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Abstract—A scenario of multiple agents working together to
accomplish a common task is considered. Consensus control
facilitates the coordination among the agents over time till they
accomplish the task. In this paper, we consider formation control
using consensus in which agents coordinate to form a circle.
To make the coordination possible, agents need to periodically
exchange their positions using orthogonal transmissions through
a band-limited wireless channel which encounters different trans-
mission delays on different links. To guarantee over all agents
stability and convergence, we optimize the bandwidth allocation
for equal rate transmission, which maintains the synchronization
among agents. Moreover, we minimize the convergence time by
optimizing the weights of the consensus algorithm. An ultra-
reliable low latency communication between agents is guaranteed
by transmitting short packets. The simulation results show
that jointly optimizing the confidence weights and bandwidth
allocation greatly reduces the convergence time as compared to
conventional schemes.

Index Terms—multi-agent systems, consensus control, URLLC,
radio resource allocation, confidence weights.

I. INTRODUCTION

The field of multi-agent systems (MASs) is an emerging
research direction which aims at bringing individual autonou-
mous agents into a coordinated and synchronized system [1],
[2]. Future systems define many use cases where MAS prob-
lems are the main challenge. For instance, the internet of things
(IoT) considers a huge number of smart agents and the system
necessitates some sort of coordination among the different
agents in which distributed coordination is suitable [3], [4].
Industry 4.0 defines the concept of smart factories in which
several stages of the production line coordinate with each
other to ensure system stability and enhance the production
efficiency [5]. In the fifth generation cellular systems (5G),
car to car communications with autonomous driving is one
of the main targeted use cases. In this use case, agents, i.e.,
autonomous cars, need to coordinate, negotiate and decide in
real time for a safe, smooth and efficient traffic system [6].
Additionally, there are many different use cases of MAS for
security, privacy, and public safety [4], [7].

Basically, consensus control in MAS means that all agents
in the system reach an agreement regarding a quantity of
interest, i.e., state of the agents [8]. In other words, a con-
sensus algorithm is a distributed algorithm which defines the
interaction rules that specify the information to be exchanged
among agents to reach a common goal [8]. This means that
the agreed quantity is not pre-calculated, but reached through
a distributed negotiation process among the agents. To reach

a consensus, agents have to be connected in a single graph
[8]. In every step of the consensus algorithm, every agent
calculates its new quantity of interest as a weighted average
of its previous quantity and the quatities received from its
neighbors. This way, the dynamics of this time discrete control
system can be modelled using a system matrix with elements
representing the confidence weights of every agent's quantity
and the quantities received from other neighbouring agents
[8]. Basically, a confidence weight assigned by an agent, e.g.,
position information received from its neighbour, determines
how much this agent will consider the position of its neighbour
in the next movement. The second largest eigenvalue of the
system matrix is called algebraic connectivity of a graph
[9] and it is a measure of the speed of convergence of
a consensus algorithm, i.e., the smaller the eigenvalue, the
faster the convergence to a consensus [10]. In consensus
algorithms, it is mainly assumed that agents are synchronized
in exchanging information and in taking decisions. However
in reality, agents are exchanging information through a time
variant radio channel, and thus, different transmission delays
may occur on different links which may affect the system
stability and convergence.

In consensus control literature, communication among
agents is usually considered as a black box in which the
consensus is investigated under abstract channel models,
i.e., no sophisticated communications models are assumed
considering for instance, different transmission modes, mul-
tiple antennas, power control, subcarrier allocation and/or
orthogonal/non-orthogonal channel access. In particular, there
are papers which abstractly model the communication delay
and investigate the consensus. For instance, the authors of [11]
studied the effect of communication delay on the consensus
algorithm. They analyzed the impact of both time variant
and invariant communication delays on the convergence rate
of a consensus algorithm. In [12], a discrete time invariant
MAS with equal constant delays on all links is considered.
It was shown that the smaller the delay, the smaller the
second eigenvalue of the system matrix, which results in
faster convergence to a consensus. In [13], the influence of
communication delay on the stability of consensus in MAS
was studied assuming a constant communciation delay. The
authors employed the frequency approach and Lyapunov-
Krasovskii technique to study the stability and prove that
the system remains stable, but the final agreed quantity may
change due to the communication delay. Authors of [14]



assumed an upper bound of the communication delay on all
links and accordingly derived an upper bound on the conver-
gence time. This bound is an explicit function of the delay's
upper bound, system parameters and connectivity graph. The
authors of [15] focused on the integrator dynamic model at
agents. They studied both complete and loop shaped graphs
and assumed a symmetrical communication delay between
neighbouring agents in the system. Based on this, they derived
the maximum allowable delay such that the agents can still
converge to a consensus for both time variant and invariant
delays. Furthermore, they investigated the cases where the
delays in all links are either equal or unequal.

