
Tobias Mahn, Maximilian Wirth, and Anja Klein, ”Game Theoretic Algorithm for Energy

Efficient Mobile Edge Computing with Multiple Access Points,” in Proc. of the 8th IEEE

International Conference on Mobile Cloud Computing, Services, and Engineering (Mobile

Cloud), April 2020.

c©2020 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this works must be obtained from the IEEE.

Game Theoretic Algorithm for

Energy Efficient Mobile Edge Computing

with Multiple Access Points

Tobias Mahn, Maximilian Wirth, Anja Klein

Communications Engineering Lab, TU Darmstadt, Germany, {t.mahn, a.klein}@nt.tu-darmstadt.de

Abstract—This paper considers a Mobile Edge Computing
scenario with multiple mobile units (MUs), multiple access points
(APs) and one cloudlet server. The MUs have to decide whether
offloading their computation tasks to the cloudlet is energy wise
beneficial. As there are multiple APs available to connect the MUs
to the cloudlet and communication and computation resources
have to be shared among all MUs, each MU also has to choose
the AP for transmission that minimizes its offloading energy
under the given fraction of the overall resources. The problem is
formulated as a energy minimization problem with a maximum
offloading time constraint. MUs not only need to consider the en-
ergy required for local computation or offloading, but simultane-
ously avoid an overlong processing time of offloaded computation.
This joint offloading decision and resource allocation is divided
into two subproblems in the proposed approach. The resource
allocation problem is reformulated by using Lagrange multipliers
and closed-forms for the calculation of the shared resources
are found. These results can be integrated into the proposed
game theoretic algorithm for the offloading decision problem.
The algorithm is based on a potential game and therefore, can
be proven to converge to a Nash equilibrium. Numerical results
show a benefit of the proposed resource allocation strategy, a
performance of the proposed game algorithm near the optimal
solution and a fast algorithm execution time that can even be
significantly improved by proposed sorting metrics.

Index Terms—mobile edge computing, joint optimization, re-
source allocation strategy, game theory

I. INTRODUCTION

The popularity of smartphones and other battery-driven

mobile devices in combination with an ever increasing number

of demanding applications leads to the necessity to offload

computation tasks. Even in the early days of smartphones

with less available applications, the battery life of the devices

has been the greatest concern of the users [1]. Cloud services

with ubiquitous and elastic resources like Amazon EC2 or

Microsoft Azure were proposed as the solution to computation

offloading [2]. In the previous years with quickly rising traffic

on the internet and billions of connected devices, a shift from

sending the data to central cloud servers towards processing

it at the edge of the network happened. This so called Mobile

Edge Computing (MEC) shall offer significantly lower latency

during the transmission of computation tasks [3] and enable

applications that require nearly real-time computation like

augmented reality or natural speech processing [4]. Especially

with the 5G mobile networks, MEC plays an important role to

guarantee low latency for communication and computing [5].

Furthermore, a recent forecast predicts billions of new machine

to machine (M2M) devices until 2022. Usually, M2M devices

are limited in their computational capabilities and available

MEC servers, e.g. at cellular base stations or WiFi access

points, are necessary to make M2M services possible or to

enable more complex services [6].

MEC has often been studied in small scenarios with a single

access point (AP) and a single MEC server or cloudlet. In early

publications about MEC like [7], the authors even considered

only a single mobile unit (MU) that has to decide between

local computation and offloading to a MEC server. In this

case, the single MU does not have to share the resources

for communication and computation in the scenario. The

authors of [8] and [4] investigate MEC scenarios with multiple

MUs. Each MU has to decide whether offloading its task

or local computation is more beneficial based on the partial

network resources available to it. Both papers use optimization

techniques to minimize their respective objectives. While the

authors of [8] aim for a minimal power consumption of all

MUs in the scenario, the authors of [4] optimize the maximum

offloading and computation time in the considered network.

In [9] and [10], the scenarios are more complex. Multiple

MUs can choose between local computation or offloading their

tasks via one of multiple APs to one central cloudlet. Both

papers are based on game theoretic models and investigate

the offloading decisions of the MUs based on the limited

and shared resources of the considered networks. In [9], the

authors investigate a minimization of a joint objective of the

required energy and time for the computation of the tasks of

all MUs. The authors of [10] investigate a joint objective of

the computation energy together with an abstract monetary

cost function. While the available resources are split equally

among offloading MUs in [9], in [10] a proportional fair

resource allocation technique is shown. For the fair allocation,

the offloading decisions are decoupled from the resource

allocation and the resource allocation problem is reformulated

by the use of Langrange multipliers. A similar result for the

proportional fair allocation of shared resources is also obtained

by our group for a multi-stage offloading scenario in [11].

