
Burak Yilmaz, Andrea Ortiz, Anja Klein, “Delay Minimization for Edge Computing with
Dynamic Server Computing Capacity: A Learning Approach,” in Proc. IEEE Global Commu-
nications Conference (Globecom), Taipei, Taiwan, December 2020

c©2020 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this works must be obtained from the IEEE.

Delay Minimization for Edge Computing with
Dynamic Server Computing Capacity: A Learning

Approach
Burak Yılmaz

Technische Universität Darmstadt
b.yilmaz@nt.tu-darmstadt.de

Andrea Ortiz
Technische Universität Darmstadt

a.ortiz@nt.tu-darmstadt.de

Anja Klein
Technische Universität Darmstadt

a.klein@nt.tu-darmstadt.de

Abstract—The offloading decisions of K mobile users (MUs)
aiming at minimizing the execution delay in a Mobile Edge
Computing (MEC) scenario with non-orthogonal multiple access
is considered. In this work, we assume a time-varying MEC
server computing capacity which exploits additional computing
resources that are freed over time, but are not known beforehand.
In this setting, the optimal offloading decision depends on the dif-
ferent tasks of MUs, their channel fading processes and the MEC
server computing capacity. We first formulate the optimization
problem and identify two main challenges, namely, how to exploit
the given incomplete knowledge to minimize the delay and how
to handle the high dimensionality of the problem. To address
these challenges, we propose a novel reinforcement learning
(RL) algorithm, termed combinatorial offloading learning (COL).
The name stands for its ability to handle the combinatorial
nature of the solutions. Exploiting the available knowledge,
we learn the offloading decision policy aiming at minimizing
the delay. Furthermore, we handle the curse of dimensionality,
typical of combinatorial problems, by splitting the learning task,
solving K + 1 smaller RL problems and using linear function
approximation. Through numerical simulations, we show that
COL could perform similar to a short term optimal solution with
complete information and exhaustive search, and outperforms
known strategies like the greedy approach.

I. INTRODUCTION

Mobile Edge Computing (MEC) is a key technology that
exploits its proximate access to users to enable applications
with latency critical requirements like augmented reality and
connected cars [1]. Computation offloading addresses the
limitation of available resources in mobile and smart devices.
Though offloading computational tasks to a more powerful
server is desirable to save energy and computation time for
users, MEC requires a policy to decide when to offload
computational tasks to efficiently use the limited computing
and communication resources available [2].

As an important application of 5G communications and
beyond, strategies for computation offloading scenarios are
being studied extensively in multiple user settings [3]. In
[4], the energy-latency trade-off in multiuser MEC systems
is investigated, which jointly manages the available radio
and computing resources. The authors of [5] investigate the
latency minimization problem with a prescribed resource

This work has been performed in the context of the DFG Collaborative
Research Center (CRC) 1053 MAKI and the Center emergenCITY of the
LOEWE initiative (Hessen, Germany).

utilization constraint. They propose a polynomial-time ap-
proximate solution with guaranteed performance. In [6], an
integer optimization problem is formulated to minimize the
energy consumption and offloading latency, then game theo-
retic techniques are applied to develop a distributed algorithm.
In [7], a heuristic offloading decision algorithm is proposed. It
jointly optimizes the offloading decision and communication
and computing resource allocation to minimize the latency
and energy consumption. The authors of [8] investigate joint
radio and computing resource allocation, where they consider
interference between multiple virtualizations for computation
in the MEC server. They maximize joint throughput and
minimize energy consumption. In [9], in order to minimize the
energy and delay cost, offloading decisions and the allocation
of communication resource are jointly optimized. In [10], the
authors propose an online algorithm that optimally adapts
offloading decisions and wireless resource allocations to the
time-varying wireless channel conditions. The authors of [11]
investigate joint resource allocation and offloading decision
optimization, using mixed integer nonlinear programming.

