
1

On the Performance, Complexity and Fairness of
Suboptimal Resource Allocation for Multi-User

MIMO-OFDMA Systems
Tarcisio F. MacielMember, IEEE, Anja Klein, Member, IEEE,

Abstract—The combination of Multiple Input Multiple Output
(MIMO) and Orthogonal Frequency Division Multiple Access
(OFDMA) is a promising solution to the flexible and spectrally
efficient provision of data services in future wireless commu-
nication systems. However, adaptive Resource Allocation (RA)
in frequency, time, and space in Multi-User MIMO-OFDMA
systems is very complex due to the inclusion of the space
dimension and to the large number of resources to be managed.
Indeed, an optimal RA to maximize the sum rate is usually
too complex for practical application and suboptimal strategies
are required. In this work, the performance, complexity, and
fairness of suboptimal RA strategies aiming at the maximization
of the sum rate are investigated. A model for suboptimal RA
strategies is proposed and two new RA strategies are introduced.
The proposed strategies are compared in terms of sum rate,
complexity, and throughput fairness and are shown to present
better performance-complexity and performance-fairness trade-
offs than some existing suboptimal strategies, as well as to achieve
almost the same sum rate obtained through an Exhaustive Search.

Index Terms—Sum rate maximization, throughput fairness,
resource allocation

I. I NTRODUCTION

FUTURE wireless communication systems are expected
to provide data services with rate requirements ranging

from a few kbps up to some Mbps and, due to the high
frequency spectrum costs, these systems must also be highly
spectrally efficient. Transmission schemes based on Multiple
Input Multiple Output (MIMO) and Orthogonal Frequency
Division Multiple Access (OFDMA) are considered as promis-
ing solutions to meet these requirements [1]–[3]. MIMO-
OFDMA systems are flexible and spectrally efficient due to
the large number of narrowband frequency channels that may
be adaptively allocated and to the ability of reusing channels
in space [4], [5]. However, adaptive Resource Allocation (RA)
in frequency, time, and space is complex in such systems due
to the large number of degrees of freedom to be handled [6].

Resources can be thought of as elements of a 3-dimensional
structure with subcarriers, Time-Slots (TSs), and spatial lay-
ers corresponding to frequency, time, and space resources,
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respectively [3]. In the Downlink (DL), the Base Station (BS)
decides on the basis of Channel State Information (CSI) which
resources to allocate to which Mobile Stations (MSs) and
sends data to the selected MSs on the allocated resources.
Since each resource can be allocated to a different BS-MS link,
a huge number of possible allocations exist even for relatively
small numbers of resources and MSs.

Through adequate frequency and time synchronization, fre-
quency and time resources can be made orthogonal by design.
Thus, the RA is simplified because signals sent to MSs on
orthogonal resources do not interference with each other.
However, space resources result from the spatial reuse of a
same frequency-time resource and signals transmitted by the
BS to a group of MSs on the resource essentially interfere with
each other. Thus, frequency-time resources are the real system
resources, which are shared through Space Division Multiple
Access (SDMA) by a group of MSs, namely an SDMA group.

Different aspects affect the system performance. Firstly,
if the channels of the MSs in an SDMA group are highly
spatially uncorrelated, signals sent to these MSs can be effi-
ciently separated in space at the BS through precoding. These
MSs are said to be spatially compatible. SDMA groups must
contain spatially compatible MSs in order to obtain SDMA
gains and improve capacity. Otherwise, the signals sent to the
MSs may strongly interfere with each other and compromise
the system performance [7]–[11]. Consequently, the SDMA
group composition affects the system performance.

Secondly, there are different precoding techniques which
suppress spatial interference totally, in part, or ignore it [12]–
[16]. Thus, the selection of the precoding technique also
affects the system performance.

Thirdly, DL spatial interference is a function of the power
distribution among the signals sent by the BS to the MSs.
For a given amount of power available for an SDMA group,
allocating more power to the signal sent to a certain MS
enhances its the receive signal quality, e.g., in terms of Signal-
to-Interference plus Noise Ratio (SINR), but reduces the
SINR perceived by the other MSs in the group. Analogously,
allocating more power to a certain resource enhances the SINR
perceived by the MSs sharing this resource, but reduces the
SINR perceived by MSs to which other resources have been
allocated [17]. An efficient power distribution among MSs and
resources must be performed and it also affects the system
performance.

Finally, because spatial compatibility is resource-dependent,
the selection of the resources assigned to the SDMA groups
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also affects the system performance [6], [10], [11].
Each of the four aspects above relates to a subproblem of

the RA in Multi-User (MU) MIMO-OFDMA systems, namely:

1) The SDMA grouping problem, which corresponds to build-
ing groups of spatially compatible MSs on each resource.

2) The precoding problem, which corresponds to determining
precoding vectors and separating in space the signals sent
to the MSs.

3) The power allocation problem, which corresponds to allo-
cating power to MSs and resources.

4) The resource assignment problem, which corresponds to
assigning resources to the best SDMA groups, e.g., those
leading to the highest sum rate.

Since only whole resources can be assigned to whole MSs,
the SDMA grouping and the resource assignment problems
are integer problems. Integer problems are usually hard to be
solved optimally due to their combinatorial nature. Because
the domain of integer optimization problems is described by
discrete points and consequently not convex, these problems
might not admit a unique optimal solution and can not be
solved using convex optimization methods [18], [19]. Integer
optimization problems are often solved considering intelli-
gent enumerations and relaxations, such as those commonly
employed in branch-and-bound methods to solve integer lin-
ear problems [18]. Integer problems might even be Non-
deterministic Polynomial time Complete (NP-C), such as
the SDMA grouping problem [20], [21] and some resource
assignment problems [22], and require an Exhaustive Search
(ES) in order to be optimally solved.

Precoding and power allocation problems are not integer
problems, as long as precoding vectors and allocated powers
are not discretized.

Because frequency spectrum is a scarce and expensive
resource, RA strategies that aim at maximizing the sum rate of
the system are an important research topic. However, an opti-
mal RA strategy to maximize the sum rate must jointly solve
the above four subproblems and in most of the cases leads to a
complex combinatorial and non-convex optimization problem
[6], [23], [24]. Due to coupling between the four subproblems,
even when a formulation as a convex optimization problem is
possible, high-complexity algorithms are required [12], [14].
Usually, these algorithms need a considerable number of iter-
ations to converge to a suitable solution and involve complex
operations, such as matrix inversions or decompositions, inside
each iteration. The complexity of such optimum solutions
rapidly increases with the number of MSs and resources and is
not affordable for many practical cases. Therefore, suboptimal
RA strategies with low complexity and able to achieve high
sum rates are desired. Moreover, because such strategies
lead to potentially unfair throughput distributions among the
MSs, it is also desirable that a good degree of throughput
fairness be achieved by the RA strategies without substantially
compromising the sum rate. Suboptimal RA strategies with
these characteristics are proposed and investigated in this
work. The proposed suboptimal RA strategies follow a new
framework that combines solutions to the four aforementioned
subproblems to define new suboptimal RA strategies providing
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Figure 1. Framework for suboptimal RA strategies for MIMO-OFDMA
systems.

good performance-complexity and performance-fairness trade-
offs. The remainder of this work is organized as follows.

In Section II, a framework for suboptimal RA strategies is
proposed, which is used to classify some existing RA strategies
representing the state of the art and to define the new RA
strategies studied in this work. In Section III, the system
model considered in this work is presented. In this section,
the problem of maximizing the sum rate is presented and a
new mixed-integer formulation for the problem is proposed,
which characterizes the four above subproblems. Sections IV
to VII introduce the algorithms applied to each subproblem.
These algorithms are combined in Section VIII to define new
suboptimal RA strategies whose performance, complexity, and
fairness are analyzed in Section IX. Finally, Section X presents
some conclusions.