On the contrary, research in communications focuses on
achieving ultra-reliable low latency communications (URLLC)
without considering the dynamics of the MAS. In particular,
URLLC has many potential use cases in automation, rail
and car to car communications [16], [17]. In URLLC, the
objective is to achieve a highly reliable communication link
with a significantly low bit error rate (BER) between 10−5 and
10−7. At the same time, the maximum latency requirement of
the communication is tight, i.e. typically around 0.25 – 0.3
ms/packet [18]. To achieve the requirements of low latency and
high reliability for URLLC, new protocols, short frame/packet
structure and algorithms for fast baseband signal processing
with minimum signalling need to be developed [16], [19], [20].

In this paper, we aim at modelling URLLC considering
the dynamics of MAS for a consensus control. In other
words, a joint modelling and optimization of communication
and consensus control is the main contribution of this work.
To elaborate this, we study the formation control problem
using consensus in which agents want to form a circle. Our
contributions can be summarized as follows:

• We write an extended system matrix of the dynamics
which includes the impact of allocated bandwidth of
every link.

• To guarantee stability and convergence [12], we optimize
the bandwidth allocation for uniform delay over links in
every time slot.

• We optimize the confidence weights, i.e., the entries
of the extended system matrix, such that the consensus
convergence time is minimized.

• We analyse the performance of jointly optimizing both
communication and consensus control parameters against
optimizing either one of them only and show the potential
performance gain by considering both fields in a single
model.

This paper is organized as follows. In Section II, the system
model is discussed which includes the consensus model and
the communication model. In Section III, the problem is stated
and the extended system matrix is derived. Section IV explains
our proposed algorithm for minimizing the convergence time.
Simulation results are shown and discussed in Section V. In
Section VI, the conclusions are drawn.

Fig. 1: A MAS scenario with N agents forming a circle.

II. SYSTEM MODEL

In this section, the joint model of the communication and
consensus dynamics is introduced. A scenario consisting of
N autonomous agents with equal capabilities is considered.
Initially, agents are randomly located in an area and they need
to coordinate and move to form a circle around a common
reference point. It is assumed that every agent knows its
location with respect to a reference point and it moves in
a two-dimensional plane. Moreover, reliable communication
can be established all the time among neighbour agents. The
model of the dynamics for this MAS scenario is time discrete,
which means that an agent i exchanges information with its
neighbours, takes a decision and moves in every time slot k.
In every time slot k, every agent i knows its position in two-
dimensional polar coordinates (ρi(k),φi(k)) where ρi(k) is
the distance of agent i to the reference point at time slot k
and φi(k) is the angle with respect to the reference angle at
time slot k.

Fig. 1 shows how ρi(k) and φi(k) are calculated. It is
assumed that agents are numbered based on their initial angles
φi(0), ∀i to the reference angle, see Fig. 1. For instance,
agent i with the smallest initial position angle is labelled as
agent i = 1 and agent i = N is the agent with the largest
initial position angle. Since agents aim at forming a circle
around the reference point, they communicate with each other
using the cyclic pursuit strategy [21]. This strategy defines the
neighbours of each agent from which they will receive the
data. In our system model, each agent i has two neighbours,
agent i − 1 and agent i + 1. Since agents aim at forming a
circle, the first and last agents are neighbours. Let Ni denote
the set of neighbours of agent i. This way, a single connected
graph is defined initially and this graph remains the same till
the convergence. Accordingly, agent i can communicate with
its neighbour agents j ∈ Ni all the time, till they reach a



consensus. Agent i calculates the Euclidean distance to its
neighbour j ∈ Ni using

dij =
√

ρ2i + ρ2j − 2ρiρj cos (φi − φj). (1)

