
Tobias Mahn, and Anja Klein, ”Energy-Efficient Application-Aware Mobile Edge Computing

with Multiple Access Points,” in Proc. of the 31st IEEE International Symposium on Personal

on Personal, Indoor and Mobile Radio Communications (PIMRC) 2020, September 2020.

c©2020 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this works must be obtained from the IEEE.

Energy-Efficient Application-Aware Mobile Edge

Computing with Multiple Access Points

Tobias Mahn, Anja Klein

Communications Engineering Lab, TU Darmstadt, Germany, {t.mahn, a.klein}@nt.tu-darmstadt.de

Abstract—The offloading decision making of multiple mobile
units in a mobile edge computing (MEC) scenario with mul-
tiple access points, each with an attached cloudlet server, is
investigated. This scenario bears a joint problem to be solved:
the assignment of mobile units to access points, the allocation
of the shared communication and computation resources and
the offloading decision of each mobile unit. Additionally, the
offloading decision is influenced by the availability of the required
software for the computation of the task of the mobile unit that
may not be available at the cloudlet and has to be downloaded
before starting the computation. The proposed offloading decision
making and resource allocation problem is formulated as a global
optimization problem. To handle higher numbers of mobile units
in the network and also achieve a greatly faster convergence, a
game theoretic algorithm for the individual offloading decisions is
introduced. In numerical simulations, the game based algorithm
is shown to deliver results close to the optimum solution, while
requiring only a small number of iterations until convergence to
a Nash equilibrium.

I. INTRODUCTION

With an ever increasing number of wireless sensors and

battery powered mobile devices, offloading computation from

local processors to other computation facilities in the network

or on the internet is necessary to enable new machine to

machine (M2M) services, allow computation intensive mo-

bile applications, make new applications with low latency

requirements possible or simply extend the battery life. Recent

forecasts expect a slight growth in the number of smartphones

and a growth in billions of M2M devices in the next years

until 2022 [1]. Providing computation services at the edge

of the networks, e.g. at cellular base stations or WiFi access

points, close to the sensors and devices shall help to reduce

both the computation delay as well as the backhaul traffic to

distant cloud servers. Those computation services in Mobile

Edge Computing (MEC) can be integrated into small servers

at the network edge, called cloudlets or edge clouds [2], [3].

The right software is required to be installed at the cloudlet

to be able to provide the computing capabilities for the cor-

responding application of a mobile unit (MU). Caching shall

predict popular contents like files or services and store them

at the edge of the network. This reduces the latency for the

user to access a file or a service while simultaneously reducing

the traffic in the backhaul network [4]. Nevertheless, it is not

always possible to meet the needs of every MU when the

storage capacity of the cloudlet is limited and not all content

can be provided simultaneously. In MEC, the availability of the

required software at the cloudlet can influence the decision of

a MU whether offloading of its computation task is beneficial.

In the beginning, MEC has been investigated for small

networks with one or multiple MUs and a single access point

(AP) or cellular base station, e.g. in [5], [6]. The authors

of [5] propose a network consisting of a single MU and a

single AP. The computation task of the MU is arbitrarily

splittable. Algorithms to split the task and compute the result

in an energy-efficient way are evaluated by optimizing the

power consumption of the local processor of the MU and the

transmission power used to send the offloaded fraction from

the MU to the AP. In [6], not a single MU but multiple MUs

connect to a single AP. The proposed approach also optimizes

the split of their task to be offloaded as well as the transmission

power of the MUs.

MEC scenarios with more than one computation location

have been studied in hierarchical offloading scenarios in [7]–

[9]. MUs are still connected to a single AP and share the same

radio access channel, but besides offloading the computation

tasks only to the cloudlet, there is an additional cloud server

available for computation. The cloud server offers more com-

putation resources than the cloudlet, but the transmission of the

task introduces a higher latency than offloading to the cloudlet.

