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On the Performance, Complexity and Fairness of
Suboptimal Resource Allocation for Multi-User
MIMO-OFDMA Systems
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Abstract—The combination of Multiple Input Multiple Output ~ respectively [3]. In the Downlink (DL), the Base Station (BS)
(MIMO) and Orthogonal Frequency Division Multiple Access decides on the basis of Channel State Information (CSI) which
(OFDMA) is a promising solution to the flexible and spectrally  ya56yrces to allocate to which Mobile Stations (MSs) and
efficient provision of data services in future wireless commu- ds data to th lected MS th I ted
nication systems. However, adaptive Resource Allocation (RA) S(_en S data 1o the selecte S on the "?‘ ocate resou_rces.
in frequency, time, and space in Multi-User MIMO-OFDMA  Since each resource can be allocated to a different BS-MS link,
systems is very complex due to the inclusion of the spacea huge number of possible allocations exist even for relatively
dimension and to the large number of resources to be managed. small numbers of resources and MSs.

Indeed, an optimal RA to maximize the sum rate is usually  Tpr6,gh adequate frequency and time synchronization, fre-

too complex for practical application and suboptimal strategies - .
are required. In this work, the performance, complexity, and quency and time resources can be made orthogonal by design.

fairess of suboptimal RA strategies aiming at the maximization Thus, the RA is simplified because signals sent to MSs on
of the sum rate are investigated. A model for suboptimal RA orthogonal resources do not interference with each other.

strategies is proposed and two new RA strategies are introduced. However, space resources result from the spatial reuse of a
The proposed strategies are compared in terms of sum rate, ga e frequency-time resource and signals transmitted by the

complexity, and throughput fairness and are shown to present . . .
better performance-complexity and performance-fairness trade- BS to a group of MSs on the resource essentially interfere with

offs than some existing suboptimal strategies, as well as to achieve€ach other. Th_US, frequency-time resources are t_h_e real system
almost the same sum rate obtained through an Exhaustive Search. resources, which are shared through Space Division Multiple

Access (SDMA) by a group of MSs, namely an SDMA group.
Index Terms—Sum rate maximization, throughput fairess,  Different aspects affect the system performance. Firstly,
resource allocation if the channels of the MSs in an SDMA group are highly
spatially uncorrelated, signals sent to these MSs can be effi-
ciently separated in space at the BS through precoding. These
MSs are said to be spatially compatible. SDMA groups must
UTURE wireless communication systems are expectedntain spatially compatible MSs in order to obtain SDMA
to provide data services with rate requirements rangimgins and improve capacity. Otherwise, the signals sent to the
from a few kbps up to some Mbps and, due to the higiiSs may strongly interfere with each other and compromise
frequency spectrum costs, these systems must also be highly system performance [7]-[11]. Consequently, the SDMA
spectrally efficient. Transmission schemes based on Multigjeoup composition affects the system performance.
Input Multiple Output (MIMO) and Orthogonal Frequency Secondly, there are different precoding techniques which
Division Multiple Access (OFDMA) are considered as promissuppress spatial interference totally, in part, or ignore it [12]-
ing solutions to meet these requirements [1]-[3]. MIMO[L6]. Thus, the selection of the precoding technique also
OFDMA systems are flexible and spectrally efficient due taffects the system performance.
the large number of narrowband frequency channels that mayThirdly, DL spatial interference is a function of the power
be adaptively allocated and to the ability of reusing channelstribution among the signals sent by the BS to the MSs.
in space [4], [5]. However, adaptive Resource Allocation (RAJor a given amount of power available for an SDMA group,
in frequency, time, and space is complex in such systems dallvcating more power to the signal sent to a certain MS
to the large number of degrees of freedom to be handled [6hhances its the receive signal quality, e.g., in terms of Signal-
Resources can be thought of as elements of a 3-dimensidwalnterference plus Noise Ratio (SINR), but reduces the
structure with subcarriers, Time-Slots (TSs), and spatial 1agiNR perceived by the other MSs in the group. Analogously,
ers corresponding to frequency, time, and space resourcdgcating more power to a certain resource enhances the SINR
perceived by the MSs sharing this resource, but reduces the
Copyright (c) 2009 IEEE. Personal use of this material is Permi“e‘%lNR perceived by MSs to which other resources have been
However, permission to use this material for any other purposes must .. L .
obtained from the IEEE by sending a request to pubs-permissions@ieee.@r@pcated [17]' An efficient power distribution among MSs and
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Multiple Resources

also affects the system performance [6], [10], [11]. / - — \\.
Each of the four aspects above relates to a subproblem off [ Single Resource ocation Siraieey
the RA in Multi-User (MU) MIMO-OFDMA systems, namely:

SDMA Algorithm \ /" Resource Assignment Algorithm
|
1) The SDMA grouping problem, which corresponds to build- :
|
|
|

\\

Grouping Metric ) ( Group Priority )

ing groups of spatially compatible MSs on each resource.

2) The precoding problem, which corresponds to determining Grouping Algorithm ) ( Assignment Algorithm )
precoding vectors and separating in space the signals senf
to the MSs.

3) The power allocation problem, which corresponds to allo-
cating power to MSs and resources.

4) The resource assignment problem, which corresponds to
assigning resources to the best SDMA groups, e.g., thoseg;| -
leading to the highest sum rate. '

S s o o o &

Precoding Algorithm

Power Allocation Algorithm

Sequential Removal Algorithm

% J
Since only whole resources can be assigned to whole MSs, “===———==F-—== S == S5 m =S5 mm S 55==2
the SDMA grouping and the resource assignment problemgure 1.  Framework for suboptimal RA strategies for MIMO-OF®
are integer problems. Integer problems are usually hard to dystems.
solved optimally due to their combinatorial nature. Because
the domain of integer optimization problems is described by ) )
discrete points and consequently not convex, these probled@9d performance-complexity and performance-fairness trade-
might not admit a unique optimal solution and can not ffs. The _remalnder of this work is org§n|zed as folIow;. .
solved using convex optimization methods [18], [19]. Integer !N Section II, a framework for suboptimal RA strategies is
optimization problems are often solved considering intellRfoPosed, which is used to classify some existing RA strategies
gent enumerations and relaxations, such as those commdfgRresenting the state of the art and to define the new RA
employed in branch-and-bound methods to solve integer Ii#lrategies studied in this work. In Section lll, the system
ear problems [18]. Integer problems might even be Nofrodel considered in thl_s work is present_ed. In this section,
deterministic Polynomial time Complete (NP-C), such d§€ problem of maximizing the sum rate is presented and a
the SDMA grouping problem [20], [21] and some resourc@&W mlxed—lnteger formulation for the problem is proposed,
assignment problems [22], and require an Exhaustive Sealdpich _characterlzes the fc_)ur above _subproblems. Sections IV
(ES) in order to be optimally solved. to VIl mtrod_uce the algonthms a!pphed _to each subp_roblem.
Precoding and power allocation problems are not integ-glf'ese algorithms are combined in Section VIII to define new

problems, as long as precoding vectors and allocated pow%'r!QOpt'mal RA strateglles th’se perfqrmance, c_ompIeX|ty, and
are not discretized. fairness are analyzed in Section IX. Finally, Section X presents