Even though the mentioned studies contributed significantly
to the development of computation offloading scenarios, they
also have their own limitations. In this paper, we focus on the
computation offloading decisions made for K mobile users
(MUs) in a scenario with a single MEC server with computing
resources. First, in contrast to [7], [10], [11], we consider a
variety of tasks with different computing resource require-
ments. This task variety is an important aspect to account
for because the tasks are associated to the users’ interests
and needs [12]. The studies in [4], [6], [9] focused on the
effects of channel reuse and channel competition for offload-
ing scenarios. However, the effect of the limited computing
resources in the considered offloading server was not taken
into account. Therefore secondly, in our work we consider a
MEC server with limited computing resource for offloading
and we assume that information of this limited resources is
an unknown parameter for offloading. This assumption is an
open challenge that is pointed out in [3] and could be explained
with an exemplary scenario. Consider two groups of users with
different priorities served by a single MEC server. When the
high priority group needs more resources, it would be allocated
a larger portion of the MEC server computing resources, where

�

MEC

Server

MU

MU2

MU4
MU3

ℎ1,�

ℎ2,�

ℎ3,�

ℎ4,�

ℎ ,�

...

MU1 (�1,� , �1,�)

4

�

�2,�(�, �)

3

2
(�2,� , �2,�)

(�3,� , �3,�)

(� ,� , � ,�)

(�4,� , �4,�)

3,�
V	

,�
V	

Fig. 1: MEC scenario with computation offloading.

the low priority group is served with a dynamic computing
capacity which is left for their offloaded computation. Within
this example, the low priority group would be served with
time-varying computing resources, and if some additional
computing resources are freed while the given tasks of the
low priority group are being transmitted to the MEC, these
resources could be also allocated in order to further speed
up the offloaded tasks. Third, we consider non-orthogonal
multiple access (NOMA) for offloading transmissions in our
scenario. NOMA is a promising technology of accommodating
several users within the same resource block. By doing so,
significant bandwidth efficiency enhancement can be attained
over conventional orthogonal multiple-access techniques [13].

In this paper, we first formulate the optimization problem
for the offloading decisions and identify two main challenges.
The first is to find an offloading decision policy aiming
at minimizing the execution delay experienced by MUs,
considering a scenario in which no knowledge about the
amount of computing resources that would be allocated for
offloading is available. This dynamic MEC server computing
capacity is assumed to be unknown and time-varying. The
second is to handle the high dimensionality of the problem.
This is due to the combinatorial nature of the offloading
decisions and the infinite number of fading channel conditions
the MUs can experience. To address these challenges, we
formulate the offloading decision problem as a Multi-armed
Bandit (MAB) problem and use reinforcement learning (RL)
approach. Specifically, we propose an RL algorithm termed
combinatorial offloading learning (COL). The name of the
algorithm represents its ability to handle the combinatorial
nature of the offloading decision solutions. Our algorithm is
inspired by the strategy proposed in [14] for energy harvesting
multiple access scenarios. We combine our proposed algorithm
with linear function approximation to manage the infinite
number of states. The advantage of our proposed algorithm is
its ability to split the original RL problem into K +1 smaller
problems, thus greatly increasing the computational efficiency.

The rest of the paper is organized as follows. In Sec. II, the
system model is presented. The execution delay minimization
is formulated in Sec. III and the implemented algorithm is
explained in Sec. IV. Simulation results are presented in Sec.
V and Sec. VI concludes the paper.

II. SYSTEM MODEL

A MEC scenario consisting of a single server and K MUs,
termed MUk, k = 1, ...,K, as depicted in Fig. 1, is considered.

Time is divided into time slots (TSs) and each TS is identified
by its index i. In each TS, every MU receives a task that it
wants to compute with minimum execution delay. This delay
is defined as the time between the moment a computational
task is received at MUk and the result of this computation
is available at MUk. We assume the tasks are non-splittable,
i.e., MUs can either compute their tasks locally or completely
offload their task.