A. Communication Model

It is assumed that each agent is equipped with a wireless
transceiver in which the transmission and reception are accom-
plished simultaneously in different disjoint frequency bands.
Furthermore, every agent i transmits to its two neighbours in
Ni using two simultaneous unicast transmissions in different
frequency bands, and thus, the interference between different
links is avoided. This means, all agents can transmit simul-
taneously using frequency division multiple access (FDMA)
mode with a total of 2N orthogonal transmissions. Let Bij(k)
be the bandwidth reserved for the transmission from agent j to
agent i in time slot k. The total bandwidth over all concurrent
transmissions is upper bounded as

N
∑

i=1

∑

j∈Ni

Bij(k) ≤ Btot. (2)

Let hij(k) ∈ C denote the channel coefficient between
the transmit agent j and the receive agent i in time slot k.
Thus, the channel gain of this link is calculated as gij(k) =
|hij(k)|

2
. Throughout the paper, we will keep the time slot

index k if the formula contains different time slots and omit
it elsewhere. The receiver noise at an agent i is modelled as
additive white Gaussian noise with zero mean and variance
NoBij where No denotes the single sided noise density per
Hertz. Let pij be the transmit power of agent j to transmit
through the link to agent i, ∀i, j ∈ Ni. In URLLC, it is
assumed that short packets will be employed to transmit the
position information to neighbours with frame duration D in
seconds. The achieved data rate at agent i for the transmission
of agent j is calculated according to [22] as

Rij =
Bij

ln (2)

(

ln

(

1 +
gijpij
NoBij

)

−

√

Vij

DBij
Q−1(ϵ)

)

, (3)

where ϵ is the target bit error probability, Q−1(.) is the inverse
Gaussian-Q function and Vij is the channel dispersion which
is calculated as

Vij = 1−
1

(

1 + gijpij

NoBij

)2 . (4)

The transmission delay, which is defined as the time duration
needed for a packet of a fixed size b to be transferred from
agent j to agent i, is calculated as

τij =
b

Rij
. (5)

Since it is assumed that there is always a reliable commu-
nication link among neighbour agents, i.e., Rij > 0, the
communication delay is finite, i.e., τij < ∞. Using the time
slot duration T , the delay τij can be expressed in terms of the
number mij of time slots as

mij =
⌈τij
T

⌉

. (6)

B. Consensus Model

Agents use consensus laws to form a circle. Basically,
these laws are a predefined guideline which helps agents to
decide where they have to move in the next time slot k + 1.
At every time slot k, each agent i knows its own current
position (ρi(k),φi(k)) and positions of its neighbours with
some communication delay τij . Let γ be the step size which
is a scaler multiplied by the change of the position between
the current and next time slot. So, it represents how much an
agent will change it position inthe next time slot. Basically,
0 < γ < 1/∆ where ∆ is the maximum degree of a network
graph of the MAS. Basically, the maximum degree of a graph
is the maximum number of edges incident to every vertex, i.e.,
∆ = 2 in our case because every agent has two neighbours.
Moreover, aij is a weighting factor given by agent i to the
position of its neighbouring agent j for j ̸= i. The new
position of agent i in time slot k+1 equals the current position
of node i in time slot k plus a weighted sum of the difference
of the current position of node i and the outdated positions of
its neighbours j, ∀j ∈ Ni. This weighted sum of differences
is scaled by the step size γ. Mathematically, every agent i
decides on its position in the next time slot k + 1 as follows:
the distance to the reference point is updated as

ρi(k + 1) = ρi(k) + γ

⎛

⎝

∑

j∈Ni

aij (ρj (k −mij)− ρi (k))

⎞

⎠ ,

(7)
and the angle with respect to the reference angle is updated
as

φi(k + 1) = φi(k) + γ

⎛

⎝

∑

j∈Ni

aij (φj(k −mij)− φi(k))

⎞

⎠ .

(8)
Based on this, consensus is achieved when all ρi(K), ∀i are
equal and |φi(K)− φj(K)| = 2π

N
, ∀i, j ∈ Ni where K is

the time slot index at convergence, hence, agents are at equal
distance from the reference point and evenly spaced on a
circle.