Compared to the previous scenarios, MUs have to decide

where to offload the task. This introduces the challenge of

multiple MUs coordinating their offloading decisions based on

the sharing of communication and computation resources. The

authors of [7]–[9] introduce game theoretic algorithms to MEC

in order to model autonomous offloading decisions of the MUs

based on the available resources. These algorithms can often

converge to an equilibrium point much faster than approaches

based on optimization and can also handle scenarios with a

much higher number of MUs. The objective of all proposed

algorithms is different. In [7], the authors are interested to

minimize the maximum computation time and transmission

latency of one task in a stream of arriving tasks. For a single

task per MU, the authors of [8] propose an approach that

minimizes the combined energy consumption of all MUs and

the maximum computation time of all computation locations in

the scenario. In [9], also a single task per MU is considered and

the objective is to minimize the energy consumed by all MUs

for the computation of their task while keeping a maximum

computation time limit.

The previously described scenarios do not consider that a

MU can reach multiple APs and cloudlets can be in a dense

scenario. In this case, the MU has to decide whether offloading

is beneficial at all and to which AP to connect to have the most

benefit from offloading. In this paper, the offloading decisions

of MUs are investigated with respect to the joint considera-

tion of communication and computation resources available

in the network. The proposed network consists of multiple

APs with attached cloudlets to which the MUs can connect.

Joint optimization in MEC scenarios with multiple APs and

MUs is also investigated in [10] and [11], but both consider

multiple APs that forward offloaded tasks to only a single

cloudlet server. In [10], the authors formulate an optimization

problem that minimizes the combined energy consumption

and maximum computation time. They use a game theoretic

algorithm to find a faster converging approximation to the

global optimization problem. The communication resources in

[10] are modeled in a simplified way by a maximum channel

rate that is equally divided by the number of offloading users.

The authors of [11] also propose a joint minimization problem,

but they aim to optimize the energy consumption together

with a more abstract monetary cost function. Similar to [10],

the global optimization problem is reformulated into a game

theoretic approach. In comparison to [10], the communication

model in [11] is more precise by considering the Shannon

channel capacity. Furthermore, in [11] the authors formulate

the resource allocation problem by Lagrange multipliers and

solve the KKT-conditions which leads to an optimal resource

allocation. A similar formulation of the optimal resource allo-

cation problem using Lagrange multipliers has been proposed

in [12] for a hierarchical offloading scenario.

In comparison to [10] and [11], in our scenario, each AP is

equipped with a cloudlet server. Furthermore, the proposed

scenario considers the availability of required software to

compute an offloaded task at the cloudlet. If the software is

not available at the chosen offloading location, a download

from a cloud server is initiated. Regarding the formulation of a

global optimization problem, a drawback of the described joint

objective functions in [10] and [11] is the combination of two

parameters of different units and possibly even different scales.

The choice of the weighting factor between the two parameters

can lead to vastly different results of the optimization problem.

Therefore, we avoid such a formulation by proposing an

energy minimization problem that is bound by a constraint for

the maximum allowed computation time. A game theoretic

algorithm is introduced to find a fast converging approxi-

mation of the global optimization problem. This algorithm

includes an initialization strategy for the offloading problem,

the separation of the offloading decisions from the resource

allocation and an optimal allocation of the communication and

computation resources.

In Section II, the scenario and most relevant concepts are

introduced. They build a basis for the formulation of the

optimization problem in Section III-A and the proposed game

theoretic approach in Section III-B. The performance of the

proposed algorithm is evaluated numerically in Section IV.

II. SYSTEM MODEL

A. Scenario

Fig. 1. Computation offloading scenario with K MUs and L APs

A scenario with multiple access points (APs), each with

a cloudlet for edge computation, is considered. These APs

are installed at different locations of the considered area.

Mobile units (MUs) with low mobility can connect via shared

radio channels to the APs. Possible examples for such an

arrangement and use case are lecture halls, conference centers

or stadiums.