We consider a centralized controller at the MEC server,
which is referred to as just MEC server from here on, that
is allocating communication and computing resources to each
MU. For this goal, system information consisting of the chan-
nel state information and computation requests of the MUs is
required. This information is assumed to be obtained by the
MEC server in each TS. Based on the collected information,
MEC server decides which MUs are to offload their tasks
to the MEC server in TS i. Then it informs the MUs about
the offloading decisions. When MUk offloads its task to the
MEC server, additional steps have to be considered, i.e., the
transmission of the task from MUk to the MEC server, the
execution of said task in the MEC server and the transmission
of the result back to the MUk. All of these processes are
described in detail in the following.

In the offloading case, the first step is the transmission of
the task to the MEC server. In each TS i, Ji MUs offload and
we assume indices of these offloading MUk are ordered as
k = 1, ..., Ji, Ji ≤ K. The fading channel from MUk to the
MEC server is described by the channel coefficient hk,i ∈ C
which remains constant for TS i. We assume a NOMA system
with no decoding errors. The offloading MUs are transmitting
using the whole TS and the full available bandwidth B.
The noise at the MEC server is assumed to be independent
and identically distributed (i.i.d.) zero-mean additive white
Gaussian with variance σ2. The transmit power of MUk is
denoted by pk. We consider two cases without and with
Successive Interference Cancellation (SIC). The transmission
rate of offloading MUk in the case without SIC is calculated
using Shannon’s capacity formula as

RnoSIC
k,i = B log2

(
1 +

pk|hk,i|2
σ2 +

∑Ji
j=1,j 6=k pj |hj,i|2

)
. (1)

For the second case, the MEC server can employ SIC to
subtract the interference of the already decoded signals from
the received signal [13]. While applying SIC, we assume
the MU signals are decoded one-by-one with no decoding
errors. Again we assume offloading MUs are indexed first,
k = 1, ..., Ji, and indexed according to the decoding order.
Then, after decoding first k−1 MUs’ signals first, the resulting
transmission rate for the next MUk to be decoded is

RSIC
k,i = B log2

(
1 +

pk|hk,i|2
σ2 +

∑Ji
j=k+1 pj |hj,i|2

)
. (2)

The time required to transmit the task of MUk is dependent
on the task properties as well as the transmission rate. We
characterize a computational task of MUk in TS i with the task

size Wk,i in Bits, and the task complexity Lk,i in CPU cycles
[12], see Fig. 1. With these parameters, the time required to
transmit the task of MUk in TS i to the MEC server is

TTx
k,i =

Wk,i

Rk,i
. (3)

In the case of computation offloading, the second step is the
computation of the offloaded tasks in the MEC server. Let
fMEC
i denote the MEC server computation power in TS i,

in CPU cycles per second. This is related to the portion of
computing resources of the MEC server that are allocated for
the computation of the offloaded tasks and changes in each TS.
For offloading MUs, virtual machines (VMs) are allocated in
the MEC server. The computing power of a VM allocated to
MUk in TS i is represented with fVM

k,i , also measured in CPU
cycles per second. The allocated VM computing powers fulfill
the condition

fMEC
i =

Ji∑
k=1

fVM
k,i . (4)

Then, the time required to compute the offloaded task of MUk
in TS i is

TVM
k,i =

Lk,i
fVM
k,i

. (5)

Lastly, after the computations are completed at the MEC
server, the results are transmitted back to the offloading MUs.
The result is expected to have a negligible size compared to the
original task size Wk,i and the time needed for the reception
of the result is not considered, similar to [15].

The execution delay Tk,i experienced by MUk is dependent
on the offloading decision. In case that MUk performs its
computation locally, the execution delay represents solely the
time spent for the local computation at MUk. Let fk denote
the computing power of this device in CPU cycles per second.
Then, the time required to locally compute the task of MUk
in TS i is given by

T local
k,i =

Lk,i
fk

. (6)

Accordingly, the execution delay of offloading the task of MUk
is the sum of the transmission time TTx

k,i to the MEC server
and the computation time TVM

k,i at the MEC server, i.e.,

T offload
k,i = TTx

k,i + TVM
k,i . (7)

III. PROBLEM FORMULATION

In this section, we formulate the execution delay minimiza-
tion problem for the scenario of Section II as a Multi-armed
Bandit (MAB) problem and identify the main challenges to
be addressed. First, we identify the objective of our problem
and then, we present the MAB formulation.

