
, (11)

where δ < 0 controls the logistic function shape, v
req

j
and

vj are the required throughput and the throughput of the j-th

UE’, respectively. Pj(vj) is a decreasing function of the UEs

throughput with controllable shape and centered at v
req

j
, as

shown in Figure 1. We normalize both vj and v
req

j
to map the

throughput of vj as a portion of its throughput requirement. As

can be seen therein, depending on the P(·) shape and current

throughput, an unsatisfied UE (vj < v
req

j
) can have a priority

to be scheduled between 0.5 and 1 while a satisfied UE can

have a priority between 0 and 0.5.

The shape of P(·) is associated with system satisfaction,

where [15] obtained good results for δ = −9.1912. In this

work, we consider the system satisfaction as the ratio between

the number of satisfied UEs and the total number of UEs.

Following a similar approach as therein, we created 21 shapes

for P(·) based on this basis value of δ, which are shown in

Figure 1, s ∈ {−10,−9, . . . ,9,10} and δ = −9.1912 × 2s were

used to defined P(·) shapes.
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Figure 1. UE prioritization function.

C. Scheduling Based on Contextual Bandits (SBCB)

In the sequel, we describe how the context (side informa-

tion) is used by our scheduler, and we explain the scheduler

itself. The SBCB proposed here aims to maximize the system

throughput while satisfying QoS constraints. We consider as

context the outdated CSI used to obtain the priority of each

UE (11). Then, the mean priority qc(n) of UEs in the action

n belonging to cluster c is given as

qc(n) =
1

Kc

∑

j∈Ac (n)
P(vj), (12)

where Ac(n) is the UEs in the action n and cluster c.

Therefore, we can define qc ∈ RAc×1
+

as mean UEs priority

vector of each action in a cluster c.

At each TTI, for each virtual agent, our SBCB selects a

random action from Ac with probability ϵ (exploration phase)

or takes the action that maximizes the trade-off between the

UEs throughput and their priorities with probability 1− ϵ (ex-

ploitation phase). Note that, the exploitation phase corresponds

to take the action of the maximum value in the Hadamard

(element-wise) product qc ⊙ dc . In our work, we are using

the ϵ-decaying method to calculate the ϵ , where the ϵ value

decays over time until it reaches the desired value, we refer

the reader to [16] for more details of ϵ-greedy algorithm and

ϵ-decaying method. The UEs chosen by the virtual agents

are then scheduled by the BS, which polls them using the

analog precoder to obtain as CSI their equivalent channels

on top of which the digital precoder is applied. After that,

the BS calculates the achieved data rate using (3). At this

point, all virtual agents at the BS can store their action values

according to (10). Lastly, if the smaller UE throughput is λ%

greater than its target, the s value is reduced in 1 to make

P(·) in (11) approach a maximum throughput policy (flat line).

Otherwise, increases the s value in 1 to make the shape P(·)
in (11) approach a maximum QoS provisioning policy (step

function). Hence, each virtual agent learns over time its best

groups of UEs to maximize system throughput, a knowledge

that is combined with the context information on prioritizing

certain UEs to improve QoS provisioning. The pseudo-code

of the SBCB algorithm is presented in Algorithm 1.

Algorithm 1 SBCB Algorithm.

1: Input: Ac , C and T

2: Initialize: qc = 0Ac×1 and dc = 0Ac×1, ∀c
3: Initialize: set of scheduled UEs S = ∅
4: Initialize: counter vectors nc = 0Ac×1 of each action ∀c
5: Initialize: shape control variable s = 10 ◃ Max. priority.
6: for Each TTI do

7: for c = 1 to C do

8: Calculate the vector of weights qc using (12)

9: ac ←





action that maximizes (qc ⊙ dc )
︸                                       ︷︷                                       ︸

Exploitation

, probability 1 − ϵ

random action from Ac︸                           ︷︷                           ︸
Exploration

, probability ϵ

10: S ← S ∪ Ac (ac ) ◃ Schedule the UEs.
11: end for

12: Scheduled UEs S feed back their CSI
13: Compute hybrid (analog and digital) precoder using (6) and (7)
14: d ← sum of scheduled UEs data rate using (3) ◃ Reward.
15: for c = 1 to C do

16: nc (ac ) ← nc (ac ) + 1 ◃ Number of times that ac was chosen.
17: dc (ac ) ← dc (ac ) + 1

nc (ac ) (d − dc (ac )) ◃ Action values.

18: end for

19: if Smaller UE throughput ≥ λ% its throughput requirement then

20: if s ≥ −10 then

21: s = s − 1 ◃ Prioritize more the throughput.
22: end if

23: else

24: if s ≤ 10 then

25: s = s + 1 ◃ Prioritize more the satisfaction.
26: end if

27: end if

28: end for

The decisions that the BSs take at each TTI are: (1) schedule

the UEs using the SBCB algorithm; (2) poll UEs for their

CSI using analog precoders; and (3) compute digital precoders

and send data to the scheduled UEs. In general, before step

(1), most works in literature considers the CSI of all UEs

available or they select a subset of the total UEs to poll for

their CSI, from which the scheduled UEs are selected for data

reception, such as [1], [5]–[8]. Thus, as our scheme only polls

the already scheduled UEs for CSI, it demands less feed back



than most of those works. Furthermore, the proposed scheme

avoids computing digital precoders for every possible group

of UEs to be served.