Because frequency spectrum is a scarce and expen&%ﬂe conclusions.
resource, RA strategies that aim at maximizing the sum rate of
the system are an important research topic. However, an opti-!- FRAMEWORK FORSUBOPTIMAL RA STRATEGIES
mal RA strategy to maximize the sum rate must jointly solve In this section, a framework is proposed to model subop-
the above four subproblems and in most of the cases leads toveal RA strategies. It divides the RA problem into the four
complex combinatorial and non-convex optimization problesubproblems introduced in Section | and is illustrated in Fig. 1.
[6], [23], [24]. Due to coupling between the four subproblems;or each subproblem, existing or new algorithms oriented
even when a formulation as a convex optimization problemtewards the maximization of the sum rate are employed and
possible, high-complexity algorithms are required [12], [14}heir combination defines an RA strategy.
Usually, these algorithms need a considerable number of iterdn Fig. 1, two cases are defined regarding the number of
ations to converge to a suitable solution and involve complegsources considered by the RA strategy: a single-resource
operations, such as matrix inversions or decompositions, insichese, indicated by the dashed line, and a multiple-resource
each iteration. The complexity of such optimum solutionsase, indicated by the dot-dashed line. In the single-resource
rapidly increases with the number of MSs and resources and&se, resources are allocated one-by-one by the RA strategies
not affordable for many practical cases. Therefore, suboptinzadd, consequently, the resource assignment problem loses rele-
RA strategies with low complexity and able to achieve higtance. In the multiple-resource case, RA strategies take all the
sum rates are desired. Moreover, because such strategiedtiple resources into account and the resource assignment
lead to potentially unfair throughput distributions among theroblem must be considered.
MSs, it is also desirable that a good degree of throughputin the following, the different blocks in Fig. 1 are described.
fairness be achieved by the RA strategies without substantialp SDMA algorithm is used to solve the SDMA grouping
compromising the sum rate. Suboptimal RA strategies wifiroblem. This problem is NP-C [20], [21] and would need an
these characteristics are proposed and investigated in tB& over all the possible groups to find the one maximizing
work. The proposed suboptimal RA strategies follow a nethe sum rate. Therefore, suboptimal SDMA algorithms with
framework that combines solutions to the four aforementioné&mlv-complexity are preferred. They are usually composed by
subproblems to define new suboptimal RA strategies providibgo main elements, cf. Fig. 1:

[
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|
|
|
|
|
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« A grouping metric, which measures the spatial compatibilityjetrics based on the spatial correlation, which in spite of

among MSs in a group. being more simple are able to capture the spatial compatibility
« A grouping algorithm, which employs the grouping metriamong the MSs efficiently [7]-[11], [20], [21], [30]. Simple
to build and compare groups while avoiding an ES. greedy grouping algorithms, such as the Best Fit (BF) algo-

A precoding algorithm and a power allocation algorithrithm of [20], also have considerably lower complexity than
are employed to solve the precoding problem and the pow#PUPing algorithms based on convex optimization, as in [23]~
allocation problem, respectively, as illustrated in Fig. 1. [25], [31] and the Compatibility Optimization (CO) algorithm

To determine which resource to assign to which SDMRf [7]. The BF algorithm of [20] is employed in this work and

group in the multiple-resource case, a resource assignmignfiescribed in Section IV-B. o
algorithm is used, which involves two elements, cf. Fig. 1: Most of the mentioned works concentrate on the maximiza-

tion of the sum rate, give less attention to Quality of Service
EboS) aspects, and present quite variable complexity. In [20],
25], [31], minimum target SINR for each MS is also consid-
red in order to ensure QoS. In [25], [31], complex convex
optimization problems are formulated for SDMA grouping,
The algorithms applied to each subproblem appear isolaig@coding, and power allocation which are solved using SDP.
in Fig. 1, but the exchange of information among thermBecause predicting the feasibility of this problem is as hard
is allowed. Separating the SDMA and resource assignmeg{ solving the problem itself, SR algorithms are employed in
algorithms from the precoding and power allocation algorithnjgs], [31] to adequately remove MSs until a feasible solution
simplifies the RA. Indeed, precoding and power allocatiag obtained. While achieving high sum rates, the strategies in
problems are easy to solve if the SDMA grouping and resourgss], [31] present very high complexity. In [20], [25], more
assignment problems, i.e., the combinatorial part of the Réimple algorithms have also been proposed, which admit MSs
problem, are solved beforehand. However, if the SDMA alg@o an SDMA group only if the SINR of all MSs in the group
rithm is aware of the actual precoding and power allocatiopecomes not lower than a given target SINR. Nevertheless, the
it may estimate better the performance of a group, e.g., RA strategies in [20], [25] remain more complex than other
terms of group capacity, and avoid putting MSs into the grouirategies employing more simple grouping metrics.
that do not contribute to enhance the sum rate [8]. Otherwise|t can also be noted that for strategies considering multiple
resources might be allocated to MSs that do not contributefgsources, grouping metrics and group priorities usually match
improve the sum rate and, consequently, some SDMA grouggch other, as well as grouping and assignment algorithms [7],
might contain more MSs than they should do. In this cas@5], [23]-[25], [28], [31]. In these cases, SDMA grouping and
choosing the size of the SDMA group becomes also a problggsource assignment problems are solved simultaneously by
and group sizes may need to be adjusted by removing M8se RA strategies with SDMA groups being built in parallel on
In order to adjust the size of SDMA groups and enhance tkie different resources. However, in some cases the obtained
sum rate, a Sequential Removal (SR) algorithm is employeélution is equivalent to allocating resources one-by-one [15],
to remove MSs from the group [8]-[11], [21], [25]. Becausg9].
a more reliable decision about which MSs to remove can beadaptive RA for MU MIMO-OFDMA systems has been an
made considering the actual precoding and power allocatigftive research field in the last few years, cf. Table |, and a con-
the SR algorithm employs this information. The SR algorithriderable number of investigations has already been conducted.
shown in Fig. 1 is only needed if the SDMA algorithm isComplexity plays a role in many previous works. However,
unaware of precoding and power allocation. often a detailed analysis of the performance-complexity trade-
In the following, some state-of-the-art strategies fitting inteff of suboptimal RA strategies has not been considered.
the framework of Fig. 1 are shortly discussed. They are listeost of the strategies also concentrated either on maximizing
in Table 1, whose columns correspond to the algorithms (afise sum rate or providing QoS. However, strategies able to
their elements) previously discussed in this section. provide a high degree of throughput fairness among the MSs
In Table I, the RA strategies are grouped in terms eft the expense of only small reductions of the sum rate
grouping metric and for each metric they are roughly orderé@ve not been provided. Therefore, it is an objective in this
in terms of complexity. The RA strategies in [23], [24] aimwork to propose suboptimal RA strategies having attractive
at maximizing the sum rate and disregard fairness aspectspbrformance-complexity and performance-fairness trade-offs,
[23], [24], the joint solution of the SDMA grouping, resourca.e., they should be able to provide a good degree of throughput
assignment, and power allocation problems based on con¥aixness among the MSs despite the fact of being mainly
optimization is considered and high sum rates are achievediented to sum rate maximization.
but with very high complexity. For these strategies, it is relevant to investigate whether they
More simple strategies are obtained considering a singlan achieve sum rates close to the sum rate obtained through
resource [8], [9], [20], [21], [26], [27], [29]. Complexity an ES with considerably lower complexity. In this context, it is
reductions are also achieved by using less complex groupingportant to investigate whether SDMA algorithms using low-
metrics. For example, capacity-based metrics [26], [27] amodmplexity grouping metrics not depending on precoding and
metrics based on null-space Successive Projections (SPs) [pBlyver allocation can perform as good as other more complex
[29] involve relatively more complex matrix operations thamlgorithms employing metrics that depend on precoding and

« A group priority, which measures the efficiency of assignin
a given resource to an SDMA group.

« An assignment algorithm, which employs the group priorit
to assign the resources to the SDMA groups.
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Table |
RA STRATEGIES

SDMA algorithm [ Precoding | Power allocation SR criterion” I Resource assignment algorithm Ref.