This paper considers a similar MEC scenario with multiple

MUs and multiple APs that are connected to a central cloudlet

server. Based on its share of the communication and compu-

tation resources, each MU has to decide whether it should

offload its task or better compute its task locally. In contrast

to [9] and [10], a joint objective function is avoided. Previous

calculcations and simulations have shown that such a formu-

lation is strongly dependent on the choice of the weighting

factors between the two objective. Therefore, we propose a

game theoretic algorithm for an energy minimization problem

with a maximum offloading time constraint, which is based on

the Join and Play Best Replies (JPBR) algorithm from [9]. The

proportional fair allocation of the shared resources based on

the characteristic parameters of each MU is integrated into the

JPBR algorithm. Furthermore, it is shown how a relaxed time

constraint influences the energy minimization problem and

how a sorting strategy can lead to a significant improvement

of the numerical results.

In Section II, we introduce the scenario and most relevant

definitions of our offloading model. Afterwards in Section

III, the offloading problem is formulated as a global energy

minimization problem. This described problem is used as a

basis for the game theoretic algorithm in Section IV. In Section

V, the performance of the proposed approach is evaluated

numerically.

II. SYSTEM MODEL

A. Scenario

Fig. 1. Computation offloading scenario with K MUs, L APs and one shared
cloudlet server

A set K = {1, 2, . . . ,K} of MUs is considered. Similarly

to [12], it is assumed that the set of MUs remains unchanged

during one offloading period. The MUs are located in an area

that is covered by a set L = {1, 2, . . . , L} of APs. The MUs

can connect through radio access channels to the L APs. Each

of the APs has a backhaul link to a shared cloudlet server that

is able to perform computation for the MUs. In the following,

only energies and times of the MUs are considered as the

APs and the cloudlet are assumed to be connected to a steady

power supply.

Each MU k has a non-splittable task that can be computed

locally or offloaded to the cloudlet for remote computation.

The task is characterized by its size tk in bits and a complexity

factor ck, which is measured in central processing unit (CPU)

cycles per bit. The complexity factor is necessary to account

for the different computation requirements of a task, e.g.

applying filters on a photo usually requires much less CPU

cycles than the execution of a face detection algorithm in a

video file. In [13], the authors investigated such measures for

different types of computation tasks.

B. Local Computation

First, the possibility of local computation on the CPU of the

MU is introduced. The CPU of each MU k has a processing

frequency fMU
k and requires a calculation power pcalc

k during

operation under full load. Combined with the characteristics of

the task of MU k, the local computation time can be calculated

as

TMU
k =

cktk
fMU
k

. (1)

Similarly, the local computation energy is

EMU
k = pcalc

k

cktk
fMU
k

. (2)

C. Computation at the Cloudlet

As an alternative to local execution of the task, a MU

can decide for offloading to the cloudlet. If the MU decides

for offloading, the task will be sent over a radio access

channel to an AP and then forwarded via the backhaul link

from the AP to the cloudlet. As available communication and

computation resources in the network have to be shared among

all MUs, a model for the transmission and remote computation

is introduced in the following paragraphs.

Transmission: In the first step, MU k transmits its task to

AP l. A MU can only connect to one AP simultaneously. It it

assumed that each AP l has a separate transmission channel

with given maximum bandwidth bmax
l . If multiple MUs decide

to offload their tasks over the same AP l, MU k only receives

a fraction bk,l of the total available bandwidth bmax
l . To avoid

interference among multiple MUs transmitting to AP l, each

AP is assumed to use an orthogonal transmission scheme. The

uplink rate can be expressed by the Shannon channel capacity

as

ruplink

k,l = bk,l log2

(

1 +
ptrans
k |hk,l|

2

σ2

)

, (3)

where the uplink channel gains |hk,l|
2 and the white Gaussian

noise power σ2 are assumed to be known at the AP. The

channel gains |hk,l|
2 gains are determined by the distance law

with distance dk,l and the environmental parameter α. The

transmission time of MU k to AP l can be expressed as

T trans
k,l =

tk

ruplink

k,l

. (4)

Each MU has two more powers that have to be considered. The

transmit power ptrans
k is the equivalent power of the radio access

hardware that is activated during the transmission. The static

power pstatic
k shall account for the power of all other hardware

components of the device while communicating or being idle

until the result of the task is computed at the cloudlet. With

these powers, the transmission energy over the radio access

channel is

Etrans
k,l =

(

ptrans
k + pstatic

k

) tk

ruplink

k,l

. (5)

After AP l received the task of MU k, it forwards the

task to the cloudlet over the backhaul link with a maximum

transmission rate rbackhaul max
l . Similar to the shared bandwidth,

MUs have to share the maximum available rate when multiple

MUs use the same AP l for offloading. In this case, MU k
receives a fractional rate rbackhaul

k,l . Accordingly, the backhaul

transmission time of the task of MU k from AP l to the

cloudlet server can be defined as

T backhaul
k,l =

tk
rbackhaul
k,l

(6)

and the energy MU k consumes during backhaul transmission

as

Ebackhaul
k,l = pstatic

k

tk
rbackhaul
k,l

. (7)

A transmission of the computation results back from the

cloudlet to the MUs is neglected, since the data size of the

result can in many applications be assumed to be significantly

smaller that the original task size, similar to [4], [14].