III. EXTENDED SYSTEM MATRIX

In this section, we will derive an extended system matrix of
the dynamics which represents the impact of optimizing the
confidence weights and bandwidth allocation on the dynamics
of MAS. In fact, consensus algorithms are proposed for MAS
in which the communication delay is given and cannot be
adapted. Moreover, uniform delay among all links has the
properties of maintaining stability and guaranteeing conver-
gence [10], [12]. Accordingly, we optimize the bandwidth
allocation such that uniform delay in all links is achieved, i.e.,
τ(k) = τij(k), ∀i, j ∈ Ni. This way, agents are synchronized
in every time slot with equal delay τ in seconds or m in
time slots. For the rest of the paper, we assume that agents
are synchronized by optimizing the bandwidth allocation and
thus, we denote the delay by m with no indices. Let the
MAS introduced in Section II be modelled as an undirected



graph G = (V, E ,A), where the vertices V = {v1, . . . , vN}
represent the set of agents, the set of edges E ⊆ V × V
represents the graph connectivity among the agents where
eij denotes the edge between agent i and agent j. Finally,
A = [aij ]N×N is the adjacency matrix representing the
weighting factors among the agents such that

aij =

{

0, if eij ̸∈ E

> 0, if eij ∈ E .
(9)

Because the communication between neighbouring agents is
bidirectional, the graph G is modelled undirected. The degree
matrix D ∈ RN×N of the graph G is a diagonal matrix
[8] where diagonal elements indexed i = 1, . . . , N equal
di =

∑

j≠i aij , ∀i, which are the degree of each vertex in
the network graph. Accordingly, the Laplacian matrix [8] is
calculated as L = D − A. In other words, every element in
L equals

lij =

⎧

⎨

⎩

∑

j≠i

aij , if i = j

−aij , if i ̸= j.
(10)

Let ρ(i)(k−m) be a vector containing ρi(k) as the i-th element
and ρj(k−m), j ̸= i elsewhere. Similarly φ(i)(k−m) denotes
a vector with φi(k) in the i-th element and φj(k−m) for j ̸= i.
Using the Laplacian matrix, the discrete time consensus model
defined in (7) and (8) can be rewritten as

ρi(k + 1) = W ρ(i)(k −m), (11)

φi(k + 1) = W φ(i)(k −m),

where W = IN − γL and IN is the identity matrix with size
N × N . Since we aim at optimizing the confidence weights
in every time slot, the system matrix W(k) is time variant.
Furthermore, the system matrix W(k) is of size N ×N and
has the following structure: the diagonal elements are the self
confidence weights wii, ∀i whereas the off-diagonal elements
are the confidence weights of the information received from
the neighbours. Since the graph G is undirected, balanced,
circular and fixed, two off-digonal elements in every row of
W(k) are nonzero which corresponds to the links to the
two neighbours. Moreover, the system matrix W(k) is a
non-negative, row stochastic matrix which means that every
row-sum of this matrix equals 1, and thus, this matrix has
a trivial eigenvalue of 1 and all the eigenvalues are in a
unit circle. Because the graph G is balanced, the system
matrix is doubly stochastic [8]. With a system matrix of the
dynamics, the convergence speed can be optimized. However,
the system matrix W(k) of the dynamics does not include the
communication delay.

Let us assume that in every time slot k, the delay can be
m(0) for no delay and up to m(T ) for maximum delay. Then,

an extended system matrix of the dynamics with communica-
tion delay can be written as

Θ(k) =
⎛

⎜

⎜

⎜

⎝

Wd(k) +Wod(k,m
(0)) Wod(k,m

(1)) · · · Wod(k,m
(T ))

IN 0N · · · 0N

. . .
. . .

...
0N · · · IN 0

⎞

⎟

⎟

⎟

⎠

(12)

where 0N is an N ×N zero matrix and Wd(k) is a diagonal
matrix whose diagonal elements are those of W(k) and

Wod(k,m
(t)) =

{

W(k)−Wd(k), if m(t) = mopt

0N , otherwise,
(13)

where mopt is the optimum minimum delay at all links
and t = 0, 1, 2, . . . , T is the delay index. With ρ(k) =
(ρ1(k), . . . , ρN (k))T and φ(k) = (φ1(k), . . . ,φN (k))T, the
system dynamics in (11) can be written as

ρex(k + 1) = Θ(k) ρex(k), (14)