II. FRAMEWORK FORSUBOPTIMAL RA STRATEGIES

In this section, a framework is proposed to model subop-
timal RA strategies. It divides the RA problem into the four
subproblems introduced in Section I and is illustrated in Fig. 1.
For each subproblem, existing or new algorithms oriented
towards the maximization of the sum rate are employed and
their combination defines an RA strategy.

In Fig. 1, two cases are defined regarding the number of
resources considered by the RA strategy: a single-resource
case, indicated by the dashed line, and a multiple-resource
case, indicated by the dot-dashed line. In the single-resource
case, resources are allocated one-by-one by the RA strategies
and, consequently, the resource assignment problem loses rele-
vance. In the multiple-resource case, RA strategies take all the
multiple resources into account and the resource assignment
problem must be considered.

In the following, the different blocks in Fig. 1 are described.
An SDMA algorithm is used to solve the SDMA grouping
problem. This problem is NP-C [20], [21] and would need an
ES over all the possible groups to find the one maximizing
the sum rate. Therefore, suboptimal SDMA algorithms with
low-complexity are preferred. They are usually composed by
two main elements, cf. Fig. 1:
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• A grouping metric, which measures the spatial compatibility
among MSs in a group.

• A grouping algorithm, which employs the grouping metric
to build and compare groups while avoiding an ES.

A precoding algorithm and a power allocation algorithm
are employed to solve the precoding problem and the power
allocation problem, respectively, as illustrated in Fig. 1.

To determine which resource to assign to which SDMA
group in the multiple-resource case, a resource assignment
algorithm is used, which involves two elements, cf. Fig. 1:

• A group priority, which measures the efficiency of assigning
a given resource to an SDMA group.

• An assignment algorithm, which employs the group priority
to assign the resources to the SDMA groups.

The algorithms applied to each subproblem appear isolated
in Fig. 1, but the exchange of information among them
is allowed. Separating the SDMA and resource assignment
algorithms from the precoding and power allocation algorithms
simplifies the RA. Indeed, precoding and power allocation
problems are easy to solve if the SDMA grouping and resource
assignment problems, i.e., the combinatorial part of the RA
problem, are solved beforehand. However, if the SDMA algo-
rithm is aware of the actual precoding and power allocation,
it may estimate better the performance of a group, e.g., in
terms of group capacity, and avoid putting MSs into the group
that do not contribute to enhance the sum rate [8]. Otherwise,
resources might be allocated to MSs that do not contribute to
improve the sum rate and, consequently, some SDMA groups
might contain more MSs than they should do. In this case,
choosing the size of the SDMA group becomes also a problem
and group sizes may need to be adjusted by removing MSs.
In order to adjust the size of SDMA groups and enhance the
sum rate, a Sequential Removal (SR) algorithm is employed
to remove MSs from the group [8]–[11], [21], [25]. Because
a more reliable decision about which MSs to remove can be
made considering the actual precoding and power allocation,
the SR algorithm employs this information. The SR algorithm
shown in Fig. 1 is only needed if the SDMA algorithm is
unaware of precoding and power allocation.

In the following, some state-of-the-art strategies fitting into
the framework of Fig. 1 are shortly discussed. They are listed
in Table I, whose columns correspond to the algorithms (and
their elements) previously discussed in this section.

In Table I, the RA strategies are grouped in terms of
grouping metric and for each metric they are roughly ordered
in terms of complexity. The RA strategies in [23], [24] aim
at maximizing the sum rate and disregard fairness aspects. In
[23], [24], the joint solution of the SDMA grouping, resource
assignment, and power allocation problems based on convex
optimization is considered and high sum rates are achieved,
but with very high complexity.

More simple strategies are obtained considering a single
resource [8], [9], [20], [21], [26], [27], [29]. Complexity
reductions are also achieved by using less complex grouping
metrics. For example, capacity-based metrics [26], [27] and
metrics based on null-space Successive Projections (SPs) [15],
[29] involve relatively more complex matrix operations than

metrics based on the spatial correlation, which in spite of
being more simple are able to capture the spatial compatibility
among the MSs efficiently [7]–[11], [20], [21], [30]. Simple
greedy grouping algorithms, such as the Best Fit (BF) algo-
rithm of [20], also have considerably lower complexity than
grouping algorithms based on convex optimization, as in [23]–
[25], [31] and the Compatibility Optimization (CO) algorithm
of [7]. The BF algorithm of [20] is employed in this work and
is described in Section IV-B.

Most of the mentioned works concentrate on the maximiza-
tion of the sum rate, give less attention to Quality of Service
(QoS) aspects, and present quite variable complexity. In [20],
[25], [31], minimum target SINR for each MS is also consid-
ered in order to ensure QoS. In [25], [31], complex convex
optimization problems are formulated for SDMA grouping,
precoding, and power allocation which are solved using SDP.
Because predicting the feasibility of this problem is as hard
as solving the problem itself, SR algorithms are employed in
[25], [31] to adequately remove MSs until a feasible solution
is obtained. While achieving high sum rates, the strategies in
[25], [31] present very high complexity. In [20], [25], more
simple algorithms have also been proposed, which admit MSs
to an SDMA group only if the SINR of all MSs in the group
becomes not lower than a given target SINR. Nevertheless, the
RA strategies in [20], [25] remain more complex than other
strategies employing more simple grouping metrics.

It can also be noted that for strategies considering multiple
resources, grouping metrics and group priorities usually match
each other, as well as grouping and assignment algorithms [7],
[15], [23]–[25], [28], [31]. In these cases, SDMA grouping and
resource assignment problems are solved simultaneously by
the RA strategies with SDMA groups being built in parallel on
the different resources. However, in some cases the obtained
solution is equivalent to allocating resources one-by-one [15],
[29].

Adaptive RA for MU MIMO-OFDMA systems has been an
active research field in the last few years, cf. Table I, and a con-
siderable number of investigations has already been conducted.
Complexity plays a role in many previous works. However,
often a detailed analysis of the performance-complexity trade-
off of suboptimal RA strategies has not been considered.
Most of the strategies also concentrated either on maximizing
the sum rate or providing QoS. However, strategies able to
provide a high degree of throughput fairness among the MSs
at the expense of only small reductions of the sum rate
have not been provided. Therefore, it is an objective in this
work to propose suboptimal RA strategies having attractive
performance-complexity and performance-fairness trade-offs,
i.e., they should be able to provide a good degree of throughput
fairness among the MSs despite the fact of being mainly
oriented to sum rate maximization.

For these strategies, it is relevant to investigate whether they
can achieve sum rates close to the sum rate obtained through
an ES with considerably lower complexity. In this context, it is
important to investigate whether SDMA algorithms using low-
complexity grouping metrics not depending on precoding and
power allocation can perform as good as other more complex
algorithms employing metrics that depend on precoding and
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Table I
RA STRATEGIES.

SDMA algorithm Precoding
algorithm *

Power allocation
algorithm * SR criterion* Resource assignment algorithm Ref.Grouping metric Grouping algorithm Group priority Assignment algorithm

Group capacity

Convex optimization ZF WF - Group capacity Convex optimization [23]
Convex optimization ZF WF - Group capacity Convex optimization [24]

Best Fit ZF WF, EPA - Single resource [26]
Best Fit ZF WF - Single resource [27]

Channel gains with SPs
Best Fit ZF WF Fixed group size Channel gains with SPs Best Fit [15], [28]
Best Fit ZF WF Fixed group size Single resource [29]

Total spatial correlation

Compatibility Optimization - - Fixed group size Total spatial correlationCompatibility Optimization [7]
Best Fit, First Fit GEP EPA - Single resource [20]

Best Fit ZF WF, EPA Channel gain Single resource [21]
MS partitioning ZF Adap. bit loading Fixed group size Single resource [30]

Minimum target SINR
Convex optimization SDP Max. SINR gap Single resource [31]

Best Fit, First Fit, admit all SDP E.g., Random Single resource [25]
Best Fit, First Fit GEP EPA - Single resource [20]

* Acronyms: Zero-Forcing (ZF), Generalized Eigen-Precoding (GEP), Semidefinite Programming (SDP), Water Filling (WF), Equal Power Allocation (EPA), Sequential Removal (SR)

power allocation. RA strategies either optimize SDMA group
sizes, e.g. in [23], [24], or adjust them using an SR algorithm,
e.g. in [25], [31], or just fix their values, e.g., in [29], [30]. In
particular, the impact of the the SDMA group size selection by
an SR algorithm on the performance of the strategies deserves
additional investigation. Additionally, the sensitiveness of RA
strategies to imperfect CSI must also be considered in order to
determine whether the high-complexity strategies offer some
advantage compared to the low-complexity ones in this case.
These aspects will be addressed in the following sections.