Cloudlet Computation: After the cloudlet received the task

of MU k, it can start the computation. The cloudlet is assumed

to have a higher CPU frequency fAP max than any of the MUs,

i.e. max
{

fMU
k

}

< fAP max. Multiple offloading MUs have to

share the computation resources at the cloud and in this case,

MU k receives an equivalent computation frequency fAP
k at

the cloudlet. The computation time of the task of MU k at the

cloudlet is expressed by

T comp

k =
cktk
fAP
k

(8)

and the energy the MU consumes during the computation by

Ecomp

k = pstatic
k

cktk
fAP
k

. (9)

D. Overall Energy and Time Definitions

After introducing all individual times and energies to be

considered in the computation offloading scenario, the overall

model can be formulated. Each MU k can decide for local

computation or for offloading its task via AP l. Therefore, an

offloading decision vector xk = [xMU
k , xAP

k,1, . . . , x
AP
k,L] is used

to store the offloading decision of MU k. This binary vector

has a 1 at the position of the offloading decision and is 0
otherwise. xMU

k represents the local computation, while xAP
k,l is

used for the decision to offload to AP l.
A MU deciding for offloading also requires at least a frac-

tion of the shared communication and computation resources

to be able to transmit and compute its task at the cloudlet. The

fractions of the communication resources of MU k are stored

in two vectors, one vector containing the allocated bandwidths

bk = [bk,1, . . . , bk,L] and the other vector containing the

allocated backhaul transmission rates rk = [rk,1, . . . , rk,L].
Finally, the allocated fraction of the computation frequency

fAP
k for offloading MU k is stored in a scalar value.

In the following, the times and energies are defined as

functions dependent on the offloading decisions and shared

resources.

The combination of (4), (6) and (8) leads to the overall

offloading time of MU k as

TAP
k,l

(

bk,l, rk,l, f
AP
k

)

= T trans
k,l + T backhaul

k,l + T comp

k,l . (10)

In a similar way, (5), (7) and (9) can be combined to the

overall offloading energy as

EAP
k,l

(

bk,l, rk,l, f
AP
k

)

= Etrans
k,l + Ebackhaul

k,l + Ecomp

k,l . (11)

As the offloading decision vector xk has only one non-zero

element, the energy of MU k required for the computation of

its task based on the offloading decision can be written as

Ek

(

xk, bk, rk, f
AP
k

)

= (12)

xMU
k · EMU

k +

L
∑

l=1

xAP
k,l · E

AP
k,l

(

bk,l, rk,l, f
AP
k

)

.

III. ENERGY MINIMIZATION PROBLEM

After defining the offloading energy of one MU k in (12),

the sum of the energies of all MUs is used as the objective of

the global energy minimization problem

argmin
xk,bk,rk,

fAP
k,l,∀k∈K

K
∑

k=1

Ek

(

xk, bk, rk, f
AP
k,l

)

, (13)

s.t. xAP
k,lT

AP
k,l

(

bk,l, rk,l, f
AP
k,l

)

≤ TMU
k , ∀k& ∀l, (13a)

K
∑

k=1

bk,l ≤ bmax
l , ∀l, (13b)

K
∑

k=1

rbackhaul
k,l ≤ rbackhaul max

l , ∀l, (13c)

K
∑

k=1

fAP
k ≤ fAP max, (13d)

bk,l, rk,l, f
AP
k,l ≥ 0, ∀k& ∀l, (13e)

xMU
k , xAP

k,l ∈ {0, 1}, ∀k& ∀l, (13f)

xMU
k +

L
∑

l=1

xAP
k,l = 1, ∀k. (13g)

The constraints can be categorized into three groups. The first

constraint (13a) shall ensure a good quality of experience for

the MU by restricting the maximum offloading time to an

upper limit. In this case, the offloading of a task has to be at

least as fast as the local computation on the CPU of the MU.

The next group of constrains (13b) to (13e) regulates the

shared resources. Constraints (13b) to (13d) restrict the sum of

the allocated fractions of the resources to their respective upper

limit. Constraint (13e) prevents the case that the optimization

could allocate negative resources.

The last two constraints (13f) and (13g) control the off-

loading decisions. Constraint (13f) is used to ensure the

binarity of the offloading problem and constraint (13g) secures

that each MU takes exactly one offloading decision.

Although the proposed offloading problem can be formu-

lated in a compact form, it is a mixed-integer non-linear pro-

gram (MINLP) that cannot be solved efficiently. Furthermore,

the number of constraints in (13) is rapidly increasing with

the numbers K of MUs and L of APs. In the next section, an

algorithm based on a game theoretic model is investigated to

find an approximation of (13).

IV. GAME THEORETIC ALGORITHM

The presented energy minimization problem in Section III

jointly optimizes the offloading decisions of the MUs and

the resource allocation of the shared communication and

computation resources. A global optimum point can only be

computed when knowledge about all characteristics of the

scenario is available at one entity in the network. Usually,

this assumption cannot be made and therefore, a heuristic

algorithm with distributed partial knowledge is an alternative

to the central optimization. For this algorithm, we separate the

offloading decisions and the resource allocation.