Grouping mefric__ | Grouping algorithm | algorithm” algorithm” Group priority [ Assignment algorithm |

Convex optimization ZF WF Group capacity | Convex optimization 23
. Convex optimization ZF WF Group capacity | Convex opiimization 24
Group capacity Best Fit ZF WF, EPA Single resource 26
Best Fit ZF WF - Single resource 27

) . R Best Fit ZF WF Fixed group size Channel gains with SHs Best Fit [15], [28]
Channel gains with S Best Fit ZF WF Fixed group sizd Single resource [29]
Compatibility Optimization| - - Fixed group siz€ Total spatial correlatiohCompatibility Optimizatior] [7]
Total spatial correlatioh Best Fit, First Fit GEP EPA - Single resource 20
p Best Fit ZF WF, EPA Channel gain Single resource 21
MS partitioning ZF Adap. bit Toadind Fixed group sizg Single resource 30
Convex optimization SDP Max. SINR gap Single resource 31
Minimum target SINR|Best Fit, First Fit, admit all SDP E.g., Random Single resource 25
Best Fit, First Fit GEP | EPA - Single resource 20

Acronyms: Zero-Forcing (ZF), Generalized Eigen-Precoding (GEP), Semidefinite Programming (SDP), Water Filling (WF), Equal Power Allocation (EPA), Sequential Removal (SR)

power allocation. RA strategies either optimize SDMA group On each resource, SDMA is used to multiplex up &b
sizes, e.g. in [23], [24], or adjust them using an SR algorithrdata streams separated in space through linear precoding [13],
e.g. in [25], [31], or just fix their values, e.g., in [29], [30]. Ini.e., on each of thé/ spatial layers of a resource the BS can
particular, the impact of the the SDMA group size selection lyansmit a data stream to a different MS [3].

an SR algorithm on the performance of the strategies deservepenoting bys? the average AWGN power per subcarrier,

additional investigation. Additionally, the sensitiveness of Rfhe average Signal-to-Noise Ratio (SNR)in the system is
strategies to imperfect CSI must also be considered in orderfgfined as

determine whether the high-complexity strategies offer some y= £ )
advantage compared to the low-complexity ones in this case. o2

These aspects will be addressed in the following sections. |, this work, the geometric-based stochastic MIMO channel
model of the Wireless World Initiative New Radio (WINNER)
I1l. SYSTEM MODEL project is employed. The WINNER Phase | Channel Model
In this section, the system model used in this work {@WIM) captures space and time characteristics of the channel
presented. The DL of a single BS located at the corner tgf realistic scenarios and their parameters have been deter-
a hexagonal sector is considered. The BS had/aglement Mined from measurement campaigns [32], [33].
Antenna Array (AA) and serves a numhirof single-antenna  In this work, channel modeling in the frequency domain
MSs. It is assumed that the BS’s transmit powercan be is adopted. The channel transfer function of all t@gup
arbitrarily distributed among the MSs and that CSI about tts¢ibcarriers of a frequency blodkb = 1,...,B, can be
DL channels to the MSs is available at the BS. efficiently represented by that of the middle subcarrier of the
Gaussian signaling is considered and the data symbols trafiiequency block. The channel coefficieht ., denotes the
mitted by the BS to the MSs are assumed to be uncorrelagampled frequency response of the channel betweemthe
with unit average power. Inter-cell interference is assumed agtenna of the BS and thé" MS on the middle subcarrier
be Gaussian-distributed and is incorporated in the Additi@ the frequency block. The channel coefficientsy, , ., are
White Gaussian Noise (AWGN) perceived in the system. On@iptained using the WIM [32], [33] and are organized in a
fast fading is considered, which is a common assumptiovgctor
Indeed, most of the works referred to in Section Il consider
only fast fading. Additionally, low MS mobility is assumed
because it is well-known that adaptive RA fits well for lo

m%\b]'c“ty scenargl)s [lf]. d d t subcarriers i (2), the channel matriH, of all MSs on frequency block
requency block composed sy adjacent subcarriers 'Sis obtained by stacking the channel vecthys, as

considered the minimum allocable resource unit in frequency.
T 4T
hi,] 3)

Frequency blocks are expected to have an almost flat channel
transfer function. R
Frames composed df TSs are considered. A TS is theAn estimated channel matrid, of H, is used to describe the
minimum allocable resource unit in time and transports sevefdiannel State Information at the Transmitter (CSIT) available
OFDMA Symbo's_ The channel transfer function over a Who@t the BS on a frame basis. Perfect CSl is assumed at the MSs.
frame is not expected to vary considerably, which holds for A model for imperfect CSIT is also considered to investigate
low MS mobility and short frame durations [4]. the performance of the RA strategies. Imperfections in the
A resource is defined as a frequency-time resource u@SsIT might originate, e.g., from the AWGN in the system,
described by one frequency block and one TS. These resours@soptimal channel estimation, inherent processing or feed-
are also called Physical Resource Blocks (PRBs) [1], slots [Black delays, among others. For MSand frequency block,
or chunks [3]. both estimation errors and imperfections due to processing or

Pk, | 2

for the channel between the BS and an KM8n the frequency
Mblock. Denoting vector/matrix transposition l()y)T and using

hip = [hrpy P2

H, = [h{, hj,
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feedback delays can be modeled by an additive Zero MegBt) limits the total transmit power, and constraint (8d) implies

Circularly Symmetric Complex Gaussian (ZMCSCG) erraunit-norm precoding vectors.

termey;, € C**M [34]-[38]. Let0 < v < 1 be a parameter Note that the SDMA grouping and resource assignment

controlling the amounts of the true chanil, and error term problems are implicit in problem (8). In the following, a new

ey, in the estimated channélk,b, which can be expressed agormulation of problem (8) as a mixed-integer optimization
. roblem is introduced and this new formulation explicitl
by = V1= vhip + Vvegp. (4) Eharacterizes the four subproblems of Section I. Let thg biany

In order to obtain a normalization dfy,, the variancer? variableu, ;, indicate whether resourdeis assigned to M.

of the entries of the error terra,,;, can be modeled to be Of course, ifpy, > 0, thenu,,, = 1, otherwise power would
equal to the variance} of the entries ofhy ;. Note that by be wasted. Theny; is defined as

dividing (4) by v1 — v one obtains a standard “nominal plus } {1’ for pry > 0,
kb =

perturbation” model for imperfect CSIT, as in [35]. Also note
0, for Pkb = 0.

that the model in (4) matches the model for delayed CSIT
[29], [36]-[38]. According to [34], the model in (4) allows to
draw only a lower bound on the training-based capacity f%rr
Minimum Mean Square Error (MMSE) estimation.

Using (4), the different amounts of imperfection in the CSI
can be obtained by varying. Denoting by| - | the absolute
value of a complex number and using (2), the model in (
allows to describe the quality of the CSIT as

9)

There is a maximum numbet = >, (%) of SDMA
oups that can be defined using; and each resource is
hared in space by one of the groups. Ldt=1,...,L,
ndicate the SDMA groups and the binary variablg indicate
hether resourcé is assigned to the SDMA groug ;. Note
at, if resource is assigned to the SDMA groug; , and
3k ¢ G|, for which ., > 0, then there is a grou@,, # G;,
&{(1-v) Ihk,b,mIQ} 11—y for which py, > 0 < k € G;,. Thus, the resourck can be

(v |€k.b7m|2} =T, ®) seenas effectively assigned to SDMA gragip, andwv; ; can

) ) ) be defined as
which expresses the relationship between the expected mag-
Vb = {

Yesi =

1, if prp>0& ke,
0, otherwise

nitudes of the terms due thy ;, ande;, present inhy, ;.
In the following, the sum rate maximization problem is for-
mulated. Because CSI is available at the BS on a frame bas"}Jsing uip anduy, problem (8) can be reformulated as

the problem can be formulated for the resources describe
B L K
= argmax {szl,bzuk,bRk,b}
b=1 k