III. SYSTEM MODEL

In this section, the system model used in this work is
presented. The DL of a single BS located at the corner of
a hexagonal sector is considered. The BS has anM -element
Antenna Array (AA) and serves a numberK of single-antenna
MSs. It is assumed that the BS’s transmit powerP can be
arbitrarily distributed among the MSs and that CSI about the
DL channels to the MSs is available at the BS.

Gaussian signaling is considered and the data symbols trans-
mitted by the BS to the MSs are assumed to be uncorrelated
with unit average power. Inter-cell interference is assumed to
be Gaussian-distributed and is incorporated in the Additive
White Gaussian Noise (AWGN) perceived in the system. Only
fast fading is considered, which is a common assumption.
Indeed, most of the works referred to in Section II consider
only fast fading. Additionally, low MS mobility is assumed
because it is well-known that adaptive RA fits well for low
mobility scenarios [4].

A frequency block composed ofQsub adjacent subcarriers is
considered the minimum allocable resource unit in frequency.
Frequency blocks are expected to have an almost flat channel
transfer function.

Frames composed ofT TSs are considered. A TS is the
minimum allocable resource unit in time and transports several
OFDMA symbols. The channel transfer function over a whole
frame is not expected to vary considerably, which holds for
low MS mobility and short frame durations [4].

A resource is defined as a frequency-time resource unit
described by one frequency block and one TS. These resources
are also called Physical Resource Blocks (PRBs) [1], slots [2],
or chunks [3].

On each resource, SDMA is used to multiplex up toM
data streams separated in space through linear precoding [13],
i.e., on each of theM spatial layers of a resource the BS can
transmit a data stream to a different MS [3].

Denoting byσ2 the average AWGN power per subcarrier,
the average Signal-to-Noise Ratio (SNR)γ in the system is
defined as

γ =
P

σ2
. (1)

In this work, the geometric-based stochastic MIMO channel
model of the Wireless World Initiative New Radio (WINNER)
project is employed. The WINNER Phase I Channel Model
(WIM) captures space and time characteristics of the channel
for realistic scenarios and their parameters have been deter-
mined from measurement campaigns [32], [33].

In this work, channel modeling in the frequency domain
is adopted. The channel transfer function of all theQsub

subcarriers of a frequency blockb, b = 1, . . . , B, can be
efficiently represented by that of the middle subcarrier of the
frequency block. The channel coefficienthk,b,m denotes the
sampled frequency response of the channel between themth

antenna of the BS and thekth MS on the middle subcarrier
of the frequency blockb. The channel coefficientshk,b,m are
obtained using the WIM [32], [33] and are organized in a
vector

hk,b =
[

hk,b,1 hk,b,2 . . . hk,b,M

]

(2)

for the channel between the BS and an MSk on the frequency
blockb. Denoting vector/matrix transposition by(·)T and using
(2), the channel matrixHb of all MSs on frequency blockb
is obtained by stacking the channel vectorshk,b as

Hb =
[

hT
1,b hT

2,b . . . hT
K,b

]T
. (3)

An estimated channel matrix̂Hb of Hb is used to describe the
Channel State Information at the Transmitter (CSIT) available
at the BS on a frame basis. Perfect CSI is assumed at the MSs.

A model for imperfect CSIT is also considered to investigate
the performance of the RA strategies. Imperfections in the
CSIT might originate, e.g., from the AWGN in the system,
suboptimal channel estimation, inherent processing or feed-
back delays, among others. For MSk and frequency blockb,
both estimation errors and imperfections due to processing or

IEEE Transactions on Vehicular Technology, Jan 2010, Volume 59, pp 406-419



5

feedback delays can be modeled by an additive Zero Mean
Circularly Symmetric Complex Gaussian (ZMCSCG) error
term ek,b ∈ C1×M [34]–[38]. Let 0 ≤ ν ≤ 1 be a parameter
controlling the amounts of the true channelhk,b and error term
ek,b in the estimated channelĥk,b, which can be expressed as

ĥk,b =
√

1 − νhk,b +
√

νek,b. (4)

In order to obtain a normalization of̂hk,b, the varianceσ2
e

of the entries of the error termek,b can be modeled to be
equal to the varianceσ2

h of the entries ofhk,b. Note that by
dividing (4) by

√
1 − ν one obtains a standard “nominal plus

perturbation” model for imperfect CSIT, as in [35]. Also note
that the model in (4) matches the model for delayed CSIT
[29], [36]–[38]. According to [34], the model in (4) allows to
draw only a lower bound on the training-based capacity for
Minimum Mean Square Error (MMSE) estimation.

Using (4), the different amounts of imperfection in the CSIT
can be obtained by varyingν. Denoting by| · | the absolute
value of a complex number and using (2), the model in (4)
allows to describe the quality of the CSIT as

γCSI =
E{(1 − ν) |hk,b,m|2}

E{ν |ek,b,m|2}
=

1 − ν

ν
, (5)

which expresses the relationship between the expected mag-
nitudes of the terms due tohk,b andek,b present inĥk,b.

In the following, the sum rate maximization problem is for-
mulated. Because CSI is available at the BS on a frame basis,
the problem can be formulated for the resources described
by the frequency blocksb, b = 1, . . . , B, and the first TS of
each frame. A solution obtained for these resources applies to
the resources associated with the remaining TSs. Further on,
the frequency-time resource units present during each TS will
be indexed byb, b = 1, . . . , B. Let pk,b andwk,b denote the
allocated power and the precoding vector of MSk on resource
b, respectively, and let‖·‖2 denote the 2-norm of a vector. The
DL SINR γk,b is given by

γk,b =
pk,b|ĥk,bwk,b|2

σ2 +
K
∑

j=1,j 6=k

pj,b|ĥk,bwj,b|2
, (6)

and the rate of MSk on resourceb becomes

Rk,b = log2(1 + γk,b). (7)

Using (7), the maximization of the sum rate can be formu-
lated as

{p⋆
k,b,w

⋆
k,b} = argmax

{pk,b,wk,b}

{

B
∑

b=1

K
∑

k=1

Rk,b

}

(8a)

subject to

pk,b ≥ 0, ∀k, b, (8b)
B

∑

b=1

K
∑

k=1

pk,b = P, (8c)

‖wk,b‖2 = 1, ∀k, b, (8d)

where constraint (8b) ensures non-negative powers, constraint

(8c) limits the total transmit power, and constraint (8d) implies
unit-norm precoding vectors.