A. Resource Allocation Strategy

For the resource allocation, a simplified version of (13) is

considered as

argmin
bk,rk,f

AP
k ,

∀k∈K

K
∑

k=1

Ek

(

xk, bk, rk, f
AP
k

)

, (14)

s.t.

K
∑

k=1

bk,l ≤ bmax
l , ∀l, (14a)

K
∑

k=1

rbackhaul
k,l ≤ rbackhaul max

l , ∀l, (14b)

K
∑

k=1

fAP
k ≤ fAP max, (14c)

bk,l, rk,l, f
AP
k,l ≥ 0, ∀k& ∀l, . (14d)

The first simplification of removing constraints (13f) and (13g)

comes from the assumption that the offloading decisions are

known, since they are solved in a second separate problem.

Furthermore, the maximum time constraint (13a) is neglected

as the resource controller does not need to be aware of the

quality of experience of the individual MUs.

Although (14) is still a non-linear optimization problem,

optimal solutions for the shared resources can be found

analytically. As the radio access channel bandwidths, the

backhaul rates and the computation frequency at the cloudlet

are independent of each other, each can be treated separately.

When reformulating the problem using Lagrange multipliers

and solving the corresponding KKT-conditions, as shown in

[10] and [11], closed-form solutions for the resource allocation

can be found. The fraction of the bandwidth bmax
l for MU k

offloading via AP l is given as

b∗k,l = bmax
l ·

√

xAP
k,l

(ptrans
k

+pstatic
k

)tk

log
2

(

1+
ptrans
k

|hk,l|
2

σ2

)

∑K

k=1

√

xAP
k,l

(ptrans
k

+pstatic
k

)tk

log
2

(

1+
ptrans
k

|hk,l|
2

σ2

)

, (15)

the fraction of the backhaul transmission rate rbackhaul∗k,l for

MU k offloading via AP l can be calculated as

rbackhaul∗k,l = rbackhaul max
l ·

√

xAP
k,lp

trans
k tk

∑K

k=1

√

xAP
k,lp

trans
k tk

(16)

and the fraction of the computation frequency at the shared

cloudlet for MU k can be calculated as

fAP ∗
k = fAP max ·

√

xAP
k,lp

static
k cktk

∑K

k=1

√

xAP
k,lp

static
k cktk

. (17)

B. Offloading Decision Game

Eqs. (15) to (17) can now be used to allocate the resources

for known offloading decision. In this section, the game

theoretic algorithm is defined to find the offloading decisions.

Similar to [15] and [9], we define a strategic form game G

as an ordered triplet

G = (K, {Sk}k∈K, {uk}k∈K) , (18)

The set K of players is equivalent to the set of MUs, the set

of strategies corresponds to their possible offloading decisions

Sk =

{

sk = (xMU
k , xAP

k,1, . . . , x
AP
k,L)

∣

∣

∣

∣

(19)

xMU
k , xAP

k,l ∈ {0, 1}; xMU
k +

L
∑

l=1

xAP
k,l = 1

}

.

A MU plays one of its strategies sk ∈ Sk and the played strate-

gies of all K MUs can be formulated as s = (sk, s−k). This

notation of the strategy profile separates the played strategy

of MU k as sk from the strategies of all other MUs K\{k} as

s−k. Using the strategy profile s, the utility function for each

MU k can be defined as the required energy for the compu-

tation of its task from (12) as uk(s) = Ek

(

xk, bk, rk, f
AP
k

)

.

The strategy profile and utility function are used to define

a state, when a game terminates: A Nash equilibrium (NE)

is a strategy profile s
∗ where none of the MUs can decrease

its utility function when deviating from their strategy s∗k, i.e.

uk(s
∗
k, s−k) ≤ uk(sk, s−k), ∀sk ∈ Sk. Although a NE does

not always exist for general strategic form games, it has been

proven by the authors of [16] that a potential game has at least

one NE.

Another important characteristic of potential games is the

finite improvement property (FIP) [16]. MU k is said to follow

an improvement path, when its utility function in the next

iteration t+1 is lower than the one in the previous iteration t,
i.e. uk(sk(t+1), s−k) ≤ uk(sk(t), s−k). If all MUs follow an

finite improvement path, the game possesses the FIP. While

all other MUs do not change their strategies. the FIP also

guarantees that a MU k will reach its lowest possible utility

function in a finite number of iterations. In the proposed

scenario, it means that each MU k can reach its optimal

offloading decision when the offloading decisions of all other

MUs are unchanged.

For the description of the following game theoretic algo-

rithms, we define two sets of MUs: the set of offloading

MUs to AP l, Ol(s) = {k|xAP
k,l = 1} and the set of all

offloading MUs O = ∪l∈LOl. Furthermore, the number of

MUs offloading to AP l in iteration step t is denoted by nl(t)
and the number of all offloading MUs is denoted by nO(t).

JPBR Algorithm: Due to space limitations, the original

JPBR algorithm is only described shortly and no pseudo-code

is presented. A detailed version can be found in [9]. The JPBR

algorithm is iterative and one MU joins the game after another.