(10)

by the frequency blocks, b = 1,..., B, and the first TS of O{ PE b Wi s }

each frame. A solution obtained for these resources applies to| uj ;, v

the resources associated with the remaining TSs. Further on, { Phobo Wby e

the frequency-time resource units present during each TS will e (11a)
be indexed by, b =1, ..., B. Let p;, andwy; denote the

allocated power and the precoding vector of M8n resource subject to

b, respectively, and lgf-||, denote the 2-norm of a vector. The e > 0.VE. b (11b)

DL SINR 73,5 is given by

B K
P ey Wi o | > > ma=P (11c)
Ye,b = A : ) (6) b—1 k=1
o2+ Z pj,b|flk7bwj,b|2 |Wk-,bH2 =1,Vk,b, (11d)
j=1.j#k ugp € {0,1},Vk, b, (11e)
and the rate of MS: on resourcé) becomes L
Zvl,b <1,V (11f)
Rk,b = 1Og2(1 + 'Yk.,b)- (7) =1
Using (7), the maximization of the sum rate can be formu- op € {011, V0. (119)
lated as
B K The new formulation in (11) clearly characterizes problem
{Pkpy Wiy} = argmax {Z 3 Rk,b} (8a) (8) as a mixed-integer optimization problem. Another mixed-
o Wi} (p=1 k=1 integer formulation of problem (8) can be found in [24]. In

the new formulation of (11}, andwv;, together withwy, g

subject to andpy , allow to explicitly characterize the four subproblems
Pes > 0,Vk, b, (8b) in (8) as fqllows. .
[ o The variablesu;;, are related to the SDMA grouping
Z Zp -p (8c) problem, in which up ta\/ of the K’ MSs must be selected
it b ’ on each resourcé, so thatux, = 1,Vk € G, and
IWisll, = 1,k b, (8d) upp = 0,Yk & Gip.

« The variableswv; ;, are related to the precoding problem, as
where constraint (8b) ensures non-negative powers, constraint problem (8).
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« Similarly, the powerg; , are related to the power allocationthe group considering precoding and power allocation, it is a
problem. reliable metric [8], [26], [27]. However, because precoding

« The variablesy;;, are related to the resource assignmeiind power allocation must be computed for all MSsdn
problem, in which each resouréeis assigned to no more whenever the group composition changes, the complexity of
than one SDMA group according to constraint (11f). SDMA algorithms usingfcap(G) might become high if a large
Problem (11) provides some insight into the elements ofimber of groups is considered.

problem (8). Firstly, it can be noted that the power distribution The sum of channel gains with null-space SPs [10], [11],

is the element that keeps the four subproblems interdepend€Hi], [27], [29] is described in the sequel. LEf; denote an

If the power is distributed a priori among resources, e.g., usiddg x M identity matrix and assume an admission order for

EPA, the resource assignment can be performed on a resoutde-MSs inG. The channef; of MS i is projected onto the

by-resource basis. Additionally, the precoding veotar;, of null-space of the channeds: of all MSsi’, ' = 1,2,...,i—1

MS & on resourcé plays no role if the powep, , is zero. previously admitted taG using a projection matrix'; given

Moreover, the binary variables; , andv;;, depend only on by

Pk, @S shown in (9) and (10), respectively. I if i1
Secondly, the SDMA grouping problem is responsible for . _ M TH & g T, _ =4 (13)
yielding (11) combinatorial, since the combinatorial increase T,—1— ﬁ, if 2<i<@G.

in the numberL of candidate SDMA groups is due tg, ;, . . .
which affectsv; ;, subsequently. If SDMA groups are already US.'tTg (13), the sum of channel gains with null-space SPs
defined on each resource, the problem is no longer NP-C. IS writien as G
Thirdly, divi(jing problem (11) into supprqplems allows fsp(G) :Z“giTng' (14)
to adapt algorithms to each subproblem individually and to i=1
bine them into suboptimal but efficient RA strategies. Thi . . .
combine tem 1o sUboptimal but eticien srategies. [NiS higher the channel gamgi”g of MS i is and the

formulation leads to high flexibility and strategies providin Hall lated with t to the MSE G
interesting trade-offs between the sum rate maximization a%lbore spatially uncorre ‘:" e \9” _respect fo the *
the MS: is, the higher|g;T;||; might become and the more

the throughput faimess can be obtained. spatially compatible MS and the MSsi’ are considered to
IV. SDMA A LGORITHMS be. Consequentlyfsp(G) favors SDMA groups whose MSs

. , have high channel gain and are highly spatially uncorrelated.

A Grogpmg Metr|cs ) . fsp(G) in (14) depends neither on precoding nor on
In this section, the grouping metrics used by the SDMBower allocation and, consequently, has lower complexity than

algorithms are described. Grouplng _metncs are fupctlons %Ap(g) [10], [11], [39]. By taking care of the admission order

the CSIT that map the spatial properties of the MSs’ channgls ihe spmA algorithm, fsp(G) can be efficiently used as

to a scalar value quantifying how efficiently the MSs CaBrouping metric [10], [11], [15], [27], [29].

be separated in space. In this work, the following ones aretpg conyex combination of the total spatial correlation and

considered: _ channel gains has been proposed by the authors in [9] and is
« The group capacitycap(9). discussed in the sequel. Given the channel vedigrand hy,
« The sum of channel gains with null-space SRBg(G). of MSs j and k, respectively, the spatial correlation among

channel gaingcc(G).

W H
For simplicity of notation, the index is omitted in the pik = A|hjhlf| ' (15)
sequel and the above metrics are described considering a single ' [Ih||2] |2
resource.

The lowerp; i, is, the less spatially correlated M$sandk

e. Becausg; i is a pairwise metric, the sum pf ;. for every
pair of MSs inG must be used to measure the total spatial
correlation among the MSs in the group. Moreover, MSs with
high channel gain should be preferred since it is well-known
tat allocating power to an MS with high channel gain is
x X st ond h 1 more efficient than giving the same power to an MS with
belong tog, G_t(h:ontal_ns thet®, 27, and K™ rows of H. The | channel gain. However, effective channel gains of MSs
(ipannej of the®™ MSin g, withi=1,...,G, is given by the ;, 5 group depend on the spatial compatibility among them.
"' row g; of G. Letp; andw; denote the allocated power andry o efore an efficient SOMA group must provide an adequate

the precoding vector of M$ in G, respectively. Then, using y54e_off hetween total spatial correlation and channel gains.
(7) the capacity of the SDMA grou@ is written as Let the attenuation vecter be defined as

G ~ ~ ~
fear(G) :ZRi- (12) a= [||h1||2_2 ||h2H2_2 HhKHQ_Q}Tv (16)
i=1

which contains the inverse of the channel gains, an®Iét}
The higher fcap(G) is, the more spatially compatible thedenote a diagonal matrix whose diagonal is given in the vector
MSs inG are. Sincefcap(G) reflects the effective capacity ofargument. Then, using (15) and (16), the spatial correlation

In the following, some additional definitions are made anéﬂr
the group capacity [8], [26], [27] is described. L&tdenote
an SDMA group containing a numbét of MSs. The channel
matrix G € CE*M for the SDMA groupg is obtained from
H in (3) by taking the rows corresponding to the channels
the MSs belonging t@j. For example, if MSs 1, 2, an&
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matrix C can be defined as formulated as the following quadratic optimization problem:
— & & H —
C= ‘«/D{a}HH VD1al, (17) - :arg}nin{(|10|ﬁ)ﬁTCﬁ+ |f” arﬁ}’ (20a)
where| - | is applied element-wiseC containsp, , for each _ " F F
pair of MSs in the system. subject to
Using (9), let the binary vecton be defined as T~
T 10 =G, (20b)
u=[ur uy ... ugl, (18) 0 < iy < 1,VF, (20c)
and let||-||. denote the Frobenius norm of a matrix/vector. = 1. (20d)

e 5 (10 A1) (1) e convex comnaten  prolem )i e rlaed versiono h equalet neger
optimization problem when is binary [9]. The CG algorithm
_(1-5 B
fee(@) =