Note that the SDMA grouping and resource assignment
problems are implicit in problem (8). In the following, a new
formulation of problem (8) as a mixed-integer optimization
problem is introduced and this new formulation explicitly
characterizes the four subproblems of Section I. Let the binary
variableuk,b indicate whether resourceb is assigned to MSk.
Of course, ifpk,b > 0, thenuk,b = 1, otherwise power would
be wasted. Then,uk,b is defined as

uk,b =

{

1, for pk,b > 0,

0, for pk,b = 0.
(9)

There is a maximum numberL =
∑M

l=1

(

K
l

)

of SDMA
groups that can be defined usinguk,b and each resource is
shared in space by one of the groups. Letl, l = 1, . . . , L,
indicate the SDMA groups and the binary variablevl,b indicate
whether resourceb is assigned to the SDMA groupGl,b. Note
that, if resourceb is assigned to the SDMA groupG′

l,b and
∃k 6∈ G′

l,b for which pk,b > 0, then there is a groupGl,b 6= G′
l,b

for which pk,b > 0 ⇔ k ∈ Gl,b. Thus, the resourceb can be
seen as effectively assigned to SDMA groupGl,b andvl,b can
be defined as

vl,b =

{

1, if pk,b > 0 ⇔ k ∈ Gl,b,

0, otherwise.
(10)

Using uk,b andvl,b, problem (8) can be reformulated as


p⋆
k,b, w

⋆
k,b,

u⋆
k,b, v

⋆
l,b

ff

= arg max
8

<

:

pk,b,wk,b,

uk,b,vl,b

9

=

;

(

B
X

b=1

L
X

l=1

vl,b

K
X

k=1

uk,bRk,b

)

(11a)

subject to

pk,b ≥ 0,∀k, b, (11b)
B

X

b=1

K
X

k=1

pk,b = P, (11c)

‖wk,b‖2 = 1,∀k, b, (11d)

uk,b ∈ {0, 1}, ∀k, b, (11e)
L

X

l=1

vl,b ≤ 1,∀b, (11f)

vl,b ∈ {0, 1}, ∀l, b. (11g)

The new formulation in (11) clearly characterizes problem
(8) as a mixed-integer optimization problem. Another mixed-
integer formulation of problem (8) can be found in [24]. In
the new formulation of (11),uk,b andvl,b together withwk,b

andpk,b allow to explicitly characterize the four subproblems
in (8) as follows.
• The variablesuk,b are related to the SDMA grouping

problem, in which up toM of theK MSs must be selected
on each resourceb, so that uk,b = 1, ∀k ∈ Gl,b and
uk,b = 0, ∀k 6∈ Gl,b.

• The variableswk,b are related to the precoding problem, as
in problem (8).
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• Similarly, the powerspk,b are related to the power allocation
problem.

• The variablesvl,b are related to the resource assignment
problem, in which each resourceb is assigned to no more
than one SDMA group according to constraint (11f).
Problem (11) provides some insight into the elements of

problem (8). Firstly, it can be noted that the power distribution
is the element that keeps the four subproblems interdependent.
If the power is distributed a priori among resources, e.g., using
EPA, the resource assignment can be performed on a resource-
by-resource basis. Additionally, the precoding vectorwk,b of
MS k on resourceb plays no role if the powerpk,b is zero.
Moreover, the binary variablesuk,b and vl,b depend only on
pk,b, as shown in (9) and (10), respectively.

Secondly, the SDMA grouping problem is responsible for
yielding (11) combinatorial, since the combinatorial increase
in the numberL of candidate SDMA groups is due touk,b,
which affectsvl,b subsequently. If SDMA groups are already
defined on each resource, the problem is no longer NP-C.

Thirdly, dividing problem (11) into subproblems allows
to adapt algorithms to each subproblem individually and to
combine them into suboptimal but efficient RA strategies. This
formulation leads to high flexibility and strategies providing
interesting trade-offs between the sum rate maximization and
the throughput fairness can be obtained.

IV. SDMA A LGORITHMS

A. Grouping Metrics

In this section, the grouping metrics used by the SDMA
algorithms are described. Grouping metrics are functions of
the CSIT that map the spatial properties of the MSs’ channels
to a scalar value quantifying how efficiently the MSs can
be separated in space. In this work, the following ones are
considered:
• The group capacityfCAP(G).
• The sum of channel gains with null-space SPsfSP(G).
• The convex combination of the total spatial correlation and

channel gainsfCC(G).
For simplicity of notation, the indexb is omitted in the

sequel and the above metrics are described considering a single
resource.

In the following, some additional definitions are made and
the group capacity [8], [26], [27] is described. LetG denote
an SDMA group containing a numberG of MSs. The channel
matrix Ĝ ∈ CG×M for the SDMA groupG is obtained from
Ĥ in (3) by taking the rows corresponding to the channels of
the MSs belonging toG. For example, if MSs 1, 2, andK
belong toG, Ĝ contains the1st, 2nd, andK th rows of Ĥ. The
channel of theith MS in G, with i = 1, . . . , G, is given by the
ith row ĝi of Ĝ. Let pi andwi denote the allocated power and
the precoding vector of MSi in G, respectively. Then, using
(7) the capacity of the SDMA groupG is written as

fCAP(G) =

G
∑

i=1

Ri. (12)

The higherfCAP(G) is, the more spatially compatible the
MSs inG are. SincefCAP(G) reflects the effective capacity of

the group considering precoding and power allocation, it is a
reliable metric [8], [26], [27]. However, because precoding
and power allocation must be computed for all MSs inG
whenever the group composition changes, the complexity of
SDMA algorithms usingfCAP(G) might become high if a large
number of groups is considered.

The sum of channel gains with null-space SPs [10], [11],
[15], [27], [29] is described in the sequel. LetIM denote an
M × M identity matrix and assume an admission order for
the MSs inG. The channel̂gi of MS i is projected onto the
null-space of the channelŝgi′ of all MSs i′, i′ = 1, 2, . . . , i−1
previously admitted toG using a projection matrixTi given
by

Ti =

{

IM , if i = 1,

Ti−1 − TH
i−1ĝ

H
i−1ĝi−1Ti−1

‖ĝi−1Ti−1‖
2
2

, if 2 ≤ i ≤ G.
(13)

Using (13), the sum of channel gains with null-space SPs
is written as

fSP(G) =

G
∑

i=1

‖ĝiTi‖2
2 . (14)

The higher the channel gain‖ĝi‖2
2 of MS i is and the

more spatially uncorrelated with respect to the MSsi′ ∈ G
the MS i is, the higher‖ĝiTi‖2

2 might become and the more
spatially compatible MSi and the MSsi′ are considered to
be. Consequently,fSP(G) favors SDMA groups whose MSs
have high channel gain and are highly spatially uncorrelated.

fSP(G) in (14) depends neither on precoding nor on
power allocation and, consequently, has lower complexity than
fCAP(G) [10], [11], [39]. By taking care of the admission order
in the SDMA algorithm,fSP(G) can be efficiently used as
grouping metric [10], [11], [15], [27], [29].

The convex combination of the total spatial correlation and
channel gains has been proposed by the authors in [9] and is
discussed in the sequel. Given the channel vectorsĥj andĥk

of MSs j and k, respectively, the spatial correlation among
them is given by the maximum normalized scalar product

ρj,k =
|ĥjĥ

H
k |

‖ĥj‖2‖ĥk‖2

. (15)

The lowerρj,k is, the less spatially correlated MSsj andk
are. Becauseρj,k is a pairwise metric, the sum ofρj,k for every
pair of MSs inG must be used to measure the total spatial
correlation among the MSs in the group. Moreover, MSs with
high channel gain should be preferred since it is well-known
that allocating power to an MS with high channel gain is
more efficient than giving the same power to an MS with
low channel gain. However, effective channel gains of MSs
in a group depend on the spatial compatibility among them.
Therefore, an efficient SDMA group must provide an adequate
trade-off between total spatial correlation and channel gains.

Let the attenuation vectora be defined as

a =
[

‖ĥ1‖−2
2 ‖ĥ2‖−2

2 . . . ‖ĥK‖−2
2

]T
, (16)

which contains the inverse of the channel gains, and letD {·}
denote a diagonal matrix whose diagonal is given in the vector
argument. Then, using (15) and (16), the spatial correlation
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matrix C can be defined as

C =
∣

∣

∣

√

D {a}ĤĤH
√

D {a}
∣

∣

∣
, (17)

where | · | is applied element-wise.C containsρj,k for each
pair of MSs in the system.