VII. Numerical Results

In this section, we compare the proposed SBCB algo-

rithm with the QoS-aware Proportional Fair QoS (PF QoS)

algorithm [17]. The PF QoS is similar to the traditional

PF scheduling algorithm, however, it works with two sets

of UEs: the priority set with UEs that do not meet their

QoS requirements, which are prioritized and; the low priority

set with the rest of the UEs (currently satisfied UEs). It is

important to notice that the PF QoS algorithm also performs

the clustering before scheduling and only selects Kc UEs per

clusters, which jointly with the hybrid precoder in Section V

deals with the interference among clusters. Furthermore, the

dominant eigenvalue and eigenvector of each UEs were used in

PF QoS to estimate the instantaneous rate of the PF algorithm,

since this is the same CSI employed by the SBCB and keeps

comparisons between it and PF QoS fair.

The simulated scenario considers a MIMO BS equipped

with an 8 × 8 UPA (N = 64). It services 20 UEs inside a 60°

sector with 200 m of radius, which are uniformly distributed

inside two hotspots with a radius of 15 m. The hotspots’

centers are 100 m away from the BS and 30° apart.

UEs choose between 2 services, where the required through-

put of service 2 is that of service 1 plus 200 kbps. Moreover, a

satisfaction level of µ = 90% is required in the system. We also

consider the value of λ = 120% of the smaller UE throughput

to trigger the change of shape conditions. The reason for chose

this λ value is that the SBCB can start to change the UEs’

priority before they get unsatisfied.

We adopt Quasi Deterministic Radio Channel Generator

(QuaDRiGa) Urban Micro (UMi) Line Of Sight (LOS) channel

model [18], 3 km/h average UE speed, and assume the BS

power to be evenly divided among 125 RBs. However, in this

work, we are assuming only one RB available for transmission.

The most relevant parameters used in our simulations are

shown in Table I.

Table I
Simulation Parameters.

Parameter Value

System bandwidth 100 MHz
System carrier frequency 28 GHz
Number of subcarriers in an RB 12
Subcarrier spacing 60 kHz
TTI duration 0.25 ms
Number of OFDM symbols per TTI 14
Simulation duration 1 s
Number of simulation rounds 100
Cell radius 200 m
Total transmit power 35 dBm
Noise figure 9 dB
Noise spectral density -174 dBm/Hz
Shadowing standard deviation 3.1 dB
Number of UEs 20
Number of clusters 2
Number of UEs selected per clusters 2

In the simulations, we consider a warm-up phase during

which ϵ values vary linearly from 100% to 5% over time.

A high exploration rate at the beginning provides better

knowledge about the action space and avoids getting stuck

at local optima. We also assume that UEs start with their

throughput requirement fulfilled. This phase allows the system

to get into a configuration that we consider typical of normal

long-run conditions.

Three performance metrics are considered herein: the num-

ber of TTIs (iterations) to reach and stay above the target

satisfaction, the system satisfaction level itself, and the system

throughput. The system satisfaction was previously defined

in Section VI-C. The system throughput is the sum of the

throughput of all UEs.

In the sequel, we evaluate the system satisfaction over the

TTIs for different required throughput’s of service 1. We

recall that the required throughput of service 2 is 200 kbps

higher than that of service 1. As it is shown, the number

of TTIs needed to reach the target satisfaction µ increases

with the throughput requirement. For low (100 kbps), medium

(400 kbps), and high (600 kbps) throughput requirements, 15,

30, and 70 TTIs are needed to achieve the target satisfaction,

respectively. Therefore, the SBCB algorithm is capable of

learning how to schedule the UEs aiming at achieving the

target satisfaction in a small number of TTIs. Later, we will

see that the SBCB algorithm also increases system throughput.
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Figure 2. System satisfaction over the TTIs for different required throughput.

In Figure 3, the system satisfaction for SBCB and PF

QoS algorithms are shown for increasing values of required

throughput of service 1, where the bright region is the 90%

confidence interval for the obtained results. As expected,

satisfaction levels decrease when the required rate increases.

However, differently from PF QoS, the SBCB algorithm is

capable of maintaining higher satisfaction (above µ) and closer

to 100% even for high required throughput. The performance

loss of the PF QoS is because it does not take into account

any information about the interference among scheduled UEs,

increasing the probability of scheduling in the same RB UEs

with high channel correlation. SBCB learns about channel

correlation through rewards and uses the same CSI as PF QoS.

In Figure 4, SBCB and PF QoS algorithms are compared in

terms of system throughput for different values of the required

throughput for service 1. As can be seen, the system through-

put decreases as the required throughput increases, so that

there is a trade-off between satisfaction and system throughput

to which the algorithms are subjected. The SBCB solution



Figure 3. System satisfaction versus the required throughput of service 1.

prioritizes the QoS provisioning aiming at maintaining high

satisfaction. Therefore, it loses more performance on system

throughput than on satisfaction. The baseline algorithm can

maintain almost the same throughput. However,its satisfaction

decreases drastically compared to SBCB. Anyway, SBCB

provides a gain in system throughput up to 22.5% compared

to PF QoS.

Figure 4. System throughput versus required throughput of service 1.

VIII. Conclusions

In this work, we evaluated a novel scheduling based on

CB aiming to maximize the system throughput with QoS

constraints in a multiple service hybrid precoding massive

MIMO scenario. The proposed solution avoids computing

digital precoders for every group of scheduled UEs, reduces

the required CSI feed back, and keep information of the bests

groups of scheduled UEs up-to-date over time. We show that

the low correlation among clusters makes it possible to create

virtual agents, drastically reducing the search space for UE

scheduling, polling, and digital precoding. Numerical results

show that the proposed solution outperforms the baseline

algorithm in terms of system throughput and UE satisfaction.

Furthermore, the proposed solution converges rapidly and

achieves the target satisfaction in a small number of TTIs. The

study of other CB strategies and consideration of multiples

RBs are the perspective of this work.
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