It consists of two main functions:

• ImproveAP: The shared resources of the APs are con-

gested by multiple MUs that decided for offloading and

at least one MU wants to switch the AP it uses for

offloading. In decreasing order of their possible improve-

ment by switching, the unsatisfied MUs play their best

response and switch from AP l to AP l′, which minimizes

their utility function.

• Update Phase: In the current time step t, one MU joined

the game and decided for offloading to AP l. Now one AP

l has one more offloading MU, i.e. nl(t) = nl(t−1)+1.

In this case, it has to be evaluated whether another MU

offloading via AP l can now improve its utility function

by computing locally instead of offloading its task.

Otherwise, if no MU decided for offloading due to

congested APs in time step t, all APs are evaluated

whether one MU should stop offloading. If one MU at

AP l′ stops offloading, the locally computing MU who

can improve its utility the most by switching its decision

to offloading via AP l′ is added to the set of offloading

MUs. Otherwise, the remaining nO(t)−1 offloading MUs

change their offloading decisions using ImproveAP.

The ImproveAP function in [9] is proven to posses a potential

function and to terminate in a finite number of improvement

steps in a NE, as proven by [16]. Therefore, the JPBR

algorithm also terminates when no more MU can join the set

of offloading MUs and all offloading MUs are satisfied with

their strategy after the execution of the ImproveAP function.

The JPBR algorithm terminates after all MUs are added to the

game and no MU wants to deviate from its strategy any more.

Adaptation of JPBR Algorithm to JPBRTC Algorithm: The

JPBR algorithm has some drawbacks: The available resources

are distributed equally among all offloading MUs and the

algorithm can only be used for the joint objective function

where energy and time are combined by weighting factors. In

the next paragraphs, it is explained how the JPBR algorithm is

modified to integrate the proposed resource allocation strategy

of (15) to (17) and the maximum offloading time constraint

of (13a). The proposed algorithm is called Join and Play Best

Replies Under a Maximum Time Constraint (JPBRTC).

When implementing the proposed resource allocation strat-

egy into the JPBR and JPBRTC algorithms, the offloading

decisions of the MUs are unknown during the execution the

ImproveAP and Update Phase functions. Therefore, we had

to combine the equal distribution of the JPBR algorithm with

averaged versions of (15) to (17). By this, we get an estimate

of the resources based on the characteristics of all MUs. The

adapted fraction bandwidth for MU k offloading to AP l is

estimated as

b̂∗k,l =
bmax
l

nl

·

√

xAP
k,l

(ptrans
k

+pstatic
k

)tk

log
2

(

1+
ptrans
k

|hk,l|
2

σ2

)

1
K

∑K

k=1

√

(ptrans
k

+pstatic
k

)tk

log
2

(

1+
ptrans
k

|hk,l|
2

σ2

)

, (20)

the estimated fraction of the backhaul transmission rate for

MU k offloading via AP l as

r̂backhaul∗k,l =
rbackhaul max
l

nl

·

√

xAP
k,lp

trans
k tk

1
K

∑K

k=1

√

ptrans
k tk

(21)

and the estimated fraction of the computation frequency of

MU k at the cloudlet as

f̂AP ∗
k =

fAP max

nO

·

√

xAP
k,lp

static
k cktk

1
K

∑K

k=1

√

pstatic
k cktk

. (22)

The estimates (20) to (22) are used during the execution of the

the functions, while the proportional fair resource allocation

from (15) to (17) is calculated after the execution of each

function. The use of the estimated resources also has the

benefit that a potential function can still be found and the

ImproveAP function converges to a NE with the adapted

resource allocation strategy.

The full pseudo-code of the JPBRTC algorithm can be found

in Algorithm 1. We added a comment next to most functions

to explain the working principle during the execution of the

code. The algorithm is iterative and one MU is added to the

game at each iteration step. Before the next MU joins the game

in time step t, the MUs already participating in the game have

reached a NE in the previous time step t− 1. The integration

of the maximum time constraint into the algorithm is done by

excluding the MU k′ with the highest time violation for the

round and add it again back to the game after all remaining

MUs have reached a NE with strategies s−k′(t). After all K
MUs are taking part in the game, no MU violates its time

constraint and no MU wants to deviate from the found strategy

profile s
∗, the NE is reached and the algorithm terminates.

V. NUMERICAL RESULTS

A. Simulation Parameters

To model the scenario for the numerical simulations, we

assume the MUs and APs to be in a 1 km× 1 km square area.