φex(k + 1) = Θ(k) φex(k),

where ρex(k) =
(

ρ(k)T, . . . ,ρ(k −m)T
)T

and φex(k) =
(

φ(k)T, . . . ,φ(k −m)T
)T

.
The extended system matrix Θ(k) of the dynamics is a

N(m(T ) + 1) × N(m(T ) + 1) row stochastic and primitive
matrix, and hence, the dynamics in (14) will converge to a
consensus [12]. However, Θ(k) is not a doubly stochastic
matrix [8], therefore, it will not converge to the average of the
initial states [12], i.e., ρi(K) ̸=

∑N
i=1 ρi(0)/N . The overall

dynamics can be written as

ρex(K) =
K
∏

k=0

Θ(k) ρex(0), (15)

φex(K) =
K
∏

k=0

Θ(k) φex(0).

The second largest eigenvalue modulus (SLEM) of the product
∏K

k=0 Θ(k) of the extended system matrices determines the
convergence speed [8]. In other words, minimizing SLEM of
∏K

k=0 Θ(k) will minimize the convergence time.

IV. MINIMIZING CONVERGENCE TIME

Since agents know only causal information of channel gains
and positions but not the future ones, the bandwidth allocation
and confidence weights are optimized on a time slot by
time slot basis. In every time slot k, the convergence time
minimization problem with the variables of bandwidths Bij(k)
and confidence weights wij , ∀i, j ∈ Ni, will be solved such

that the SLEM of
∏k

l=0 Θ(l) is minimized. Since the SLEM
of a row stochastic matrix is always less than or equal to 1,
the SLEM of

∏k
l=0 Θ(l) is monotonically non-increasing with

increasing k.
As described in the previous section, uniform delay among

agents maintains the stability and guarantees the convergence



of consensus in MAS [12]. Thus, we solve the convergence
time minimization problem in two steps. First, the bandwidth
allocation is optimized such that the transmissions among
neighbouring agents will experience equal delays, i.e., the
communication among agents is synchronized. Second, the
confidence weights in the resulting extended system matrix
Θ̃(k) with minimum delay are optimized for the minimum
SLEM of Θ̃(k).

A. Bandwidth Allocation

Since it is assumed that the packet sizes b are equal, finding
equal minimum delay is equivalent to finding equal maximum
data rates, see (5). Therefore, the optimization problem for
optimizing the bandwidth allocation can be stated as

argmax
Bij

{

min
i,j∈Ni

Rij(Bij)

}

(16)

subject to
N
∑

i=1

∑

j∈Ni

Bij ≤ Btot. (17)

Since the solution of this problem leads to equal rates at
all links, this problem can be solved using the bisection
method:

1: Initialize Rlb = 0, Rub = calculate (3) with gij =
max

x,y∈Nx

gxy and Bij = Btot.

2: If Rub −Rlb ≤ ξ, then terminate.
3: Set R = Rub+Rlb

2 .
4: Calculate Bij , ∀i, j ∈ Ni for achieving R using (3).

5: If
N
∑

i=1

∑

j∈Ni

Bij > Btot, then Rub = R, else Rlb = R.

6: Go to step 2.

This algorithm returns the maximum rate and the optimum
bandwidth allocation where the bandwidth constraint in (2)
holds with equality. Accordingly, the corresponding minimum
delay can be calculated using (5) and (6). The extended system
matrix Θ̃(k) can be constructed using (12) and (13).

B. Optimizing Confidence Weights

After finding the optimum transmission rate, the confidence
weights are optimized using the following optimization prob-
lem

argmin
Θ̃

{

tr
(

Θ̃

)}

(18)

subject to

Θ̃ ≽ 0, (19)

Θ̃1N = 1N , (20)

wij = 0, eij /∈ E , i ̸= j, (21)

wii ≤ wij , ∀i, j ∈ Ni, (22)

wij = (1− wii)
dij

∑

j∈Ni
dij

, i ̸= j, (23)

0 < wij < 1, (24)
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Fig. 2: Agent locations as a function of iteration number.

where wij , ∀i, j are the elements of Θ̃ and 1N is a N × 1
vector of ones. Since the extended system matrix of the
dynamics is row stochastic, its highest eigenvalue equals 1 and
all other eigenvalues are less than 1. Therefore, minimizing the
trace of Θ̃ in (18) minimizes the summation of all eigenvalues
except the highest, and thus, SLEM is minimized. Constraints
of (19) and (20) ensure that the extended system matrix is pos-
itive semi-definite and row stochastic, respectively. Constraint
(23) gives higher confidence weights to the information of
neighbouring agents with large distances as compared to the
weights of its own information and neighbours with closer
distances. This way, remote agents will move faster than
closeby agents. This problem is convex and can be solved
using conventional semidefinite programming methods [23].