Using (9), let the binary vectoru be defined as

u = [u1 u2 . . . uK ]
T
, (18)

and let ‖·‖F denote the Frobenius norm of a matrix/vector.
Then, using (16), (17), and (18), the convex combination of
the total spatial correlation and channel gains is defined as

fCC(G) =
(1 − β)

‖C‖F

uTCu +
β

‖a‖F

aTu, (19)

where 0 ≤ β ≤ 1 is a parameter controlling the trade-off
between spatial correlation and channel gain [9]–[11].

The lower the value thatfCC(G) assumes, the more spatially
compatible the MSs inG are considered to be.fCC(G) depends
neither on precoding and power allocation nor on complex
matrix operations and, consequently, is less complex than
fCAP(G) andfSP(G). The grouping metricfCC(G) will be used
later as part of new RA strategies.

B. Grouping Algorithm

In this section, the grouping algorithms employed by the
SDMA algorithms are described. The task of the grouping
algorithm is to build an efficient SDMA group on a given
resource with acceptable performance compared to an ES. The
following grouping algorithms are considered here:

• The Exhaustive Search (ES) algorithm, which performs
an ES for the SDMA group that maximizes the grouping
metric.

• The Random Grouping (RG) algorithm, which just ran-
domly builds an SDMA group of specific size.

• The Convex Grouping (CG) algorithm, which is a new
grouping algorithm proposed by the authors in [9] and
formulated as a quadratic optimization problem.

• The Best Fit (BF) algorithm, which is a greedy algorithm
that builds an SDMA group by sequentially adding MSs
spatially compatible to the MSs already in the group [20].

The ES algorithm finds the groupG⋆ that maximizes the
grouping metric. However, it might be too complex because
it compares all theL SDMA groups andL increases combi-
natorially with K.

The RG algorithm is the most simple algorithm. Given a
target group sizeGt, 1 ≤ Gt ≤ M , which is the number of
MSs that the groupG⋆ must contain, the RG algorithm just
selectsGt among theK MSs randomly. A target group size
is used by many SDMA algorithms to simplify the search for
the best groupG⋆, cf. Table I.

The CG algorithm has been proposed by the authors in [9]
together with the metricfCC(G) of (19), which can be easily
expressed as a function ofu since there is a unique mapping
betweenu and a groupG. Let ũk andũ denote the continuous
relaxed versions ofuk andu in (18), respectively. Denoting by
1K a K×1 vector of ones and using (19), the CG algorithm is

formulated as the following quadratic optimization problem:

ũ⋆ = argmin
ũ

{

(1 − β)

‖C‖F

ũTCũ +
β

‖a‖F

aTũ

}

, (20a)

subject to

1T
K ũ = Gt, (20b)

0 ≤ ũk ≤ 1, ∀k, (20c)

ũk′ = 1. (20d)

Problem (20) is the relaxed version of the equivalent integer
optimization problem whenu is binary [9]. The CG algorithm
also considers a target group sizeGt in the constraint (20b).
By solving problem (20) and rounding to one theGt largest
components and to zero the otherK − Gt components of
ũ⋆, the CG algorithm finds a groupG⋆ composed of spatially
uncorrelated MSs with low channel attenuation. Constraint
(20d) forces an initial MSk′ to belong toG⋆ and can be
used for scheduling purposes.

The BF algorithm has been proposed in [20]. Similarly to
the CG algorithm, the BF algorithm also considers an initial
MS. The BF algorithm starts with an SDMA group containing
only this initial MS. Then, the BF algorithm sequentially
extends the group by admitting to it the MS that most improves
the grouping metric. LetG = {k′} be the initial group
containing only the MSk′ and letG be the size ofG. Then,
the BF algorithm temporarily admits one MSk 6∈ G to the
group and computes the grouping metricf(·)(G ∪ {k}). This
is done for each MSk 6∈ G and the MS that has led to the best
metric value when temporarily admitted toG is permanently
inserted into the group. Then, this procedure is repeated for
the extended group until a group of sizeGt be built or
until no more MSs able to improve the grouping metric be
found. Because the BF algorithm tests only a small number
of candidate SDMA groups and relies on a simple heuristic,
it is less complex than the ES and CG algorithms.

The CG and BF algorithms will be used later as part of the
new RA strategies proposed in this work.

V. PRECODING AND POWER ALLOCATION ALGORITHMS

In this work, only linear ZF precoding is considered [13],
which will be simply termed ZF further on. Because ZF
suppresses spatial interference completely, the effective MSs’
channels are no longer coupled through interference and power
allocation does not affect precoding anymore. Consequently,
the RA is simplified. Moreover, it has been shown that the
maximum sum rate of the system can be efficiently approxi-
mated using ZF [27], [29] and WF for power allocation [40].
WF is a suitable choice since it maximizes the sum rate of the
set of independent channels obtained after applying ZF [21],
[40].

Despite of its simplicity, ZF precoding is quite sensitive
to the quality of the CSIT with its performance degrading
rapidly when imperfect CSIT is considered. Linear MMSE-
based precoding is more robust to imperfect CSIT. However, it
inherently couples precoding and power allocation and, when
aiming at the maximization of the sum rate, its adoption
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asks for the use of iterative algorithms incurring additional
complexity. Therefore, linear MMSE-based precoding is not
considered in this work, but only linear ZF precoding.

VI. SEQUENTIAL REMOVAL ALGORITHM

In this section, an SR algorithm is proposed, which in-
tends to increase the capacity of the groups built by SDMA
algorithms unaware of precoding and power allocation. The
SR algorithm removes the MSs that do not contribute to
enhance the sum rate from the groupG. Using ZF and WF,
if zero power is allocated to an MS, it does not contribute to
enhance the group capacity anymore. On the contrary, since
the channels of the others MSs inG are projected onto the null-
space of the channel of this one MS due to ZF, its removal
can only improve the group capacity.

The SR algorithm removes one MS from the SDMA group
G according to the effective channel gain of the MSs [21]. This
is a reasonable criterion since the lower the effective channel
gain of an MS is, the lower its achievable capacity is. Anyway,
other criteria may be used [9]. After removing an MS, the SR
algorithm computes and stores the capacity for the resulting
SDMA group using (12). Then, the process is repeated and
another MS is removed, and so on. At the end, the SDMA
group with the highest capacity is kept as the best SDMA
groupG⋆.

For an initial groupG of sizeG, the SR algorithm needs to
computeG group capacities using (12). BecauseG is relatively
small and because the size ofG is sequentially reduced,
these computations add only slightly to the complexity of RA
strategies using the SR algorithm. Nevertheless, the proposed
SR algorithm can provide considerable gains to the system in
terms of sum rate.

VII. R ESOURCE ASSIGNMENT ALGORITHM

A. Group priority

In this section, the group priorities used by the resource
assignment algorithm are described. The concept of MS pri-
orities has been often used in time-scheduling algorithms to
manage the QoS of the MSs and, e.g., to provide throughput
fairness [41]. Because SDMA groups may contain several
MSs, the concept of MS priorities is extended to group
priorities later in this section. Priorities are defined according
to:
• A Capacity Maximization (CM) criterion, which aims at

maximizing the sum rate.
• A Proportional Fair (PF) criterion, which finds a trade-off

between the QoS of the MSs and the sum rate.
Let ui,b denote the priority of MSi in the SDMA group

Gl,b. For the CM criterion,ui,b is defined as

ui,b = Ri,b. (21)

For the PF criterion, letRc
i andR̄i denote the contracted and

the perceived average throughputs of MSi in Gl,b, respectively.
Thus, the throughput ratioR

c
i

R̄i
measures how well the MS has

met its QoS requirements [42]. For the PF criterion,ui,b is
defined as

ui,b =
Rc

i

R̄i

Ri,b. (22)

Let vl,b denote the group priority of the groupGl,b, which
quantifies the efficiency of assigning the resourceb to it. It is
proposed here to define the group priorityvl,b simply as the
sum of the prioritiesui,b of the MSs inGl,b, i.e.,

vl,b =
∑

i∈Gl,b

ui,b, (23)

which leads to

vl,b =











fCAP(Gl,b), for the CM criterion, and (24a)
∑

i∈Gl,b

Rc
i

R̄i

Ri,b, for the PF criterion. (24b)

According to (21), if CSI is available on a frame basis all
the TSs of a frame are assigned to the same SDMA groupGl,b.
In order to improve fairness, RA is considered on a TS basis
with the PF criterion in order to assign resources to potentially
different groups during each TS. Anyway, the same CSIT is
considered for all the TSs of a frame.