TCu -+ T 19 also considers a target group si@g in the constraint (20b).
ICll w ||a||Fa1 b (19) By solving problem (20) and rounding to one tbk largest

where0 < § < 1 is a parameter controlling the trade-of'l“t’omponents and_ to zero the othf — G components of

between spatial correlation and channel gain [9]-[11]. u’, the CG algonthm_flnds a groug” composeq of spatlally_
The lower the value thatec(G) assumes, the more spati(,Jl”}pncorrelated MS_s _vylth Iow/ channel attenu*anon. Constraint

compatible the MSs i are considered to bgec(G) depends (20d) forces an _|n|t|al MSK’ to belong toG” and can be

neither on precoding and power allocation nor on complé&:'(ad for schedu_llng PUrposes. . I

matrix operations and, consequently, is less complex than! "€ BF algorithm has been proposed in [20]. Similarly to

and _The aroupina metri will be used the CG algorithm, the BF algorithm also considers an initial
IJ;Ct/;(g.Z, partfg?(ggw RA itrat%gi%s. decl9) MS. The BF algorithm starts with an SDMA group containing

only this initial MS. Then, the BF algorithm sequentially
extends the group by admitting to it the MS that most improves
B. Grouping Algorithm the grouping metric. LetG = {k’} be the initial group

In this section, the grouping algorithms employed by thgontaining only the MS:" and letG be the size ofj. Then,

SDMA algorithms are described. The task of the groupirfg€ BF @lgorithm temporarily admits one MS¢ G to the
algorithm is to build an efficient SDMA group on a giverd™OUP and computes the grouping metfic (G U {k}). This

resource with acceptable performance compared to an ES. Théone for each M& ¢ G and the MS that has led to the best
following grouping algorithms are considered here: metric value when temporarily admitted (is permanently

The Exh ve S h (ES) algorith hich ; inserted into the group. Then, this procedure is repeated for
» The Exhaustive Search (ES) algorithm, which per OMRe extended group until a group of sizg, be built or

an E.S for the SDMA group that maximizes the 9roUPPntil no more MSs able to improve the grouping metric be
metric. . . L found. Because the BF algorithm tests only a small humber

« The Random Grouping (RG) a'go””_"T" ‘_Nh'Ch Just rana¢ candidate SDMA groups and relies on a simple heuristic,
domly builds an SDMA group of specific size. it is less complex than the ES and CG algorithms.

« The (.:O”VGX Qrouping (CG) algorithm, which _is a NeW The CG and BF algorithms will be used later as part of the
grouping algorithm proposed by the authors in [9] anﬁew RA strategies proposed in this work.

formulated as a quadratic optimization problem.
« The Best Fit (BF) algorithm, which is a greedy algorithm
that builds an SDMA group by sequentially adding MSsV. PRECODING AND POWERALLOCATION ALGORITHMS

spatially compatible to the MSs already in the group [20]. | this work, only linear ZF precoding is considered [13],

The ES algorithm finds the groug* that maximizes the which will be simply termed ZF further on. Because ZF
grouping metric. However, it might be too complex becausippresses spatial interference completely, the effective MSs’
it compares all the, SDMA groups andL increases combi- channels are no longer coupled through interference and power
natorially with K. allocation does not affect precoding anymore. Consequently,

The RG algorithm is the most simple algorithm. Given the RA is simplified. Moreover, it has been shown that the
target group sizé&7;,1 < Gy < M, which is the number of maximum sum rate of the system can be efficiently approxi-
MSs that the groug/* must contain, the RG algorithm justmated using ZF [27], [29] and WF for power allocation [40].
selectsG; among theK MSs randomly. A target group sizeWF is a suitable choice since it maximizes the sum rate of the
is used by many SDMA algorithms to simplify the search foget of independent channels obtained after applying ZF [21],
the best grou*, cf. Table I. [40].

The CG algorithm has been proposed by the authors in [9]Despite of its simplicity, ZF precoding is quite sensitive
together with the metrigcc(G) of (19), which can be easily to the quality of the CSIT with its performance degrading
expressed as a function afsince there is a uniqgue mappingapidly when imperfect CSIT is considered. Linear MMSE-
betweenu and a grougy. Let @, andu denote the continuous based precoding is more robust to imperfect CSIT. However, it
relaxed versions af, andu in (18), respectively. Denoting by inherently couples precoding and power allocation and, when
1x a K x 1 vector of ones and using (19), the CG algorithm iaiming at the maximization of the sum rate, its adoption
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aks for the use of iterative algorithms incurring additional Let v;; denote the group priority of the group ,, which
complexity. Therefore, linear MMSE-based precoding is nguantifies the efficiency of assigning the resourds it. It is
considered in this work, but only linear ZF precoding. proposed here to define the group prionify, simply as the
sum of the prioritiesy; ; of the MSs inG; 4, i.e.,
VI. SEQUENTIAL REMOVAL ALGORITHM

In this section, an SR algorithm is proposed, which in- Oy = Z Wibs (23)
tends to increase the capacity of the groups built by SDMA €L
algorithms unaware of precoding and power allocation. Thehich leads to
SR algorithm removes the MSs that do not contribute to feap(Guy), for the CM criterion, and (24a)
enhance the sum rate from the grofipUsing ZF and WF, Re¢
if zero power is allocated to an MS, it does not contribute to Vb = Z #Ri,b, for the PF criterion. (24b)
enhance the group capacity anymore. On the contrary, since i€Gry
the channels of the others MSsgrare projected onto the null- According to (21), if CSI is available on a frame basis all

space of the channel of this one MS due to ZF, its remov@e TSs of a frame are assigned to the same SDMA g€oup
can only improve the group capacity. In order to improve fairness, RA is considered on a TS basis
The SR algorithm removes one MS from the SDMA grou;it, the PF criterion in order to assign resources to potentially

g according to the effective channel gain of the MSs [21]. Thi§ifrerent groups during each TS. Anyway, the same CSIT is
is a reasonable criterion since the lower the effective Cham?:%'nsidered for all the TSs of a frame.

gain of an MS is, the lower its achievable cgpacity is. Anyway, For the CM criterion, the higher the group capacity of an
other criteria may be used [9]. After removing an MS, the SBpma group on a resourdceis, the higher its priority on this
algorithm computes and stores the capacity for the resultingsoyrce is and, consequently, the higher the chances of the
SDMA group using (12). Then, the process is repeated agfh, getting this resource assigned. For the PF criterion, the
another MS is removed, and so on. At the end, the SDM@es; of the MSs in a group are scaled by the throughput
group with the highest capacity is kept as the best SDM@io e/ R,. Thus, SDMA groups containing MSs achieving
groupg*. high ratesR; or MSs whose QoS requirements have not been

For an initial groupg of size G, the SR algorithm needs 0 filed will have high priority [42] and, consequently, there
computelz group capamhes_usmg (.12). Becal![_%ﬂs relatively il pe higher chances of assigning resources to these groups.
small and because the size ¢f is sequentially reduced,

these computations add only slightly to the complexity of Rg . :
strategies using the SR algorithm. Nevertheless, the propo ed“ss‘_g”me”t_ algorithm _ _ _ o
SR algorithm can provide considerable gains to the system inln this section, the assignment algorithms considered in this

terms of sum rate. work are described. Using the group priorities, the assignment
algorithm has to determine which resource to assign to which

VIlI. RESOURCE ASSIGNMENT ALGORITHM SDMA group. Two assignment algorithms will be considered:
A. Group priority « A sequential algorithm, which assigns resources one-by-one