As shown in Figure 1, the considered scenario consists of

K MUs and L APs. Each MU k ∈ {1, . . . ,K} has a non-

splittable task of size stask
k which is measured in bits. The task

can either be computed locally or can be offloaded to one AP

l ∈ {1, . . . , L}. A task belongs to one of multiple types of

applications, e.g. music, photo, video, calculation or gaming,

and those require also different softwares to compute the result

of the task. As the authors of [13] have shown, the types

of applications can require a significantly different number

of central processing unit (CPU) cycles for the computation.

Therefore, a complexity factor ck is introduced to measure

the number of CPU cycles required to calculate one bit of the

task of MU k. The decision of MU k for local computation or

offloading to AP l is stored in a binary offloading decision

vector xk = [xMU
k , xAP

k,1, . . . , x
AP
k,L], of which exactly one

element is 1 and all other elements are 0.

The software for the computation is assumed to be available

at the MU, but the cloudlet may not have it installed and, in

this case, a download of the software from a remote cloud

server to the AP is required to enable the computation of the

offloaded task. A binary variable al,m stores the information

whether software m, with m ∈ {1, . . . ,M}, is installed at

AP l. The concept of the software download can also be

extended to microservices where not a single software packet

but a combination of microservice modules is required for the

computation of the task [14]. Missing microservices have to

be fetched from a cloud server before the computation of the

offloaded task can start.

B. Local Computation

The CPU of MU k has a processing frequency fMU
k . If MU

k decides for the local computation of the task, the processing

time can be calculated as

TMU
k =

cks
task
k

fMU
k

(1)

and by multiplication with the calculation power pcalc
k of the

CPU, the required computation energy is

EMU
k = pcalc

k ·
cks

task
k

fMU
k

. (2)

C. Offloading Computation to an AP

Besides local computation, each MU k can decide for

offloading the task to one of the L APs. Each AP is assumed

to have a separate transmission band with a total bandwidth

bmax
l at AP l. The radio access channel from MU k to AP

l is assumed to use an orthogonal frequency-division multi-

ple access (OFDMA) transmission scheme. There is a total

bandwidth bmax
l available to transmit to AP l. Multiple MUs

offloading tasks to the same AP have to share the available

bandwidth. The corresponding allocated bandwidth for MU

k offloading to AP l is expressed by bk,l and the sum of

bandwidths assigned to the offloading MUs at AP l cannot

exceed the total bandwidth bmax
l , i.e.

∑K

k=1 bk,l ≤ bmax
l . With

a transmission power ptrans
k,l , the uplink channel gain |hk,l|

2 and

the white Gaussian noise power σ2, the resulting transmission

rate rMU
k,l from MU k to AP l can be expressed by the Shannon

channel capacity

rAP
k,l = bk,l log2

(

1 +
ptrans
k,l |hk,l|

2

σ2

)

. (3)

For simplicity of the model, |hk,l|
2 and σ2 are assumed to

be known at the AP. Using the transmission rate, the duration

of the offloading from MU k to AP k can be defined as the

upload time

T up

k,l =
stask
k

rAP
k,l

. (4)

Each AP is equipped with a cloudlet server that is able to

compute tasks with a total computation frequency fAP max
l .

If more than one MU decides to offload to AP l, each MU

will only receive a fraction of the total computation frequency

fmaxAP
l . The assigned frequency of MU k offloading its task to

AP l is denoted by fAP
k,l . The sum of all assigned computation

frequencies is bound by the total computation frequency, i.e.
∑K

k=1 f
AP
k,l ≤ fmaxAP

l . The computation time of the task of MU

k task at AP l can be determined by

T comp

k,l =
cks

task
k

fAP
k,l

. (5)

If the software for the computation is not available, a download

of software m with size sapp
m in bits from a central cloud server

can be started simultaneously to the upload of the task. With

a backhaul link transmission rate rdown
l from the cloud server

to AP l, the download time of software m can be calculated

as

T down
m,l = (1− am,l) ·

sapp
m

rdown
l

. (6)

In a scenario with available software for calculation, the

processing time for the offloading of the task of MU k to

AP l can be written as the sum of (4) and (5). To include

the new possibility that the downloading time of the software

exceeds the upload time of the task, the maximum of (4) and

(6) is taken, which leads to a new expression for the total

offloading time in dependence of the shared resources:

TAP
k,l

(

bk,l, f
AP
k,l

)

= max
{

T up

k,l, T
down
m,l

}

+ T comp

k,l (7)

= T up

k,l +max
{

0, T down
m,l − T up

k,l

}

+ T comp

k,l .