For the CM criterion, the higher the group capacity of an
SDMA group on a resourceb is, the higher its priority on this
resource is and, consequently, the higher the chances of the
group getting this resource assigned. For the PF criterion, the
ratesRi of the MSs in a group are scaled by the throughput
ratio Rc

i/R̄i. Thus, SDMA groups containing MSs achieving
high ratesRi or MSs whose QoS requirements have not been
fulfilled will have high priority [42] and, consequently, there
will be higher chances of assigning resources to these groups.

B. Assignment algorithm

In this section, the assignment algorithms considered in this
work are described. Using the group priorities, the assignment
algorithm has to determine which resource to assign to which
SDMA group. Two assignment algorithms will be considered:
• A sequential algorithm, which assigns resources one-by-one

to SDMA groups.
• A resource-to-group algorithm, which is proposed here and

is formulated as a standard assignment problem. It assigns
at once theB resources toB SDMA groups selected from
a set ofL > B candidate groups.
In fact, the sequential algorithm corresponds to the single-

resource case of Section II. It just assigns the considered
resource to the group built by the SDMA algorithm.

The proposed resource-to-group algorithm considers the
multiple-resource case and is described in the sequel. Initially,
a set ofK candidate SDMA groups is built on each resource
b. The kth group is built by selecting thekth MS as initial
MS k′ and applying an SDMA algorithm. Consequently,
L̃ = K · B groups are built. Precoding, power allocation,
and the SR algorithms are applied for each group considering
EPA among resources. In order to improve fairness, groups of
same composition built on different resources are considered
only once, i.e., only a numberL ≤ K · B of unique groups
from the L̃ groups is considered. Then, it is proposed here
to formulate the assignment of resources to SDMA groups as
a standard assignment problem based on the group priorities,
which is solved using Munkres’ algorithm [43]. The referred
formulation is described in the sequel.
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Let V denote a group priority matrix containing the group
priorities vb,l of each SDMA group on each resource. LetV

denote a resource-to-group assignment matrix whose binary
entries indicate whether thebth resource is assigned to thelth

group. The matricesV andV are written as

V =











v1,1 . . . v1,L

v2,1 . . . v2,L

...
. . .

...
vB,1 . . . vB,L











, andV =











v1,1 . . . v1,L

v2,1 . . . v2,L

...
. . .

...
vB,1 . . . vB,L











,

(25)
respectively. Denoting by⊙ the Hadamard product and using
(25), the assignment of resources to groups is formulated as

V⋆ = arg max
V

{

1T
B (V ⊙ V) 1L

}

(26a)

subject to

V1L = 1B (26b)

VT1B ≤ 1L, (26c)

which is a standard assignment problem that can be efficiently
solved using Munkres’ algorithm [43]. After solving (26), the
resources assigned to the groups are determined by the non-
zero entries ofV⋆ and theB resources are assigned toB
out of the L > B candidate groups. Constraints (26b) and
(26c) impose that no more than one resource be assigned
to the same group, which may increase the fairness into the
system. Moreover, to avoid assigning an unsuitable resource
to an SDMA group, the group priority is computed only for
the resources on which the SDMA group has been built and
is set to zero on the other resources.

In both the sequential and resource-to-group algorithms, the
SDMA grouping problem is solved beforehand, i.e., first the
groups are built and then resources are assigned to them, which
keeps SDMA and resource assignment algorithms relatively
separated from each other.

VIII. RA S TRATEGY DEFINITION

In this section, the suboptimal RA strategies investigated in
this work are defined by combining the algorithms introduced
in Sections IV to Section VI.

Table II defines the RA strategies, whose names are given in
the first column. The subsequent columns specify the SDMA,
resource assignment, precoding, power allocation algorithms
employed by each strategy. The last column indicates whether
the SR algorithm is used by the strategy.

The ES strategy searches exhaustively for SDMA the group
that maximizes the sum rate on each resource, while the
RG strategy just builds randomly an SDMA group on each
resource. These two strategies are considered to bound the
performance of the other strategies in Table II above and
below, respectively.

RA strategies whose SDMA algorithms combinefCAP(G)
and fSP(G) with the BF algorithm are defined in Table II,
namely the CAP-BF and the SP-BF strategies. They are used
for comparison with the new CC-BF and CC-CG strategies
proposed here, whose SDMA algorithms combinefCC with

the BF and CG algorithms, respectively. SDMA algorithms
combiningfCAP and the BF algorithm have been studied, e.g.,
in [8], [26], [27]. SDMA algorithms combiningfSP and the BF
have been studied, e.g., in [10], [11], [27], [29]. Combinations
of fCAP and fSP with the CG algorithm are not considered
because they do not permit an adequate formulation of the
SDMA grouping problem as a quadratic optimization problem.

The CM criterion and the sequential algorithm are consid-
ered in the ES and RG strategies. The performance of these
strategies is the same in both single- and multiple-resource
cases since EPA among resources is used. For the remaining
strategies in Table II, both the sequential and resource-to-
group algorithms are considered. The sequential algorithm
related to the single-resource case is considered in combination
with the CM criterion only. The resource-to-group algorithm
will be considered with both the CM and PF criteria. In
particular for the PF criterion, it is of interest to investigate
whether throughput fairness can be considerably enhanced at
the expense of only small reductions of the sum rate.

For all the strategies, ZF and WF are considered for pre-
coding and power allocation, respectively. The ES and CAP-
BF strategies employ the group capacity in their SDMA algo-
rithms, which are consequently aware of the actual precoding
and power allocation. Therefore, the SR algorithm is no longer
necessary in these strategies and is disabled.

IX. A NALYSIS AND RESULTS

In this section, the performance of the RA strategies of
Table II is investigated. The BS is equipped with a Uniform
Linear Array (ULA) with M = 4 omnidirectional elements
separated by half wavelength. A total numberK = 16 of
single-antenna MSs is served by the BS.

A center frequencyf0 = 5 GHz is considered. A total num-
berB = 8 of frequency blocks composed ofQsub = 6 adjacent
subcarriers of bandwidth∆f ≈ 9.766 kHz are considered.
Fast fading is generated using the WIM considering the urban
macro-cell scenario C2 with Non Line Of Sight (NLOS) [32].
The channel has a coherence bandwidthBc ≈ 250 kHz, so
that the frequency block bandwidthQsub∆f < 0.25Bc. An
average MS speedvMS ≈ 2.78 m/s is assumed, which leads to
a coherence timeTc ≈ 11 ms. Frames of durationTFRM = 1 ms
are considered, so thatTFRM < 0.1Tc. Each frame is composed
of T = 4 TSs.

Because the larger the SDMA group, the higher the potential
SDMA gains, a target group sizeGt = M = 4 corresponding
to the maximum admissible group size is considered [8]–[11],
[15], [29]. For the strategies employing the BF and the CG
algorithms, the initial MSk′ is selected as the one with the
highest channel gain. For the CC-CG strategy,β = 0.5 is used,
which has been experimentally adjusted as in [9]. The BS is
assumed to always have data to send to the MSs. All MSs are
assumed to have the same contracted average throughputRc.
The most relevant simulation parameters are listed in Table III.

Initially, the performance of the RA strategies of Table II
is studied considering the single-resource case, the CM cri-
terion, and the sequential algorithm, so that each resource is
assigned to the group built by the SDMA algorithm. After
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Table II
RA STRATEGIES DEFINITION.