A. Objective function

A computation offloading decision depends on the tasks and
computational capabilities of the MUs, the channel fading and
interference processes, and the computational capability of the
MEC server. The computation offloading decision in TS i is

given by the vector Xi ∈ {0, 1}K . The kth element of Xi is
denoted by xk,i ∈ {0, 1} and corresponds to the individual
offloading decision for MUk. xk,i = 0 indicates a local
computation and xk,i = 1 indicates computation offloading
for MUk. The execution delay Tk,i of MUk in TS i is

Tk,i =

{
T local
k,i , if xk,i = 0,

T offload
k,i , if xk,i = 1.

(8)

The execution delay minimization problem with respect to
the computation offloading decisions is given by

minimize
Xi

K∑
k=1

Tk,i

subject to Xi ∈ {0, 1}K
(9)

We identify (9) as a non-linear knapsack problem. This
is due to the fact that the solution of this problem is a
combination of the offloading decisions for all MUk, k =
1, . . . ,K. Note that the offloading decisions for MUs cannot
be considered independently because the execution delay of
an offloading MU is dependent on the other MUs that are
offloading. Also, this dependency is non-linear due to the
logarithmic function of transmission rates, see (1), (2).

The dimension of the problem in (9) increases with the
variety of tasks available to MUk and grows exponentially
with K. Specifically, in TS i, the number of feasible solutions
is bounded by 2K . Moreover, it is assumed that the allocated
MEC server computing capacity for offloading computation,
i.e. fMEC

i is not known when the offloading decision is made
at the MEC server. Therefore, the information of only fading
channel conditions and tasks of MUs is not sufficient to
calculate and compare possible execution delays. To overcome
these challenges, we propose an online learning algorithm to
exploit past observations and past offloading decisions, to learn
the optimal computation offloading decision policy.

B. MAB formulation

The multi-armed bandit (MAB) problems are problems of
sequential decision making under uncertainty and constitute
a special case of RL [16]. In TS i, the resulting execution
delay depends on the offloading decisions made, considering
sizes Wk,i and complexities Lk,i of the tasks, the channel
coefficients hk,i, and the MEC server computing capacity
fMEC
i . Consequently, the system under consideration can be

modeled as a MAB, and specifically as a contextual MAB
problem, also called bandits with side information [17].

A contextual MAB is defined by a context or state set S
that is revealed to the agent, a set A of actions, and a set R
of rewards [16]. In TS i, the state Si ∈ S corresponds to the
tasks and channel states of all the MUs and it is given by the
tuple Si = {W1,i, · · · ,WK,i, L1,i, · · · , LK,i, h1,i, · · · , hK,i}.
It should be noted that hk,i can take any value in a continuous
range. Therefore, the set S contains infinitely many possible
states. The set A contains the offloading decisions Xi and
in our model, A is a finite and discrete set which grows
exponentially with respect to K. Last, the reward Ri ∈ R

is a numerical value that indicates the cost of selecting Ai in
Si and it is given by the sum of execution delays as

Ri =

K∑
k=1

Tk,i. (10)

A solution to a MAB problem is a policy to select the
actions throughout the sequence of TSs. In our case, it is the
controller algorithm that makes offloading decisions for MUs.
The policy π can be evaluated using the so called action-
value function Qπ(Si, Ai) which is the expected reward when
starting with state-action pair (Si, Ai) and following policy
π after that [16]. The optimal policy π∗ yields a state-action
value Q∗ which is greater than or equal to the state-action
value of any other policy for all Si ∈ S. Determining Q∗ is
important because it leads to π∗.