A static power pstatic
k is introduced for each MU k to model

the power of all other components of the device while

communicating or being idle during the remote computation.

Furthermore, each MU k has a transmission power ptrans
k,l . The

required energy for offloading the task of MU k to AP l can

then be modeled by

EAP
k,l

(

bk,l, f
AP
k,l

)

=
(

ptrans
k,l + pstatic

k

)

· T up

k,l (8)

+ pstatic
k ·

(

max
{

0, T down
m,l − T up

k,l

}

+ T comp

k,l

)

.

III. PROBLEM FORMULATION

A. Optimization Problem

The resources allocated to MU k can be indicated by vector

to bk = [bk,1, . . . , bk,L] for the bandwidths of the radio

channels and to fk = [fAP
k,1, . . . , f

AP
k,L] for the CPU frequencies

at the APs. If MU k decides for offloading its task to AP l,
the entries bk,l and fAP

k,l are non-zero while all others are 0.

The required computation energy for MU k can be written in

dependence of the allocated communication and computation

resources and the binary offloading decision vector as

Ek (xk, bk,fk) = xMU
k · EMU

k +
L
∑

l=1

xAP
k,l · E

AP
k,l (bk,fk) . (9)

The sum of the computation energies of all K MUs shall be

minimized as the objective of an optimization problem which

can be formulated as

argmin
xk,bk,fk,
∀k∈K

K
∑

k=1

Ek (xk, bk,fk) , (10)

s.t. xAP
k,l · T

AP
k,l

(

bk,l, f
AP
k,l

)

≤ TMU
k , ∀k& ∀l, (10a)

K
∑

k=1

bk,l ≤ bmax
l , ∀l, (10b)

K
∑

k=1

fAP
k,l ≤ fAP max

l , ∀l, (10c)

bk,l, f
AP
k,l ≥ 0, ∀k& ∀l, (10d)

xMU
k , xAP

k,l ∈ {0, 1}, ∀k& ∀l, (10e)

xMU
k +

L
∑

l=1

xAP
k,l = 1, ∀k. (10f)

Constraint (10a) ensures an upper time limit for the offloaded

task. An offloaded task should be computed at least as fast

as the local computation on the CPU of the MU itself to

guarantee a positive quality of experience when deciding

for offloading. The upper bounds of the shared resources in

constraints (10b) and (10c) have already been introduced in

Section II. The nonnegativity constraint (10d) prevents the

possibility of assigning negative resources to MUs. The last

two constraints (10e) and (10f) handle the binary nature of

the decision variables and guarantee that each MU has to take

exactly one decision where to compute its task.

In this form, problem (10) is a mixed-integer non-linear pro-

gram (MINLP). Although a reformulation of this optimization

problem and linearization of the objective function is possible

to make it compatible with MINLP-solvers like BARON, the

number of constraints increases rapidly with the numbers K
of MUs and L of APs. Therefore, a game theoretic approach

is investigated in the next subsection.

B. Game Theoretic Approach

The energy minimization problem can be reformulated and

approximated by an iterative algorithm, where the offloading

decisions of the MUs are modeled as a potential game. Each

MU tries to minimize its own energy for the computation of its

task, but each individual offloading decision has an influence

on the allocation of the communication and computation

resources for all MUs. If all MUs simultaneously decide for

offloading of the task to the same AP l, there is a high

possibility that the shared resources are not sufficient so that

no MU can fulfill the maximum offloading time constraint.