For most simulations, 30 MUs and 5 APs are placed in uniform

random distribution. Each MU k has a task with a size tk
in the range of [2, 100]MB, drawn from a uniform random

distribution. The channel gains between MU k and AP l are

dependent on the Euclidean distance dk,l and are calculated

as |hk,l|
2 = 1/dαk,l with a path loss coefficient α = 4 for

urban areas. The white Gaussian noise power is assumed to

be σ2 = 10−13 W. Each available bandwidth bmax
l of the radio

access channels is drawn from a uniform distribution in the

Algorithm 1 JPBRTC Algorithm

Initialize t = 0, k = 1
Initial MU decision:
s1(t = 0) = s

∗(0) = argmin
{s1∈S1|T1(s1)<TMU

1
}

u1(s1)

t = t+ 1
for k = 2 : K do

% Already added MUs have reached a NE s
∗(t− 1)

sk(t) = argmin
{sk∈Sk |Tk(sk,s

∗
−k

(t−1))<TMU
k

}

uk(sk, s
∗
−k(t− 1))

Obtain: s(t) = (sk(t), s
∗
−k(t− 1))

Perform Update Phase function to obtain the NE s
∗(t)

% Check if a mobile user violates the time constraint:
while OTMU<T (s(t)) 6= ∅ do

% Find MU k′ most exceeding time constraint:

k′ = argmax
{k∈O(s(t)) |Tk(s(t))>TMU

k
}

Tk(s(t))

TMU
k

% Remove played strategy xAP
k,l from the set of strategies

% for k′ and remove MU k′ from the game:
Sk′ = {xMU

k′ , x
AP
k,1, . . . , x

AP
k,l−1, x

AP
k,l+1, . . . , x

AP
k,L}

s
′(t) = s−k′(t)

% Check if the MU k′ can be replaced by a MU that is
computing locally:
if ∃k′′ ∈ K\O(s′(t)) such that
uk′′(xMU

k′′ , s−k′′(t)) > uk′′(xAP
k′′,l, s

′
−k′′(t)) then

% Let the MU with lowest reluctance start offloading:

k′′ = argmin
{k∈K\O(s′(t)) |

EMU
k′′ (s(t))>EAP

k,l(x
AP
k,l,s

′
−k(t))

}

EAP
k,l(x

AP
k,l, s

′
−k(t))

EMU
k (s(t))

s
′′(t) = (xAP

k′′,l, s
′
−k′′(t))

else
% If no MU wants to start offloading, perform ImproveAP,
% since AP l has one offloading MU less than before:
s
′(t) = ImproveAP (s′(t))

% Some MU computing locally may now want
% to start offloading via AP m ∈ L\{l}:
if ∃k′′ ∈ K\O(s′(t)) ∃m ∈ L\{l} such that
uk′′(xMU

k′′ , s−k′′(t)) > uk′′(xAP
k′′,l, s

′
−k′′(t)) then

% Find MU that profits the most when switching
% to offloading and the corresponding AP:

(k′′,m′′) = argmin
{(k,m)∈

K\O(s′(t))×L\{l}}

EAP
k,m(xAP

k,m, s′−k(t))

EMU
k (s(t))

s
′′(t) = (xAP

k′′,m′′ , s−k′′(t))
% Some offloading MUs may want to deviate from
% their decision after MU k′′ starts offloading:
s
′′(t) = ImproveAP (s′′(t))

end if
end if
% Add MU k′ back to the game and let it
% take an initial offloading decision:
s−k′(t) = sk′′(t)
sk′(t) = argmin

{sk′∈Sk′ |

Tk′ (sk′ ,s−k′ (t))<Tk′,local}

uk′(sk′ , s−k′(t))

Obtain: s′(t) = (sk′(t), s−k′(t))
Perform the Update Phase function to obtain the NE s

∗(t)
t = t+ 1

end while

end for

range of [50, 150]MHz and the available backhaul link rates

rbackhaul max
l in the range of [50, 150]Mbit/s.

The CPU frequencies fMU
k are also continuously uniformly

distributed in the range of [0.5, 1.5]GHz, while the cloudlet

server has a fixed effective computation frequency fAP max =
100GHz. Each MUs is assigned with three powers drawn from

uniform random distributions: the calculation power pcalc
k in

the range of [1.5, 2.5]W, the gross transmit power ptrans
k in the

range of [0.5, 1]W and the static power pstatic
k in the range of

[0.1, 0.5]W. The assumed gross transmit power is higher than

the maximum allowed transmit power of the LTE or 802.11

standards in order to include the power required for the radio

hardware of the MUs, as measurements in [17] have shown.

B. Performance of the Proposed Resource Allocation Strategy

To be able to compare the new resource allocation strategy

(RAS) from (15) to (16) as well as (20) to (22) to the equal

distribution (ED) from [9], the original JPBR algorithm is used

for the first simulation results. The ED is obtained by dividing

the available resources by the number nl of MUs offloading via

AP l. As JPBR is used, the newly introduced maximum time

constraint (13a) is neglected and the original joint objective

function of energy and time combined by weighting factors

γE
k for energy and γT

k for time is reintroduced.

500 Monte-Carlo runs with new randomly drawn parameters

per run are used to calculate each data point of the following

simulations. In Figure 2, we compare ED against the proposed

RAS for different choices of the energy and time weights.

The original simulations in [9] use a random choice of the

weighting factors from a continuous uniform distribution on

[0, 1]. In this case, most MUs will not completely neglect the

maximum time that offloading their computation task requires.

This result is shown as dashed blue line in Figure 2. The

two solid curves with γE
k = 1 represent the results when the

algorithm only considers the energy weights. It is visible that

the proposed RAS outperforms the ED from [9]. The dashed

red curve in the plot shows the result if only the time γT
k = 1

is considered as objective of the JPBR algorithm. It is clearly

visible that the algorithm will perform worse in terms of the

sum energy.