RA
Strategy

SDMA Algorithm Resource Assignment Algorithm Precoding
Algorithm

Power Allocation
Algorithm SRGrouping Metric Grouping Algorithm Group priority Assignment Algorithm

ES fCAP Exhaustive Search Cap. Maximization Sequential

Linear
Zero-Forcing Water Filling

Off
RG - Random Grouping On

CAP-BF fCAP
Best Fit Cap. Maximization,

Proportional Fair Sequential, Resource-to-Group

Off
SP-BF fSP

OnCC-BF fCC
CC-CG fCC Convex Grouping

Table III
SIM ULATION PARAMETERS.

Parameter Symbol Value Unit

BS’s ULA size M 4 -
Number of MSs K 16 -
Center frequency f0 5.0 GHz
Number of resources B 8 -
Subcarriers / freq. block Qsub 6 -
Subcarrier bandwidth ∆f 9.766 kHz
Fast fading model - WIM, scenario C2 -
Average MSs’ speed vMS ≈2.78 m/s
Frame duration TFRM 1 ms
TSs / frame T 4 -
Target group size Gt 4 MSs

Initial MS k′ arg max
k

n

‖ĥk‖
2
2

o

-

Parameter forfCC(G) β 0.5 -

that, precoding and power allocation are applied, as well as
the SR algorithm if necessary. Fig. 2 shows the average sum
rate achieved by the RA strategies of Table II as a function of
the average SNRγ.
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Figure 2. Average sum rate of the RA strategies of Table II.

It can be seen in Fig. 2 that the CAP-BF, SP-BF, CC-BF,
and CC-CG strategies achieve over 95% of the average sum
rate achieved by the ES strategy for all the considered average
SNR values and that the performance of the ES strategy is
only about 10% lower than the capacity upper bound [14]
achiveable using Dirty Paper Coding (DPC). The performance
gap between the ES strategy and the other strategies increases
only slightly for higher values ofγ. Since the ES strategy
is much more complex than the other RA strategies, it can
be noted that suboptimal RA strategies are able to efficiently
approach the maximum sum rate of the system. As expected,

the RG strategy performs worst and obtains about 70% of
average sum rate achieved by the ES strategy.

Since quite different RA strategies are considered in Fig. 2,
it is important to verify whether some of them are particularly
more robust or sensitive to imperfections in the CSIT. For
this purpose, the erroneous CSIT model of (4) is employed.
Fig. 3 shows the average sum rate achievable by the RA
strategies considering an average SNRγ of 10 dB and varying
quality of the CSIT, given byγCSI in (5). The presented results
correspond to the maximum rates that the RA strategies could
ideally achieve, i.e., considering perfect feedback and rate
adjustments while assuming that the erroneous CSI is the
actual CSI.

If the quality of the CSIT is somehow compromised,
schemes relying on Channel Quality Indicators (CQIs), such as
SNR values, might become interesting alternatives. In order to
illustrate this fact, the performance of a Grid of Beams (GoB)
with four beams of equal power formatted using Chebyshev
filtering with a Sidelobe Level (SLL) attenuation of 20 dB [44]
is also included in Fig. 3 and is indicated by the horizontal
dashed line. Since CQI values represent a small amount of
information to be fed back to the BS by the MSs, it is assumed
in Fig. 3 that they are correctly received and that the four MSs
with the best SNR values are served by the BS.
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Figure 3. Average sum rate of the RA strategies considering imperfect CSIT.
Average SNRγ = 10 dB

From Fig. 3, it can be verified that none of the RA strategies
is particularly more robust against imperfections in the CSIT.
It can also be noted that the performance of the strategies
rapidly degrades whenγCSI decreases. In order to obtain at
least 60% of the sum rates shown in Fig. 2 for different average
SNR values, the quality of the CSIT given byγCSI should
not be lower than 10 dB. For aγCSI value of -10 dB, the
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RA strategies attain only about 15% of their sum rates with
perfect CSIT. Considering the parameter values in Table III
and assuming that CSIT imperfections are only due to delays,
this γCSI value corresponds to a delay of approximately 50%
of the channel coherence timeTc [29], [37], [38]. Thus, the
performance of considered strategies strongly depends on the
quality of the CSIT.

Regarding the use of GoB, it can be seen in Fig. 3 that the
achieved sum rate is only about 15% lower than those obtained
by the considered RA strategies. Indeed, the performance of
the GoB is even better than that of RG strategy. For the other
RA strategies, aγCSI value of, at least, 10 dB is required in
order to ensure better performance. Therefore, the use of GoB
can represent an efficient alternative to more sophisticated RA
when the quality of the CSIT is compromised. A more detailed
investigation of this topic, e.g., when CQIs are also imperfect,
is left for future studies.

In Fig. 2 and Fig. 3, the RG strategy achieves quite good
sum rates in spite of being considerably more simple than the
remaining strategies. However, the sum rates achieved by the
RG strategy are mainly due to the use of the proposed SR
algorithm of Section VI. Indeed, the SP-BF, CC-BF, CC-CG,
and RG strategies employ the SR algorithm, which provides
considerable gains in terms of average sum rate. In order
to show the impact of the SR algorithm, the average sum
rates achieved by SP-BF, CC-BF, CC-CG, and RG strategies
when the SR algorithm is switched off has been evaluated and
compared to the values in Fig. 2. The percentual reduction of
the average sum rate of the referred strategies when the SR
algorithm is switched off is shown in Fig. 4.
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Figure 4. Percentual reduction of the average sum rates when the SR
algorithm is switched off.

It can be noted that sum rate values lower than those
presented in Fig. 2 are obtained if the SR algorithm is switched
off. In particular for the RG strategy, losses are quite large
and surpass 50% for low average SNR values. Indeed, for
low average SNR values, the ideal SDMA group size is much
smaller thanM . However, because the group capacity is not a
monotonic function in the group size,Gt cannot be determined
a priori and the SR algorithm must be employed. Alternatively,
a value1 ≤ Gt ≤ M or a small set of values in this range
could be used in the RA strategy and the complexity of the SR
algorithm could be considerably reduced [9], [26]. Anyway,

comparing Fig. 2 and Fig. 4, it can be seen that the proposed
SR algorithm considerably improves the performance of the
RA strategies.

From Fig. 2, Fig. 3, and Fig. 4, it can be concluded that
the CAP-BF, SP-BF, CC-BF, and CC-CG strategies have very
similar performance and approximate quite well the average
sum rate of the ES strategy. However, these RA strategies have
quite different complexities. Indeed, previous works lack on
more precise analysis of the complexity of the RA strategies.
Herein, the complexity of each strategy has been estimated in
terms of the required number of complex multiplications and
is given in Table IV as a function of the numberK of MSs, the
numberM of transmit antennas, and the target group sizeGt.
Moreover, their complexity ordersO(·) assumingGt = M ,
cf. Table II, are also given in Table IV.

Because the numberL of groups considered by the ES strat-
egy combinatorially increases withK and because precoding
and power allocation must be computed for each group, this
strategy has the highest complexity, which is non-polynomial.
The RG strategy has the lowest complexity, which does not
depend on the number of MSs. However, it presented the worst
performance in terms of average sum rate.