The system considered is able to continue its operation as
long as all MUk, k = 1, . . . ,K continue to receive new tasks
in TS i. Hence, minimizing the total cost of using a certain
decision policy is not a feasible approach since it could be
infinitely large. Therefore, we use the average cost R, which
minimizes the average cost per action as

R = E

[
lim
I→∞

1

I

I∑
i=1

Ri

]
. (11)

IV. COL: COMBINATORIAL OFFLOADING LEARNING

Our algorithm, termed combinatorial offloading learning
(COL), is motivated by the challenge posed by the unknown
variable of the MEC server computing capacity fMEC

i . There-
fore, a comparison of the local and remote execution delays,
see (8), is not possible. Our algorithm handles the problem
of the unknown system information and finding the offloading
decision policy at the same time through online learning. In
this section, we first present the strategy that we propose for
our problem. Then, we describe the implementation of linear
function approximation and the proposed algorithm.

A. Action selection strategy

Decision making in MAB problems involves a fundamental
choice between exploitation and exploration, i.e., a decision
between using the best action known given current information
or gathering more information through a less tried action.
However, problems with infinite state spaces pose a greater
challenge that require algorithms that also scale well with the
number of states [16].

To handle the challenge of the combinatorial nature of their
solution, the authors of [14] decompose their RL problem
into smaller ones. We apply the same strategy to introduce
K additional RL problems for each MUk (MU-RLP) while
terming the first problem we already have in (9) as joint
RL problem (joint-RLP) [14]. Each MU-RLP is associated
with one MU and its sole task is to learn to make offloading
decisions for that MU, i.e., minimizing the execution delay of
that particular MU independent of other MUs. The decision
for each MU is done simultaneously and independently in

joint-RLP

MU RLP1

MU RLP

. . .

1

P(1)

P()

Exploration

Exploitation

��

Fig. 2: Schematic of proposed strategy to RL problems [14].

each MU-RLP. Note that MU-RLPs do not produce optimal
decisions due to joint effects of their actions. However, by
utilizing the knowledge gathered from individual rewards per
user, using MU-RLPs efficiently explore different offloading
decision combinations in comparison to the selection of pure
random actions. The joint-RLP selects the greedy action Ai
which yields the highest Q-value for a given state Si in TS i.

Figure 2 shows the flow of the action selection algorithm
in TS i. Given state Si, the algorithm can select the action Ai
either using the MU-RLPs or the joint-RLP. With probability
of ε, MU-RLPs are used in combination to produce the action
Ai. Each MU-RLP learns to provide an individual offloading
decision in the best interest of its corresponding MU. With
probability 1−ε, joint-RLP is used for action selection. While
joint-RLP uses the best known action given the state, MU-
RLP actions efficiently explore the actions. Also in MU-RLP,
the action that yields the highest Q-value is selected with
probability 1 − εmu and a random action is selected with
probability εmu.

B. Linear Function Approximation

Even though the exploration of the large action space is
handled by the COL efficiently, still the challenge of managing
the infinite number of states remains. This results from the fact
that channel conditions hk,i can take any value in a continuous
range. Since S is infinitely large, the action value function
Qπ has also an infinite number of values. In this case, linear
function approximation can be used to represent Qπ as a
weighted sum of feature functions [16]. The feature functions
are used to map state-action pairs (Si, Ai) onto feature values.
The action-value function is approximated as

Qπ(Si, Ai) ≈ Q̂π(Si, Ai) = fT(Si)w, (12)

where f is a vector formed by all the feature values and w
is a vector of weights containing the contribution of each
feature [16]. In this paper, tile coding is used as approximation
technique due to its flexibility, computational efficiency and
suitability for multi-dimensional continuous spaces [16]. In
tile coding, number of tiles and grids G can be altered to find
a suitable resolution for the approximation.