In this section, the group priorities used by the resourcet© SDMA groups. . o
assignment algorithm are described. The concept of MS pri-A resource-to-group algorithm, which is proposed here and
orities has been often used in time-scheduling algorithms toiS formulated as a standard assignment problem. It assigns
manage the QoS of the MSs and, e.g., to provide throughpu@t once theB resources td3 SDMA groups selected from
fairness [41]. Because SDMA groups may contain several@ Sét ofZ > B candidate groups.
MSs, the concept of MS priorities is extended to group In fact, the sequential algorithm corresponds to the single-

priorities later in this section. Priorities are defined accordirfgsource case of Section II. It just assigns the considered
to: resource to the group built by the SDMA algorithm.
« A Capacity Maximization (CM) criterion, which aims at The proposed resource-to-group algorithm considers the
maximizing the sum rate. multiple-resource case and is described in the sequel. Initially,
« A Proportional Fair (PF) criterion, which finds a trade-offt set of K candidate SDMA groups is built on each resource
between the QoS of the MSs and the sum rate. b. The k" group is built by selecting thé™ MS as initial
Let w,,, denote the priority of MSi in the SDMA group MS #’ and applying an SDMA algorithm. Consequently,
G,». For the CM criteriony, , is defined as L = K - B groups are built. Precoding, power allocation,
' " and the SR algorithms are applied for each group considering
uip = Rip. (21) EPA among resources. In order to improve fairness, groups of

gsame composition built on different resources are considered
only once, i.e., only a numbet < K - B of unique groups
from the L groups is considered. Then, it is proposed here
to formulate the assignment of resources to SDMA groups as
a standard assignment problem based on the group priorities,

R¢ which is solved using Munkres’ algorithm [43]. The referred
Uib = ﬁRiab' (22) " formulation is described in the sequel.

T

For the PF criterion, leR¢ andR; denote the contracted an
the perceived average throughputs of M8 G, ;, respectively.
Thus, the throughput rati% measures how well the MS has
met its QoS requirements [42]. For the PF criteriap; is
defined as
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Let 23 denote a group priority matrix containing the grouphe BF and CG algorithms, respectively. SDMA algorithms
priorities v, ; of each SDMA group on each resource. Dét combining fcap and the BF algorithm have been studied, e.g.,
denote a resource-to-group assignment matrix whose binary8], [26], [27]. SDMA algorithms combiningfsp and the BF
entries indicate whether thé" resource is assigned to tif#8¢ have been studied, e.g., in [10], [11], [27], [29]. Combinations
group. The matrice®¥ and'V are written as of fcap and fsp with the CG algorithm are not considered

o11 ... bir Vi1 il because the)_/ do not permit an adequate_ fqrml_JIation of the
02’1 - 027L 02’1 - U27L SDMA grouping problem as a quadratic optimization problem.
6= U, andv=| T e The CM criterion and the sequential algorithm are consid-
: B : : B : ered in the ES and RG strategies. The performance of these
L strategies is the same in both single- and multiple-resource

25) cases since EPA among resources is used. For the remaining
respectively. Denoting by the Hadamard product and usingstrategies in Table II, both the sequential and resource-to-
(25), the assignment of resources to groups is formulated @soup algorithms are considered. The sequential algorithm

* _ T related to the single-resource case is considered in combination
vi= arg\I/naX{lB BoV) lL} (262) with the CM criterion only. The resource-to-group algorithm
will be considered with both the CM and PF criteria. In
particular for the PF criterion, it is of interest to investigate
V1, =15 (26b) whether throughput fairness can _be considerably enhanced at
V1. <1 26 the expense of only _small reductions of the sum rate.
B =L (26¢) For all the strategies, ZF and WF are considered for pre-

which is a standard assignment problem that can be efficier@§ding and power allocation, respectively. The ES and CAP-
solved using Munkres’ algorithm [43]. After solving (26), theBF strategies employ the group capacity in their SDMA algo-
resources assigned to the groups are determined by the H#Ams, which are consequently aware of the actual precoding
zero entries ofV* and the B resources are assigned #» and power allocation. Therefore, the SR algorithm is no longer
out of the L > B candidate groups. Constraints (26b) anfiecessary in these strategies and is disabled.
(26¢) impose that no more than one resource be assigned
to the same group, which may increase the fairness into the IX. ANALYSIS AND RESULTS
system. Moreover, to avoid assigning an unsuitable resource , ) )
to an SDMA group, the group priority is computed only for In th|s_ s_ectlon_, the performan_ce of_the RA_ strategl_es of
the resources on which the SDMA group has been built af@Ple Il is investigated. The BS is equipped with a Uniform
is set to zero on the other resources. Linear Array (ULA) with M = 4 omnidirectional elements

In both the sequential and resource-to-group algorithms, fgParated by half wavelength. A total numbier = 16 of
SDMA grouping problem is solved beforehand, i.e., first théindle-antenna MSs is served by the BS.
groups are built and then resources are assigned to them, whicft Center frequency, = 5 GHz is considered. A total num-

keeps SDMA and resource assignment algorithms relativél§’ B = 8 of frequency blocks composed Qkus = 6 adjacent
separated from each other. subcarriers of bandwidti  ~ 9.766 kHz are considered.

Fast fading is generated using the WIM considering the urban
macro-cell scenario C2 with Non Line Of Sight (NLOS) [32].
The channel has a coherence bandwiffth~ 250 kHz, so
In this section, the suboptimal RA strategies investigated ihat the frequency block bandwidi@s,,Af < 0.25Bc. An
this work are defined by combining the algorithms introducealzerage MS speed,s ~ 2.78 m/s is assumed, which leads to
in Sections IV to Section VI. a coherence timé&; ~ 11 ms. Frames of duratidf-ry = 1 ms
Table Il defines the RA strategies, whose names are givergire considered, so th#tgzy < 0.17¢. Each frame is composed
the first column. The subsequent columns specify the SDM&f T' = 4 TSs.
resource assignment, precoding, power allocation algorithmsecause the larger the SDMA group, the higher the potential
employed by each strategy. The last column indicates whetl8MA gains, a target group sizé; = M = 4 corresponding
the SR algorithm is used by the strategy. to the maximum admissible group size is considered [8]-[11],
The ES strategy searches exhaustively for SDMA the grolib], [29]. For the strategies employing the BF and the CG
that maximizes the sum rate on each resource, while thkgorithms, the initial MSk’ is selected as the one with the
RG strategy just builds randomly an SDMA group on eadhighest channel gain. For the CC-CG strateg)y; 0.5 is used,
resource. These two strategies are considered to boundliech has been experimentally adjusted as in [9]. The BS is
performance of the other strategies in Table Il above amadsumed to always have data to send to the MSs. All MSs are

b1 ... UBL UB1 --- UB,

subject to

VIIl. RA STRATEGY DEFINITION

below, respectively. assumed to have the same contracted average througtiput
RA strategies whose SDMA algorithms combiffieap(G) The most relevant simulation parameters are listed in Table I11.
and fsp(G) with the BF algorithm are defined in Table II, |Initially, the performance of the RA strategies of Table Il

namely the CAP-BF and the SP-BF strategies. They are usedstudied considering the single-resource case, the CM cri-
for comparison with the new CC-BF and CC-CG strategigsrion, and the sequential algorithm, so that each resource is
proposed here, whose SDMA algorithms combifae with assigned to the group built by the SDMA algorithm. After