Observing the complexity orders of the RA strategies, it
can be seen that the CAP-BF strategy is more complex than
the SP-BF strategy, which on its turn is more complex than
the proposed CC-BF strategy. The complexity order of the
proposed CC-CG strategy is quadratic inK but linear inM
and, consequently, it might be more or less complex than the
CAP-BF and SP-BF strategies depending on the number of
MSs and on the size of the BS array. Moreover, the complexity
of the CC-CG strategy depends on the number of iterationsICG

required by the CG algorithm to converge.
Because in practice the numberK of MSs and the number

M of antennas are limited to relatively small values, a useful
estimation of the complexity order of the RA strategies might
be difficult, especially because coefficients in the expressions
in Table IV cannot be disregarded. In Fig. 5, the complexity
of the RA strategies is shown for a varying numberK of MSs
and a fixed numberM of transmit antennas. It is assumed that
Gt = M , cf. Table III, and that the CG algorithm requires
ICG = K

2 iterations to converge.
As it can be noted, the proposed CC-BF strategy has lower

complexity than the CAP-BF and SP-BF strategies in all the
cases and is only slightly more complex than the RG strategy.
By comparing Fig. 5(a) and Fig. 5(b), it can also be noted that
the proposed CC-CG strategy has lower complexity than the
CAP-BF and SP-BF strategies for large array sizes. Performing
the best in terms of average sum rate, the CAP-BF strategy has
a considerably higher complexity compared to the SP-BF and
CC-BF strategies, which offer therefore a better performance-
complexity trade-off.

In the following, multiple-resources are considered and the
proposed resource-to-group algorithm will be used to improve
the throughput fairness among the MSs in the system. Only
the CAP-BF, SP-BF, and CC-BF strategies are considered
in the sequel. The CAP-BF strategy approximates well the
performance of the ES strategy, while the SP-BF and CC-BF
strategies offer better trade-off between average sum rate and
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Table IV
COMPLEXITY OF THE RA STRATEGIES.

RA Number of multiplications
O(·) for Gt = M

strategy SDMA algorithm + Precoding, power allocation, and SR algorithms

ES
(

Gt
P

G=2

K!
G!(K−G)!

„

G(G2+7G(M+1)+9M+18)
2

«

)

+ {KM+6M+10} Non-Polynomial

CAP-BF
(

Gt
P

G=2
(K−G+1)

„

G(G2+7G(M+1)+9M+18
2

«

)

+ {KM+6M+10} O
`

4KM3
´

SP-BF
(

Gt
P

G=2
(K−G+1)

„

5M2+5M+2
2

«

)

+

(

KM+6M+10+
Gt
P

G=2

G3+7G2(M+1)+9GM+18G

2

)

O
“

5KM2

2

”

CC-BF


Gt
K

K2(M+8)+K(M+2)+6
2

ff

+

(

KM+6M+10+
Gt
P

G=2

G3+7G2(M+1)+9GM+18G

2

)

O
“

KM2

2

”

CC-CG


ICG(2K2+2K)+
K2(M+8)+K(M+2)+6

2

ff

+

(

KM+6M+10+
Gt
P

G=2

G3+7G2(M+1)+9GM+18G

2

)

O
“

K2(M+4ICG)
2

”

RG +

(

6M+10+
Gt
P

G=2

G3+7G2(M+1)+9GM+18G

2

)

O
`

4M3
´
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Figure 5. Complexity of the RA strategies.

complexity. Because the proposed CC-CG strategy performs
only as good as the proposed CC-BF strategy while being
more complex, it is not considered in the sequel.

Initially, it is important to see how both the selection of
B out of theL groups and the adoption of the PF criterion
influence the average sum rate achieved by the RA strategies.
In Fig. 6, the average sum rate achieved by the CAP-BF, SP-
BF, and CC-BF strategies is shown as a function of the average
SNR γ for the CM and PF priority criteria.

Comparing Fig. 2 and Fig. 6, it can be seen that the gap
between the average sum rate achieved by the CAP-BF, SP-BF,
and CC-BF strategies and the average sum rate obtained by the
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Figure 6. Average sum rate of the CAP-BF, SP-BF, and CC-BF strategies
considering the CM and PF criteria for resource-to-group algorithm.

ES strategy is eliminated by allowing the suboptimal strategies
to select among a larger number of candidate groups. Such
an improvement comes at the expense of extra complexity
since L candidate groups must be considered. Anyway, the
CAP-BF, SP-BF, and CC-BF strategies remain substantially
less complex than the ES strategy.

Comparing the PF and CM criteria in Fig. 6, only a
reduction of about 10% is observed in the average sum rate
achieved by the CAP-BF, SP-BF, and CC-BF strategies. The
strategies also have the same performance in this case and
the proposed CC-BF strategy offers again the best trade-off
between performance and complexity.

In order to evaluate the impact of the adoption of the PF
criterion on the throughput fairness among the MSs, Jain’s
Index of Fairness (JIF)J (·) is employed [21]. For the average
throughput of the MS, JIF is given by

J (R̄k) =

(

K
∑

k=1

R̄k/Rc
k

)2

K
K
∑

k=1

(

R̄k/Rc
k

)2
, (27)

and assumes values between1
K

and 1 [21]. The higher the
values JIF assumes, the more fair the throughput distribution
among the MSs is. In particular, a valueJ of JIF can be
interpreted as having100×J% of the MSs being fairly served,
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i.e., perceiving the same throughput, and100 × (1 − J)% of
the MSs perceiving no throughput at all.

For the CAP-BF, SP-BF, and CC-BF strategies, Fig. 7 shows
the average throughput fairness among the MSs after a varying
number of frames. Both the CM and PF priority criteria are
considered and an average SNRγ = 10 dB is assumed.
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Figure 7. Jain’s Index of Fairness for the CAP-BF, SP-BF, and CC-BF
strategies considering the CM and PF criteria for resource-to-group algorithm.
Average SNRγ = 10 dB.

It can be seen that the proposed resource-to-group algorithm
with the PF criterion considerably improves the throughput
fairness among MSs at the expense of only the small reduc-
tions of the average sum rate shown in Fig. 6.

Considering the PF criterion and the CC-BF strategy, it
can be seen that about 90% of the MSs can be assumed
as fairly served after about 60 ms (60 frames), while only
about 60% of the MSs are fairly served considering the
CM criterion. Because the SDMA groups built by the SP-
BF strategy strongly favor MSs with high channel gains, this
strategy shows slightly worse fairness figures than the CC-BF
strategy. The CAP-BF strategy presents a slightly more fair
throughput distribution than the SP-BF strategy. This occurs
because the CAP-BF strategy is aware of the precoding and
power allocation and can estimate the group capacity better
than the SP-BF strategy, thus not favoring so much the MSs
with high channel gain.

Considering the results in Fig. 6 and Fig. 7, it can be seen
that the proposed CC-BF strategy considering the PF criterion
also offers a good trade-off between average sum rate and
throughput fairness.

X. CONCLUSIONS

In this work, several suboptimal RA strategies for the
maximization of the sum rate of an MU MIMO-OFDMA
system have been investigated. Two RA strategies have been
proposed, namely the CC-CG and CC-BF strategies, which
have been shown to achieve almost the same sum rate as
the ES strategy. The complexity of the proposed strategies
has been estimated and it has been shown that they provide
better performance-complexity trade-offs than some existing
RA strategies considered for benchmarking. An SR algorithm
has been proposed, which provides considerable gains in terms
of average sum rate and offers a good solution to determine

the size of the SDMA groups considered in the system.
Two simple resource assignment algorithms are considered. In
particular, the proposed resource-to-group algorithm combined
with a PF priority criterion has been shown to considerably
improve the throughput fairness among MSs at the expense of
only small reductions of the sum rate.

From the proposed model for suboptimal RA strategies,
simple rules can be defined to implement efficient suboptimal
RA strategies:

• Build groups using a low-complexity rather efficient SDMA
algorithm that takes into account spatial compatibility.

• Adjust the size of the SDMA groups using an SR algorithm
and taking into account precoding and power allocation.

• If the maximization of the sum rate is pursued, allocate
resources sequentially according to the group capacity.

• If a good trade-off between fairness and sum rate is to be
found, build various SDMA groups and assign the resources
to a subset of the groups while taking into account group
priorities.

As it has been seen, several RA strategies fit into the
proposed model and from the results presented in this work
it has been seen that efficient, low-complexity suboptimal RA
strategies can be designed to maximize the sum rate of the
system while providing a good degree of throughput fairness.
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