C. COL Algorithm

The proposed algorithm is composed of K+1 RL problems.
The weights w that are used in linear function approximation

of the Q-values are updated following a gradient descent
approach with learning rate α, so that the error between the
action value function Qπ and its estimate Q̂π is reduced. The
weights w of the global RL problem are updated as

wi+1 = wi + α

(
Ri + max

A
Q̂
π

(Si+1, Ai+1,w)− Q̂π(Si, Ai,w)

)
f (13)

The weights wk of the MU-RLPs are updated as

w
k
i+1 = w

k
i + α

(
R
k
i + max

a
Q̂
π

(Si+1, a
k
i+1,w

k
)− Q̂π(Si, a

k
i ,w

k
)

)
f .

(14)

Algorithm 1 COL algorithm
1: initialize α, ε, εmu

2: initialize weights for joint-RLP and MU-RLPs
3: observe Si
4: while there are tasks to compute do
5: generate random number r
6: if r ≥ ε then . joint-RLP is preferred
7: select Ai w.r.t. highest Q̂(Si, Ai)
8: else . MU-RLPs are preferred
9: for each MU-RLP do

10: select decisions aki using εmu-greedy
11: end for
12: Ai = (a1i , . . . , a

K
i)

13: end if
14: take action Ai
15: calculate costs Ri . Eq. (10)
16: observe Si+1

17: update joint-RLP weights . Eq. (13)
18: update MU-RLP weights . Eq. (14)
19: Si = Si+1

20: end while

The proposed COL algorithm is summarized in Algorithm
1. The learning parameters are initialized first (line 1). These
parameters are the learning rate α and the exploration proba-
bilities (ε, εmu). Additionally, the weights used for the action-
value function approximation for the joint-RLP and the MU-
RLPs are initialized (line 2). Then, the initial state Si of
the MU conditions is observed (line 3). A random number
r ∈ [0, 1] is generated according to a uniform distribution
and compared to ε to decide if the MU-RLP or the joint-
RLP is used for selecting the action (lines 5-6). If the joint-
RLP is preferred, the action that yields the maximum value
of the action-value function is selected (line 7). If the MU-
RLPs are preferred, εmu-greedy is used to make offloading
decisions for each user separately. Xi is obtained by combin-
ing the single actions (lines 9-12). Afterwards, the selected
offloading decisions are applied and computation executions
are performed (line 14). The corresponding costs are calculated
with respect to (9) (line 15). After the offloading process, the
new state Si+1 is observed (line 16). This state includes the
new tasks that arrived at the MUs and the channel states. Next,
the weights for the action-value function approximations are
updated using (13) and (14) (lines 17-18). Finally, the current
value of Si is updated (line 19) and the procedure described
above is repeated as long as there are tasks to compute.

V. SIMULATION RESULTS

In this section, numerical results for the evaluation of
COL are presented. The results are obtained by generating
EN = 50 independent random tasks, allocated MEC server

computing resources and channel realizations. Each realization
is an episode where the MUs receive tasks for a limited
number of TSs I , I = 500. Tasks are selected randomly
from the set T (size, complexity) = {(4 × 106, 330), (5 ×
105, 960), (4 × 106, 1900), (5 × 105, 2100)} following a uni-
form distribution for every user in each TS. The MUs are
assumed to have constant positions during TS i and have
constant CPU performances selected for whole simulation
randomly from the fk ∈ [0.9, 1.1]GHz following a uniform
distribution. The MEC server has a CPU performance selected
randomly from a uniform distribution fMEC

i ∈ [5, 7]GHz
in TS i, that is allocated to offloading users equally as VM
computing powers. We assume that the offloading user signals
occupy the same spectrum with bandwidth B = 20MHz. The
duration τi of TS i is set to be the maximum of the possible lo-
cal computation times of MUs regarding their tasks in that TS.
The channel coefficients hk,i are taken from an i.i.d. Rayleigh
fading process with zero mean, unit variance and a path loss
exponent of three. The noise variance at the server is set to
σ2 = 1. When performing linear function approximation, each
dimension forming the state space is divided into three tiles
and 32 grids are considered. The learning rate α is set as 0.001
for the MU- and joint-RLPs. The exploration parameters, i.e.,
ε and εmu, are defined with respect to the episode number EN
as ε = εmu = (0.9)EN , EN = 1, . . . , 50. For comparison, we
consider two approaches: A greedy strategy where the MU
with the strongest channel condition is selected to offload to
avoid interference. Additionally, a short term optimal policy
is considered where an exhaustive search on all possible
actions is carried with the knowledge of allocated MEC server
computation resource fMEC