Since the JPBR algorithm does not consider a maximum

time constraint, we are interested to see the performance in

the same simulation scenario as in Figure 2 in terms of the

computation delay for offloading MUs. The results in Figure

3 show the percentage of offloading MUs whose offloading

time is longer than a local computation would have been. If

the objective lies only on the computation time, i.e. γT
k = 1,

which is again represented by the dashed red curve, about

10% of the offloading MUs would exceed the maximum time

constraint. The other results are much worse and for between

38.6% and 98.5% of the offloading MUs, offloading of the

task takes longer than a local computation. When comparing

the solid curves in Figure 3, the proposed RAS still performs

slightly better than the ED from [9].

Both results show that the JPBR algorithm in its original

form can optimize a mixture of energy and time as optimiza-

tion objectives, but offloading may be a slower experience than

local computation for many MUs.

10 20 30 40 50 60 70 80 90 100
4

6

8

10

12

14

16

18

Task Complexity Factor c

A
ve

ra
ge

S
u
m

E
n
er

gy
/

J

RAS, γE
k = 1, γT

k = 0

RAS, γE
k = 0, γT

k = 1

ED, γE
k = 1, γT

k = 0

ED, random weights

Fig. 2. Average energy comparison of JPBR with ED vs. proposed RAS

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Task Complexity Factor c

A
ve

ra
ge

P
er

ce
n
ta

ge
of

M
U

s
E

x
ce

ed
in

g
T

im
e

RAS, γE
k = 1, γT

k = 0

RAS, γE
k = 0, γT

k = 1

ED, γE
k = 1, γT

k = 0

ED, random weights

Fig. 3. Comparision of the avergage percentage of MUs that exceed the
maximum offloading time

C. Performance of the JPBRTC Algorithm

After discussing the original JPBR algorithm, the proposed

JPBRTC algorithm is evaluated. As a direct comparison of

JPBR and JPBRTC is not possible due to the different ob-

jective functions, the optimal solution of the energy mini-

mization problem (13) is used as a benchmark. This solution

is computed by finding the minimum sum energy through

exhaustive search over all possible combinations of offloading

decisions of all MUs. In the simulations for Figures 4 and 5,

only 200 Monte-Carlo runs as well as 10 MUs and 3 APs

are considered, because the number of possible combinations

is growing rapidly by (L + 1)K , i.e. 410 ≈ 1.04 million

combinations.

Figure 4 shows the results obtained by the JPBRTC algo-

rithm and the exhaustive search. The curves show a noticeable

difference in the average energy consumption of all MUs, but

the shape of both curves is comparable. The offloading gain

g = Esystem without offloading/Esystem with offloading for both curves

is summarized in Table I for different task complexity factors

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

Task Complexity Factor c

A
ve

ra
ge

S
u
m

E
n
er

gy
/

J

JPBRTC
Exhaustive Search

Fig. 4. Average energy comparison of optimal solutions by exhaustive search
vs. the proposed JPBRTC algorithm

TABLE I
OFFLOADING GAIN FOR DIFFERENT COMPLEXITY FACTORS ck

g of Complexity Factors ck 10 40 70 100

g of Exhaustive Search 1.26 2.90 5.33 8.41

JPBRTC 1.16 2.44 4.43 7.16

ck. Although there is also a gap between the JPBRTC and the

optimal solution, JPBRTC still shows a great improvement

over only local computation as shown in Table I.

Further possible modifications are also investigated. The

first one is a relaxation of the tight maximum time constraint

to 110% and 120% of the local computation time, given in

Figure 5. The optimal solution is only computed for one

maximum time constraint, as the computation of all offloading

combinations requires much time. The red curves show the

impact of the relaxed time constraint on the results of the

JPBRTC algorithm. More MUs decide for offloading and

the sum energy of all MUs is lowered by up to 7.97% for

110% TMU
k and up to 14.75% for 120% TMU

k . If the MUs

are willing to lower their quality of offloading experience just

by a small margin, it is possible to reduce the sum energy

significantly.

An even higher improvement can be achieved by sorting

the MUs before the execution of the algorithm. The results

of the sorting are shown in Figure 6 and Table II. A simple

option is to sort the MUs in decreasing order of the task

complexities ck. This already leads to a decrease of the

execution time up to 38.07%. Sorting in decreasing order by

the their local computation energy EMU
k can even lead to up to

59.58% improvement. Many MUs who enter the game in the

beginning play their best offloading strategy, because the APs

are not congested in the beginning, and will not change this

offloading decision during the algorithm runtime any more.