Game Porperties: We define a general strategic form game

G similar to [15] as an ordered triplet

G = (K, {Sk}k∈K, {uk}k∈K) (11)

with a set K of players, a set {Sk} of strategies for each

player and a utility function {uk} for each player. The set

K = {1, . . . ,K} of players is consists of the MUs of the

considered scenario. Each player has to choose between local

computation and offloading to one of the L APs which can be

modeled as strategy set

Sk =

{

sk = (xMU
k , xAP

k,1, . . . , x
AP
k,L)

∣

∣

∣

∣

(12)

xMU
k , xAP

k,l ∈ {0, 1}; xMU
k +

L
∑

l=1

xAP
k,l = 1

}

.

The played strategies of all MUs can be written by the corre-

sponding strategy profile s = (sk, s−k). In this formulation,

the played strategies are separated into the strategy of MU k
by sk ∈ Sk and the played strategies of all other MUs by

(s1, . . . , sk−1, sk+1, . . . , sK) ∈ S−k =
∏

j 6=k Sj . Finally, the

utility function for MU k can be defined by the required energy

for the computation of its task from (9) as

uk(s) =

{

∞, for TAP
k,l (s) > TMU

k ,

Ek (sk, bk,fk) , else.
(13)

A Nash equilibrium (NE) is a strategy profile s∗ where a

player k cannot decrease its utility function when deviating

from its strategy s∗k, i.e. uk(s
∗
k, s−k) ≤ uk(sk, s−k), ∀sk ∈ Sk.

A NE does not always exist for a general strategic form game,

but it is proven in [16] that a potential game has at least one.

Another important property found in [16] is the finite

improvement property (FIP). The player k is said to fol-

low an improvement path, where the utility function in the

next iteration i + 1 is lower than the previous one i, i.e.

uk(sk[i + 1], s−k) ≤ uk(sk[i], s−k). If all players have a

finite improvement path, the game possesses the FIP. It also

guarantees that a player k will reach its lowest possible

utility function in a finite number of iterations while all other

players do not change their strategies. For the proposed model,

it means that each MU k can reach its optimal offloading

decision when the offloading decisions of all other MUs are

unchanged.

Resource Allocation Strategy: The previously described

game and the strategies of the players apply to the offloading

decisions of the MUs, but not to the shared resources. When

a strategy profile s(i) of the offloading decisions is available

in the current iteration i, this optimization variable can be

excluded from optimization problem (10). Furthermore, it is

assumed that the maximum computation time constraint is

neglected for the resource allocation as it will be checked

during the offloading decision of the MU. The resulting

resource optimization problem can be formulated as

argmin
bk,fk,∀k∈K

K
∑

k=1

Ek (bk,fk) , (14)

s.t.

K
∑

k=1

bk,l ≤ bmax
l , ∀l, (14a)

K
∑

k=1

fAP
k,l ≤ fAP max

l , ∀l, (14b)

bk,l, f
AP
k,l ≥ 0, ∀k& ∀l. (14c)

It is shown in [12] that the shared communication and compu-

tation resources are independent after excluding the offloading

decisions. Therefore, it is also possible to formulate (14) using

Lagrangian multipliers and solve the Karush-Kuhn-Tucker-

conditions for an optimal allocation strategy. The results are

the fraction of the total bandwidth bmax
l for MU k offloading

its task to AP l as

b∗k,l = bmax
l ·

√

xAP
k,l

(ptrans
k,l

+pstatic
k

)stask
k

log
2

(

1+
ptrans
k,l

|hk,l|
2

σ2

)

∑K

k=1

√

xAP
k,l

(ptrans
k,l

+pstatic
k

)stask
k

log
2

(

1+
ptrans
k,l

|hk,l|
2

σ2

)

(15)

and the fraction of the total available processing frequency

fmaxAP
l at the AP l reserved for the computation of the task of

MU k

fAP ∗
k,l = fmaxAP

l ·

√

xAP
k,lp

static
k cks

task
k

∑K

k=1

√

xAP
k,lp

static
k cks

task
k

. (16)

These fractions of the shared resources are used in the follow-

ing two algorithms to allocate the shared resources according

to the available strategy profiles.