i in TS i.
In Figure 3, the average normalized execution delay per

TS versus the episode numbers for K = 8 MUs is shown.
The execution delay is normalized to the local computation
time, where a normalized execution delay of local computation
equals to 1 and any execution delay shorter than the respective
local computation delay corresponds to a value in [0, 1]. At
the 50th episode, our proposed algorithm converges close
to the optimal algorithm, performing 32% better than the
greedy policy and only 1% worse than the optimal algorithm
which has additional information available. Note that in the
beginning, the COL algorithm performs comparable to the
greedy policy because it starts with sub-optimal decisions due
to lack of system knowledge. However, as time passes, it
gathers more experience through exploration.

Figure 4 shows the average normalized execution delay
per TS versus the varying number K of MUs when there is
no interference cancellation. Our proposed algorithm achieves
an average execution delay only 5% higher than the optimal
policy considering K = 10 MUs while performing 20% better
than greedy policy. We also observe that the performances of
our solution and the reference policies degrade with increasing
number of MUs. This is an expected result because the
MEC server has limited resources that must be shared among
offloading MUs. The quality of service, i.e., average execution
delay, degrades when the available resources must be split

0 10 20 30 40 50

Episode Number

0.5

0.6

0.7

0.8

0.9

1
A

v
e

ra
g

e
 n

o
rm

a
liz

e
d

 e
x
e

c
u

ti
o

n
 d

e
la

y

proposed RL

greedy policy

optimum policy

Fig. 3: Average execution delay vs. learning
episodes.

2 4 6 8 10

Number of MUs

0

0.2

0.4

0.6

0.8

1

A
v
e
ra

g
e
 n

o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 d

e
la

y

greedy policy

proposed RL

optimum policy

Fig. 4: Average execution delay vs. number of
mobile users when SIC is not applied.

2 4 6 8 10

Number of MUs

0

0.2

0.4

0.6

0.8

1

A
v
e
ra

g
e
 n

o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 d

e
la

y

greedy policy

proposed RL

optimum policy

Fig. 5: Average execution delay vs. number of
mobile users when SIC is applied.

between more users.
Figure 5 shows the average normalized execution delay per

TS versus the varying number K of MUs when SIC is applied.
At K = 8, we achieve a performance only 2% worse than the
optimum algorithm. As mentioned before, the action space
A suffers from the curse of dimensionality. Therefore, our
algorithm’s performance degrades eventually when more MUs
are considered. However, in the case K = 10, the proposed
algorithm still achieves a performance close to the optimum
algorithm with only 4% difference, and outperforming the
greedy algorithm by 25%. Besides, the proposed algorithm
neither knows the MEC computing capacity information in
TS i nor uses the computationally expensive exhaustive search
for combinatorial actions. Still the proposed algorithm is
comparable to the optimum algorithm in performance.

VI. CONCLUSIONS

A MEC scenario with a single MEC server and multiple
mobile users was considered. In addition, a variety of given
tasks are assumed and they are offloaded with non-orthogonal
multiple access. Our goal was to find an offloading decision
policy when the MEC server computing capacity is unknown.
To this aim, we formulated the execution delay minimization
problem as an MAB and identified the challenges posed by
combinatorial nature of the problem, incomplete knowledge of
system information, and infinite number of states. Following
that, we proposed an RL algorithm which exploits the past
observations of the system as well as the past offloading deci-
sions, to learn optimal computation offloading decision policy.
The proposed algorithm efficiently handles the exploration of
the exponentially growing solution space. Additionally, we
applied linear function approximation to address the issue of
continuous states in a computationally efficient manner while
maintaining an accurate representation. Through numerical
simulations we showed that the proposed learning algorithm,
with the unknown variable of MEC server computing capacity,
achieves a similar performance to the optimal solution and it
outperforms the other reference scheme.