More sophisticated sorting metrics would be possible, e.g.

considering the channel characteristics between the MUs and

the APs, but these would require more knowledge about nearly

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

Task Complexity Factor c

A
ve

ra
ge

S
u
m

E
n
er

gy
/

J

JPBRTC, Tk ≤ 1 · TMU

k

JPBRTC, Tk ≤ 1.1 · TMU

k

JPBRTC, Tk ≤ 1.2 · TMU

k

Exhaustive Search, Tk ≤ 1 · TMU

k

Fig. 5. Difference in the sum energy for relaxed maximum time constraint

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

Number of Mobile Units K

A
ve

ra
ge

A
lg

or
it

h
m

E
x
ec

u
ti

on
T

im
e

/
s Unsorted

Sort by ck
Sort by EMU

k

Fig. 6. Impact of initial sorting of the set of MUs

all parameters of the scenario at one central entity. Therefore,

only these two simpler metrics are considered here.

TABLE II
EXECUTION TIME SAVING FOR DIFFERENT NUMBERS K OF MUS

Number K of MUs 10 40 70 100

Sort by Complexity ck 6.58% 38.07% 31.05% 32.25%

Sort by EMU
k

10.44% 59.58% 56.66% 56.54%

VI. CONCLUSION

A computation offloading problem in a MEC scenario

with multiple APs is modeled. Since the proposed central

energy minimization problem is a MINLP and not efficiently

solvable by standard solvers, this formulation is used as a

basis for a distributed game theoretic approach. By separating

the offloading decisions and the resource allocation strategy,

two subproblems are created and used in a fast iterative game

theoretic algorithm. In numerical simulations, the proposed

resource allocation strategy is tested on the JPBR algorithm

and outperforms the reference allocation scheme of JPBR.

The proposed resource allocation is then used for the in the

developed energy minimization algorithm under a maximum

offloading time constraint. This algorithm can achieve an

offloading gain not far from the gain of the optimal solution by

exhaustive search, while having a considerably lower compu-

tational complexity. The relaxation of the time constraint and

the introduction of sorting strategies are further modifications

to the algorithm with a significant impact on the results.

ACKNOWLEDGEMENT

This work has been performed in the context of the DFG

Collaborative Research Center (CRC) 1053 MAKI - subpro-

jects B3 and C7. This work has been supported by DAAD

with funds from the German Federal Ministry of Education

and Research (BMBF).

REFERENCES

[1] D. Ferreira, A. K. Dey, and V. Kostakos, “Understanding human-
smartphone concerns: a study of battery life,” in Proc. of the Interna-

tional Conference on Pervasive Computing. Springer, 2011, pp. 19–33.
[2] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can off-

loading computation save energy?” IEEE Computer Magazine, vol. 43,
no. 4, pp. 51–56, 2010.

[3] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE

Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[4] H. Q. Le, H. Al-Shatri, and A. Klein, “Efficient resource allocation in
mobile-edge computation offloading: Completion time minimization,”
in Proc. of the IEEE International Symposium on Information Theory

(ISIT), 2017, pp. 2513–2517.
[5] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile

edge computing - a key technology towards 5G,” ETSI White Paper,
vol. 11, 2015.

[6] Cisco, “Cisco visual networking index: Global mobile data traffic
forecast update, 2017–2022,” Tech. Rep. C11-738429-01, 2019.

[7] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,” in
Proc. of the IEEE INFOCOM 2012. IEEE, 2012, pp. 2716–2720.

[8] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Joint allocation of
computation and communication resources in multiuser mobile cloud
computing,” in Proc. of the IEEE 14th Workshop on Signal Processing

Advances in Wireless Communications (SPAWC), 2013, pp. 26–30.
[9] S. Jošilo and G. Dán, “A game theoretic analysis of selfish mobile

computation offloading,” in Proc. of the IEEE INFOCOM 2017 -

Conference on Computer Communications, 2017, pp. 1–9.
[10] Q. Li, J. Zhao, and Y. Gong, “Cooperative computation offloading and

resource allocation for mobile edge computing,” in 2019 IEEE Inter-

national Conference on Communications Workshops (ICC Workshops).
IEEE, 2019, pp. 1–6.

[11] T. Mahn, D. Becker, H. Al-Shatri, and A. Klein, “A distributed algorithm
for multi-stage computation offloading,” in 2018 IEEE 7th International

Conference on Cloud Networking (CloudNet). IEEE, 2018, pp. 1–6.
[12] G. Iosifidis, L. Gao, J. Huang, and L. Tassiulas, “A double-auction mech-

anism for mobile data-offloading markets,” IEEE/ACM Transactions on

Networking (TON), vol. 23, no. 5, pp. 1634–1647, 2015.
[13] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients

in cloud computing.” Proc. of the 2nd USENIX Conf. Hot Topics on

Cloud Computing, pp. 1–4, 2010.
[14] C. You and K. Huang, “Multiuser resource allocation for mobile-edge

computation offloading,” in Proc. of the IEEE Global Communications

Conference (GLOBECOM), 2016, pp. 1–6.
[15] S. Lasaulce and H. Tembine, Game theory and learning for wireless

networks: fundamentals and applications. Academic Press, 2011.
[16] D. Monderer and L. S. Shapley, “Potential games,” Games and economic

behavior, vol. 14, no. 1, pp. 124–143, 1996.
[17] A. Carroll, G. Heiser et al., “An analysis of power consumption in a

smartphone.” in USENIX annual technical conference, vol. 14. Boston,
MA, 2010, pp. 21–21.