Initialization: The game theoretical algorithm can be ini-

tialized by any strategy profile s. Nevertheless, a well chosen

starting point can improve the convergence speed and possibly

also the results of the algorithm. An intuitive approach is

the assignment of each MU to the nearest AP by Euclidean

distance. If the portion of the shared resources allocated to

MU k is not enough to fulfill its maximum offloading time

constraint (10a), the MU will decide for local computation.

Algorithm 1 Initialization (Offloading to the Nearest AP)

All MUs decide to offload to their closest AP
(by Euclidic distance)
Calculate b∗k,f

∗

k∀k for this strategy profile s
if (10a) is not fulfilled for some MUs then

Set corresponding offloading decisions
of these MUs to local computation

end if

Game Theoretic Algorithm: After an initial strategy profile

is available, the iterative algorithm can be started. It is sum-

marized as pseudo-code in Algorithm 2. An iteration counter

i is used to store the number of changes in the offloading

decision before the NE is reached. The communication and

computation resources from (15) and (16) are calculated in

each step for all possible strategies {Sk} of MU k who is the

active player. The algorithm makes use of the finite strategy set

of each MU k and the finite improvement path until this MU

reaches its minimum utility function. After one MU reaches

the minimum, the next MU k + 1 has to decide whether

it can lower its utility function. The algorithm terminates if

all MU cannot decrease their utility function and therefore,

do not change their offloading decision anymore. These final

offloading decisions are stored in the strategy profile s
∗.

Algorithm 2 Iterative Game Theoretic Algorithm

Set NE = False and i = 0
while NE == False do

k = 1; reset = 0;
while reset = 0 && k ≤ K do

AP calculates {b∗k,f
∗

k} for (s′k, s−k[i]), ∀s
′

k ∈ Sk

MU k checks, if (10a) is fulfilled, otherwise sets correspond-
ing utility to uk(s

′

k, s−k[i]) = ∞
if uk(s[i]) > uk(s

′

k, s−k[i]), s
′

k ∈ Sk then
Set s[i+ 1] = (s′k, s−k[i]); i = i+ 1; reset = 1;

else if k == K then
Set NE = True;

else
k = k + 1; reset = 1;

end if
end while

end while

return NE s
∗ of game G and corresponding resource allocation

{r∗k}

IV. NUMERICAL RESULTS

For the numerical simulations, the described scenario is

modeled by 4 APs placed in the corners of a 200m × 200m

square and a varying number of MUs placed inside the square

with a minimum distance of 10m to an AP. Each MU is

assumed to have one task to compute. The task belongs to

one of three different types of applications, which can be

characterized as follows:

• Type 1 (audio, photo, etc.): small to medium size, low

complexity, offloading or local computation is highly

dependent on the network quality and the offloading

decisions of the other MUs

• Type 2 (video processing): high task size, high complex-

ity, offloading is always preferred

• Type 3 (computation tasks, e.g. MATLAB): small size,

high complexity, offloading is only preferred if the soft-

ware is installed at the AP

The assumed simulation parameters for all types of tasks are

chosen to be close to measurements from [13] and [17] and are

summarized in Table I. Each MU has a computation frequency

TABLE I
SIMULATION PARAMETERS OF DIFFERENT TASK TYPES

Type 1 Type 2 Type 3

Task Size s
task 10 MB 100 MB 1 MB

Task Complexity c 200 1000 2000

Software Size s
app 200 MB 2000 MB 1000 MB

of fMU
k = 1GHz, while the cloudlets are more powerful and

offer a total computation frequency of fmaxAP
l = 8GHz. The

powers associated with each MU k are local calculation power

pcalc
k = 1W, transmission power ptrans

k,l = 200mW and static

power pstatic
k,l = 100mW.

2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Number of Mobile Units

A
v
er

ag
e

S
u
m

E
n
er

g
y

/
J

Exhaustive Search
Proposed Game
Nearest AP

Fig. 2. Average sum energy of all MUs for different numbers K of MUs

Each AP l is assumed to have a separate radio channel with

a maximum available bandwidth of bmax
l = 10MHz and a

white Gaussian noise power of σ2 = 10−13 W. The channel

gain between MU k and AP l is given by |hk,l|
2 = 1/d3k,l

with the Euclidean distance dk,l. Each AP l is connected with

a backhaul link transmission rate of rcloud
l = 1Gbit/s to the

central cloud server for software downloads.