IEEE Transactions on Vehicular Technology, Jan 2010, Volume 59, pp 406-419 10

Table Il
RA STRATEGIES DEFINITION

RA SDMA Algorithm Resource Assignment Algorithm Precoding Power Allocation SR
Strategy|Grouping Metric [Grouping Algorithm Group priority | Assignment Algorithm Algorithm Algorithm
ES feap Exhaustive Search| L - Off
RG - Random Grouping Cap. Maximization Sequential on
CAP-B fcap Linear - |Off
SP-BF fsp Best Fit Cap. Maximization, Sequential. ResoUrce-to-Gro Zero-Forcing Water Filling I
CC-BF fcc Proportional Fair q ' P On
CC-CG fcc Convex Grouping
Table 11I . o
SIMULATION PARAMETERS. the RG strategy perfqrms worst and obtains about 70% of
average sum rate achieved by the ES strategy.
Parameter [ Symbol | Value [ Unit Since quite different RA strategies are considered in Fig. 2,
BS's ULA size M 1 - it is important to verify whether some of them are particularly
(N:“”:be’f of MSs Jff ;% - more robust or sensitive to imperfections in the CSIT. For
enter frequency 0 . z . .
NUMDET Of 16SOUTCes 5 5 - th_|s purpose, the erroneous CSIT model (_)f (4) is employed.
Subcarriers 7 freq. block  Qup 6 . Fig. 3 shows the average sum rate achievable by the RA
Subcarrier bandwidth Af 9.766 kHz strategies considering an average SINBf 10 dB and varying
Fast fading model - WIM, scenario C2 - uality of the CSIT, given byi.s, in (5). The presented results
Average MSs’ speed ) ~2.78 m/s y ¥
Frame duration TF“LSM Nl' ms _correspond_to the_ maximum ra_tes that the RA strategies could
TSs [ frame T 4 - ideally achieve, i.e., considering perfect feedback and rate
Target group size G 4 MSs adjustments while assuming that the erroneous CSI is the
Initial MS ¥ | agmax {3} | - actual CSI.
Parameter folfcc(Q) B 0.5 . If the quality of the CSIT is somehow compromised,

schemes relying on Channel Quality Indicators (CQIs), such as
SNR values, might become interesting alternatives. In order to

that, precoding and power allocation are applied, as well ggstrate this fact, the performance of a Grid of Beams (GoB)
the SR algorithm if necessary. Fig. 2 shows the average siffill four beams of equal power formatted using Chebyshev

rate achieved by the RA strategies of Table Il as a function Bfering with a Sidelobe Level (SLL) attenuation of 20 dB [44]
the average SNR. is also included in Fig. 3 and is indicated by the horizontal

dashed line. Since CQI values represent a small amount of
information to be fed back to the BS by the MSs, it is assumed

N
[o)]

7.5 10 125
Average SNRy in dB

N

[} [ ; . . .
LRZ boun in Fig. 3 that they are correctly received and that the four MSs
S 22| —a— CAP-BF with the best SNR values are served by the BS.
S 20| —>— SP-BF 1
5 19/l —~—CC-BF 1
£ 16l _”_gg'CG g |[—>—cap-BR
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Figure 2. Average sum rate of the RA strategies of Table II.
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It can be seen in Fig. 2 that the CAP-BF, SP-BF, CC-BF, Quality of CSIT given byycs: in dB
and CC-CG strategies achieve over 95% of the average SHHEJI’E 3. Average sum rate of the RA strategies considering imperfect CSIT.
rate achieved by the ES strategy for all the considered averaggage SNRy = 10 dB
SNR values and that the performance of the ES strategy is
only about 10% lower than the capacity upper bound [14] From Fig. 3, it can be verified that none of the RA strategies
achiveable using Dirty Paper Coding (DPC). The performanieparticularly more robust against imperfections in the CSIT.
gap between the ES strategy and the other strategies incredtsean also be noted that the performance of the strategies
only slightly for higher values ofy. Since the ES strategyrapidly degrades whencs, decreases. In order to obtain at
is much more complex than the other RA strategies, it céast 60% of the sum rates shown in Fig. 2 for different average
be noted that suboptimal RA strategies are able to efficienBNR values, the quality of the CSIT given by should
approach the maximum sum rate of the system. As expectadt be lower than 10 dB. For &g value of -10 dB, the
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RA strategies attain only about 15% of their sum rates wittomparing Fig. 2 and Fig. 4, it can be seen that the proposed
perfect CSIT. Considering the parameter values in Table BR algorithm considerably improves the performance of the
and assuming that CSIT imperfections are only due to delay®A strategies.
this vcg value corresponds to a delay of approximately 50% From Fig. 2, Fig. 3, and Fig. 4, it can be concluded that
of the channel coherence tin¥e [29], [37], [38]. Thus, the the CAP-BF, SP-BF, CC-BF, and CC-CG strategies have very
performance of considered strategies strongly depends on ¢hmilar performance and approximate quite well the average
quality of the CSIT. sum rate of the ES strategy. However, these RA strategies have

Regarding the use of GoB, it can be seen in Fig. 3 that theite different complexities. Indeed, previous works lack on
achieved sum rate is only about 15% lower than those obtaimadre precise analysis of the complexity of the RA strategies.
by the considered RA strategies. Indeed, the performanceHsrein, the complexity of each strategy has been estimated in
the GoB is even better than that of RG strategy. For the otlterms of the required number of complex multiplications and
RA strategies, ay.s value of, at least, 10 dB is required inis given in Table IV as a function of the numb&rof MSs, the
order to ensure better performance. Therefore, the use of GuBnberM of transmit antennas, and the target group size
can represent an efficient alternative to more sophisticated Rforeover, their complexity order®(-) assumingG; = M,
when the quality of the CSIT is compromised. A more detailedf. Table Il, are also given in Table IV.
investigation of this topic, e.g., when CQIs are also imperfect, Because the numbérof groups considered by the ES strat-
is left for future studies. egy combinatorially increases witi and because precoding

In Fig. 2 and Fig. 3, the RG strategy achieves quite go@hd power allocation must be computed for each group, this
sum rates in spite of being considerably more simple than thategy has the highest complexity, which is non-polynomial.
remaining strategies. However, the sum rates achieved by ffee RG strategy has the lowest complexity, which does not
RG strategy are mainly due to the use of the proposed 8Rpend on the number of MSs. However, it presented the worst
algorithm of Section VI. Indeed, the SP-BF, CC-BF, CC-CQerformance in terms of average sum rate.
and RG strategies employ the SR algorithm, which providesObserving the complexity orders of the RA strategies, it
considerable gains in terms of average sum rate. In ordmn be seen that the CAP-BF strategy is more complex than
to show the impact of the SR algorithm, the average sutime SP-BF strategy, which on its turn is more complex than
rates achieved by SP-BF, CC-BF, CC-CG, and RG strategtbe proposed CC-BF strategy. The complexity order of the
when the SR algorithm is switched off has been evaluated gombposed CC-CG strategy is quadraticinbut linear in M
compared to the values in Fig. 2. The percentual reductionaid, consequently, it might be more or less complex than the
the average sum rate of the referred strategies when the GRP-BF and SP-BF strategies depending on the number of

algorithm is switched off is shown in Fig. 4. MSs and on the size of the BS array. Moreover, the complexity
of the CC-CG strategy depends on the number of iteratlgns
60 - ‘ ‘ ‘ B 5hoF required by the CG algorithm to converge.
I CC-BF Because in practice the numbg&r of MSs and the number
o ] %ggm M of antennas are limited to relatively small values, a useful

estimation of the complexity order of the RA strategies might
be difficult, especially because coefficients in the expressions
in Table IV cannot be disregarded. In Fig. 5, the complexity
of the RA strategies is shown for a varying numtéiof MSs

and a fixed numbeb/ of transmit antennas. It is assumed that

N
2
]

L

Reduction of the average sum rate in %
N w
2 =
I I

Gy = M, cf. Table lll, and that the CG algorithm requires
10F H 1 I.c = 5 iterations to converge.
.I As it can be noted, the proposed CC-BF strategy has lower
0 0 5 10 =5 20 complexity than the CAP-BF and SP-BF strategies in all the
Average SNRy in dB cases and is only slightly more complex than the RG strategy.
Figure 4.  Percentual reduction of the average sum rates when the By comparing Fig. 5(a) and Fig. 5(b), it can also be noted that
algorithm is switched off. the proposed CC-CG strategy has lower complexity than the