REFERENCES

[1] ETSI, “Mobile Edge Computing - A Key Technology Towards 5G,”
White Paper, Mobile-edge Computing Industry Initiative, Tech. Rep.,
2015.

[2] T. X. Tran, A. Hajisami, and et.al., “Collaborative Mobile Edge Com-
puting in 5G Networks: New Paradigms, Scenarios, and Challenges,”
IEEE Commun. Mag., vol. 55, no. 4, pp. 54–61, 2017.

[3] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on
Architecture and Computation Offloading,” IEEE Commun. Surveys and
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[4] Y. Mao, J. Zhang, and et.al., “Power-Delay Tradeoff in Multi-User
Mobile-Edge Computing Systems,” in IEEE Global Commun. Conf.
(GLOBECOM), 2016, pp. 1–6.

[5] Y. Kao, B. Krishnamachari, M. Ra, and F. Bai, “Hermes: Latency
Optimal Task Assignment for Resource-constrained Mobile Computing,”
IEEE Trans. Mobile Computing, vol. 16, no. 11, pp. 3056–3069, Nov
2017.

[6] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient Multi-User Computa-
tion Offloading for Mobile-Edge Cloud Computing,” IEEE/ACM Trans.
Networking, vol. 24, no. 5, pp. 2795–2808, October 2016.

[7] X. Lyu, H. Tian, and et.al., “Multiuser Joint Task Offloading and
Resource Optimization in Proximate Clouds,” IEEE Trans. Veh. Tech-
nology, vol. 66, no. 4, pp. 3435–3447, April 2017.

[8] Z. Liang, Y. Liu, and et.al., “Multiuser Computation Offloading and
Downloading for Edge Computing With Virtualization,” IEEE Trans.
Wireless Commun., vol. 18, no. 9, pp. 4298–4311, 2019.

[9] M. Chen, M. Dong, and B. Liang, “Joint offloading decision and
resource allocation for mobile cloud with computing access point,” in
IEEE Int. Conf. Process. on Acoustics, Speech and Signal Process.
(ICASSP), 2016, pp. 3516–3520.

[10] L. Huang, S. Bi, and Y. J. Zhang, “Deep Reinforcement Learning
for Online Computation Offloading in Wireless Powered Mobile-Edge
Computing Networks,” IEEE Trans. Mobile Computing, pp. 1–1, 2019.

[11] A. Khalili, S. Zarandi, and M. Rasti, “Joint Resource Allocation and
Offloading Decision in Mobile Edge Computing,” IEEE Commun. Lett.,
vol. PP, pp. 1–1, 02 2019.

[12] A. P. Miettinen and J. K. Nurminen, “Energy Efficiency of Mobile
Clients in Cloud Computing,” in USENIX Conference on Hot Topics
in Cloud Computing, 2010, p. 4.

[13] K. Higuchi and A. Benjebbour, “Non-orthogonal Multiple Access
(NOMA) with Successive Interference Cancellation for Future Radio
Access,” IEICE Trans. on Commun., vol. E98.B, pp. 403–414, 03 2015.

[14] A. Ortiz, T. Weber, and A. Klein, “Resource Allocation in Energy
Harvesting Multiple Access Scenarios via Combinatorial Learning,”
in IEEE Int. Workshop Signal Process. Advances Wireless Commun.
(SPAWC), 2019, pp. 1–5.

[15] D. Nowak, T. Mahn, and et.al., “A Generalized Nash Game for Mobile
Edge Computation Offloading,” in IEEE Int. Conf. Mobile Cloud Com-
puting, Services, and Engineering (MobileCloud), 2018, pp. 95–102.

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. The MIT Press, 2018.

[17] S. Bubeck and N. Cesa-Bianchi, “Regret Analysis of Stochastic and
Nonstochastic Multi-armed Bandit Problems,” 2012.