In the following results, 200 Monte Carlo runs with ran-

domly placed users and random task type are performed per

data point. The optimal solution is obtained by exhaustive

search over all permutations of the possible offloading de-

cisions which scales by the number of possible offloading

decisions per MU to the power of the number K of MUs, i.e.

(L+1)K . For 10 MUs there are already about 510 ≈ 9.76 mil-

lion different possible combinations of offloading decisions.

The first result in Figure 2 shows the sum energy of all

MUs on average over all Monte Carlo runs. It is assumed that

no software was available at the APs. In the plot, we compare

three possible methods to calculate the offloading decisions

and corresponding sum energy of the MUs: offloading to the

nearest AP which is equal to the initialization strategy, the

proposed game theoretic algorithm and the optimal solution

obtained by exhaustive search. The proposed game is close to

the optimal solution and already 80.7% better for 4 MUs and

99.7% better for 10 MUs than the assignment to the nearest

AP.

An important aspect of this paper is the new model of

the software availability. This raises the question whether

the results show any difference in comparison to offloading

models without considering it. Figure 3 shows the number

of offloading MUs when increasing the total number K of

MUs in the scenario. While the dotted lines show the number

of offloading MUs in a scenario with all required software

available at the APs, the solid lines show the difference with

the newly introduced possible absence of software. Compared

to the case of available software, the number of MUs deciding

2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

Number of Mobile Units

A
v

g
.

N
u

m
b

er
o

f
O

ffl
o

ad
in

g
M

o
b

il
e

U
n

it
s no SW, Exhaustive Search

no SW, Proposed Game
no SW, Nearest AP
all SW, Exhaustive Search
all SW, Proposed Game
all SW, Nearest AP

Fig. 3. Avergage number of offloading MUs for different numbers K of MUs

for offloading in a system with required software download

is considerably lower. It shows that our model of a possible

software download can improve the offloading decisions of

the MUs. Interestingly, the proposed game seems to slightly

overestimate the optimal number of offloading MUs compared

to the optimal solution. Therefore, the assigned fractions of the

shared resources per offloading MU on average are slightly

lower than the fractions computed by the optimal solution.

This is one of the reasons for the gap between the proposed

game and the optimal solution in Figure 2.

The game theoretic algorithm is also tested for the number

of iterations until it converges to a NE. For the simulation

result in Figure 4, each AP is assumed to randomly have one of

the three required software installed. The solid lines represent

the average number of iterations the algorithm requires for

different for both homogenous task types and mixed task types

at the MUs. Especially for MUs with only type 2 (video

processing) or only type 3 (computation tasks) tasks, the

number of iterations is higher as there is more competition

about the communication and computation resources. The gray

area in Figure 4 represents the number of iterations during 200

Monte Carlo simulations with different placements of the MUs

and its upper bound is the worst case number of iterations

that occurred during the simulations. Even for 25 MUs, the

worst case number of iterations was only 20. As the lower

bound is at 0 iterations for all numbers K of MUs, it shows

that our proposed initialization method is already producing

a reasonable starting point to support a fast convergence.

Furthermore, the result in Figure 4 shows that the game

theoretic algorithm can easily be scaled up for a much higher

number K of MUs compared to the exhaustive search solution.