CAP-BF and SP-BF strategies for large array sizes. Performing
It can be noted that sum rate values lower than tho#ee bestin terms of average sum rate, the CAP-BF strategy has
presented in Fig. 2 are obtained if the SR algorithm is switchadconsiderably higher complexity compared to the SP-BF and
off. In particular for the RG strategy, losses are quite large@C-BF strategies, which offer therefore a better performance-
and surpass 50% for low average SNR values. Indeed, fmmplexity trade-off.
low average SNR values, the ideal SDMA group size is muchln the following, multiple-resources are considered and the
smaller thanV/. However, because the group capacity is not@oposed resource-to-group algorithm will be used to improve
monotonic function in the group siz€&; cannot be determined the throughput fairness among the MSs in the system. Only
a priori and the SR algorithm must be employed. Alternativelthe CAP-BF, SP-BF, and CC-BF strategies are considered
a valuel < G < M or a small set of values in this rangen the sequel. The CAP-BF strategy approximates well the
could be used in the RA strategy and the complexity of the SiRrformance of the ES strategy, while the SP-BF and CC-BF
algorithm could be considerably reduced [9], [26]. Anywaystrategies offer better trade-off between average sum rate and
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Table IV

COMPLEXITY OF THE RA STRATEGIES

RA . Number of muIt|pI|c§tlons . ' O() for Gy = M
strategy SDMA algorithm + Precoding, power allocation, and SR algorithms
G
= { 7 s G)' G(c2+7G(M+1)+9M+18) )} 4 {KM+6M-+10} Non-Polynomial
G=2
G
CAP-BF { Y k—Gt) G(G2”G(M“)+(’M“8>} + {KM+6M+10} O (4K M3)
G=2
SP-BF { % (K— G+1) 5M +5M+2)} + {K]M+6]M+10+ %! G3+7G2(M+21)+9GM+18G} O(5KM2)
G=2 G=2
CC-BF {Tt K W“‘HKW“HG} + {KM+6M+10+ % G3+7G2<M+21)+9GM+1SG } (KMZ>
CC-CG {Ice(2K2+2K)+—K (M“HK(M“)“} + {KM+6M+10+ f G?’”GZ(M“HQGM“gG (K (MHICG))
RG + {6M+1o+ f G%”G%M“)”GM“SG} O(4M?)
G=2
T ° 24 T T T
—4— CAP-BA & |[~2—CAP-BF, CM criterion
—o— CC-CG Z —>— SRBF, CM criterion
" 16°L| —>— SRBF i 2 20l —v— CC-BF, CM criterion
g —v—CC-BF & ||~ 4 - CAP-BF, PF criterion g
£ —+RG § - > -SP-BF, PF criterion 4
kel a -V - CC-BF, PF criterion
£ S 16+ ]
=] £
E o
5 10°k [ i
5 2
=1 (9]
< g g 1
g
<
10+ .
DAL S I LS S A S AR A S S i i i
4 8 12 16 20 24 28 32 “0 25 5 7 5 15 175 2C
Number of MSs Average SNR’y in dB
(@ M = 4.
: Figure 6. Average sum rate of the CAP-BF, SP-BF, and CC-BF strategies
—4— CAP-BH considering the CM and PF criteria for resource-to-group algorithm.
—o—CC-CG
" 10’ = SRBF
S —v— CC-BF
] ——RG . . . . :
S ES strategy is eliminated by allowing the suboptimal strategies
[=% .
= to select among a larger number of candidate groups. Such
gld,i an improvement comes at the expense of extra complexity
5 since L candidate groups must be considered. Anyway, the
E CAP-BF, SP-BF, and CC-BF strategies remain substantially
= less complex than the ES strategy.
1 | Comparing the PF and CM criteria in Fig. 6, only a
i : > - 24 2 . reduction of about 10% is observed in the average sum rate
Number of MSs ‘ achieved by the CAP-BF, SP-BF, and CC-BF strategies. The
(b) M =38. strategies also have the same performance in this case and
Figure 5. Complexity of the RA strategies. the proposed CC-BF strategy offers again the best trade-off

between performance and complexity.
In order to evaluate the impact of the adoption of the PF
hput fairness among the MSs, Jain’s

complexity. Because the proposed CC-CG strategy perforﬁ{ger'on on the throug
Hbdex of Fairness (JIFY (-) is employed [21]. For the average

throughput of the MS, JIF is given by

only as good as the proposed CC-BF strategy while bei
more complex, it is not considered in the sequel.

Initially, it is important to see how both the selection of
B out of the L groups and the adoption of the PF criterion
influence the average sum rate achieved by the RA strategies.
In Fig. 6, the average sum rate achieved by the CAP-BF, SP-
BF, and CC-BF strategies is shown as a function of the average
SNR ~ for the CM and PF priority criteria.

J(Ry) =

(£ m)

K 2
Kk; (Ri/Rg)

; (27)

and assumes values betwe%n and 1 [21]. The higher the

Comparing Fig. 2 and Fig. 6, it can be seen that the g&plues JIF assumes, the more fair the throughput distribution
between the average sum rate achieved by the CAP-BF, SP-&fRong the MSs is. In particular, a value of JIF can be
and CC-BF strategies and the average sum rate obtained byitterpreted as having00 x J% of the MSs being fairly served,
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i.e., perceiving the same throughput, artd x (1 — J)% of the size of the SDMA groups considered in the system.
the MSs perceiving no throughput at all. Two simple resource assignment algorithms are considered. In
For the CAP-BF, SP-BF, and CC-BF strategies, Fig. 7 showarticular, the proposed resource-to-group algorithm combined
the average throughput fairness among the MSs after a varywigh a PF priority criterion has been shown to considerably
number of frames. Both the CM and PF priority criteria arnprove the throughput fairness among MSs at the expense of
considered and an average SNR= 10 dB is assumed. only small reductions of the sum rate.
From the proposed model for suboptimal RA strategies,

ol #__v___‘ “:‘Z;‘I‘ . simple rulels can be defined to implement efficient suboptimal
_ /V_,v——:zjjé__a::g::_vj_b_—— RA strategies:
Sog -7 amT et ¥ T « Build groups using a low-complexity rather efficient SDMA
% ,/A'/,w’v algorithm that takes into account spatial compatibility.
R « Adjust the size of the SDMA groups using an SR algorithm
505061’ Sy and taking into account precoding and power allocation.
g , _ « If the maximization of the sum rate is pursued, allocate
io.s& i%é@?%ﬁ“ﬁrﬁgﬁ%fnf resources sequentially according to the group capacity.
5 —v—CC-BF, CM criterion « If a good trade-off between fairness and sum rate is to be
o4 TS B aeron found, build various SDMA groups and assign the resources
0a ‘ ‘ ‘ ‘ —v -CC-BF, PF criterion to a subset of the groups while taking into account group

i
1 10 20 30 40 50 60 70 80 90 100 11C

Frame number priorities.

Fi 2 Jains Index of Fai for the CAP-BE. SP-BF. and CC.B As it has been seen, several RA strategies fit into the
igure 7. Jain’s Index of Fairness for the -BF, SP-BF, an - . .
strategies considering the CM and PF criteria for resource-to-group algorithﬁ{oposed model and from the results presented in this work

Average SNRy = 10 dB. it has been seen that efficient, low-complexity suboptimal RA
strategies can be designed to maximize the sum rate of the
It can be seen that the proposed resource-to-group algoriteyistem while providing a good degree of throughput fairness.
with the PF criterion considerably improves the throughput
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