V. CONCLUSION

Considering the software availability, the offloading prob-

lem is modeled as an energy minimization problem. To over-

come the rapidly increasing complexity of this MINLP for-

2 5 10 15 20 25
0

5

10

15

20

25

Number of Mobile Units

N
u

m
b

er
o

f
It

er
at

io
n

s

Avg. only type 1
Avg. only type 2
Avg. only type 3
Avg. mixed types
Iteration region

Fig. 4. Number of iterations of the game theoretic algorithm for different
numbers K of MUs

mulation, a game theoretic algorithm, an initialization strategy

and a resource allocation method are proposed. The numerical

results show a significant improvement of the proposed game

theoretic algorithm over the simpler strategy of assigning MUs

to the closest AP. Furthermore, the game has a considerably

lower computational complexity and can handle a much higher

number of MUs in the network than the optimal solution

by exhaustive search. The software availability produces a

noticeable difference in the willingness of the MUs to offload

their computation.

ACKNOWLEDGEMENT

This work has been performed in the context of the DFG

Collaborative Research Center (CRC) 1053 MAKI - subpro-

jects B3 and C7. This work has been supported by DAAD

with funds from the German Federal Ministry of Education

and Research (BMBF).

REFERENCES

[1] Cisco, “Cisco visual networking index: Global mobile data traffic
forecast update, 20172022,” Tech. Rep. C11-738429-01, 2019.

[2] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing - a key technology towards 5G,” ETSI White Paper,
vol. 11, 2015.

[3] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE

Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[4] C. Wang, Y. He, F. R. Yu, Q. Chen, and L. Tang, “Integration of
networking, caching, and computing in wireless systems: A survey,
some research issues, and challenges,” IEEE Communications Surveys

& Tutorials, vol. 20, no. 1, pp. 7–38, 2017.

[5] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Transactions on Communications, vol. 64, no. 10, pp. 4268–4282,
2016.

[6] H. Q. Le, H. Al-Shatri, and A. Klein, “Efficient resource allocation in
mobile-edge computation offloading: Completion time minimization,”
in Proc. of the IEEE International Symposium on Information Theory

(ISIT), 2017, pp. 2513–2517.

[7] V. Cardellini, V. D. N. Personé, V. Di Valerio, F. Facchinei, V. Grassi,
F. L. Presti, and V. Piccialli, “A game-theoretic approach to computation
offloading in mobile cloud computing,” Mathematical Programming,
vol. 157, no. 2, pp. 421–449, 2016.

[8] M.-H. Chen, M. Dong, and B. Liang, “Multi-user mobile cloud off-
loading game with computing access point,” in Proc. of 5th IEEE

International Conference on Cloud Networking (Cloudnet), 2016, pp.
64–69.

[9] H. Guo and J. Liu, “Collaborative computation offloading for multiac-
cess edge computing over fiber–wireless networks,” IEEE Transactions

on Vehicular Technology, vol. 67, no. 5, pp. 4514–4526, 2018.
[10] S. Jošilo and G. Dán, “A game theoretic analysis of selfish mobile

computation offloading,” in Proc. of the IEEE INFOCOM 2017 -

Conference on Computer Communications, 2017, pp. 1–9.
[11] Q. Li, J. Zhao, and Y. Gong, “Cooperative computation offloading and

resource allocation for mobile edge computing,” in 2019 IEEE Inter-

national Conference on Communications Workshops (ICC Workshops).
IEEE, 2019, pp. 1–6.

[12] T. Mahn, D. Becker, H. Al-Shatri, and A. Klein, “A distributed algorithm
for multi-stage computation offloading,” in 2018 IEEE 7th International

Conference on Cloud Networking (CloudNet). IEEE, 2018, pp. 1–6.
[13] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients

in cloud computing.” Proc. of the 2nd USENIX Conf. Hot Topics on

Cloud Computing, pp. 1–4, 2010.
[14] S. Newman, Building microservices: designing fine-grained systems.

O’Reilly Media, Inc., 2015.
[15] S. Lasaulce and H. Tembine, Game theory and learning for wireless

networks: fundamentals and applications. Academic Press, 2011.
[16] D. Monderer and L. S. Shapley, “Potential games,” Games and economic

behavior, vol. 14, no. 1, pp. 124–143, 1996.
[17] A. Carroll, G. Heiser et al., “An analysis of power consumption in a

smartphone.” in USENIX annual technical conference, vol. 14. Boston,
MA, 2010, pp. 21–21.