V. PERFORMANCE EVALUATION

In this section, the performance of the proposed algorithm
is investigated. A scenario of 5 agents randomly placed in a
square 200×200 m2 area is considered. The reference point is
at the origin. The communication simulation parameters are set
according the 3GPP standard [24] and [25] and summarized
in Table I. To assess the performance of the proposed



Fig. 3: Number of iterations taken by each scheme to reach
consensus

scheme termed joint optimum, three benchmark schemes are
employed. The first is the baseline scheme in which neither
bandwidth allocation nor confidence weights are optimized.
They are fixed and equal, i.e., Bij = Btot/2N , wii = 1/3 and
wij = 1/3, ∀i, j ∈ Ni. The second benchmark scheme is rate
optimum in which the bandwidth allocation is performed using
the proposed bisection method in Section IV-A. However, the
weights in this scheme are fixed and equal, wii = 1/3 and
wij = 1/3, ∀i, j ∈ Ni. Finally, the weight optimum scheme,
where the weights are optimized in every time slot using
the optimization problem (18)–(24) with equal bandwidth
allocation, is considered.

For a single snapshot and using the proposed joint optimum
scheme, Fig. 2a and Fig. 2b show the locations of each
agent as a function of the number of iterations. Although the
transmissions among agents experience a delay, the consensus
is achieved in around 20 iterations. It can be noticed that the
convergence value of ρi(K) does not equal the average of the

initial values
∑N

i=1 ρi(0)/N because of the communication
delay. However, the angle difference between neighbouring
agents converges to 2π/N because agents form a complete
circle.

To assess the convergence of the proposed scheme against
the benchmark schemes, we ran 1000 Monte-Carlo simula-
tions. Fig. 3 compares the average convergence speed for

TABLE I: Simulation Parameters

Number of agents N 5
Number of links 2N 10
Total bandwidth Btot 25 kHz

Distance between agents dij 10 – 200 m

Channel gain gij −15.3− 37.6 log (dij)
Transmit power pij 23 dBm

Frame duration D 1 ms

Noise spectral density No −173 dBm/Hz

Bit error probability ϵ 10−7

Packet size b 160 bits

Fig. 4: SLEM of the product of system matrices for each
scheme

the different schemes. Obviously, the baseline scheme is the
slowest as neither the bandwidth nor the confidence weights
are optimized. The rate optimum scheme is faster than the
baseline scheme by around 10.3% but it is slower than the
weight optimum because it only ensures that the communi-
cation among agents are synchronized. However, by optimiz-
ing the confidence weights, far away agents will get higher
weights which result in moving faster towards the neighbours.
Therefore, the weight optimum scheme achieves around 20.5%
gain as compared to the baseline scheme. Finally, optimiz-
ing both bandwidths and confidence weights converges the
fastest because the communication is synchronized and larger
distances between agents result in faster movement towards
each other. The joint optimum scheme achieves 36% gain
as compared to the baseline scheme. Furthermore, the joint
optimum scheme achieves a performance gain of 19.4% and
29% over the weight optimum scheme and rate optimum
scheme, respectively.

As described in Section III, the speed of convergence to
a consensus is measured by SLEM of the extended system
matrix. In Fig. 4, the SLEM as a function of the number of
iterations is shown. It is clear that the SLEM is monotonically
non-increasing as a function of the number of iterations. Also,
SLEM for all schemes converges asymptotically towards zero.
Jointly optimizing bandwidth and confidence weight leads to
the fastest minimization of SLEM.

VI. CONCLUSION

In this paper, consensus in MAS is studied. In particular,
we aim at modelling and optimizing the communication and
consensus control together to minimize the convergence time.
For a scenario of multiple agents aiming at forming a circle, a
communication model which analyses the transmission delay
as a function of bandwidth is considered. We propose a
consensus algorithm in which the confidence weights and the
transmission bandwidths are optimized. We wrote an extended
system matrix which represents the impact of optimizing the
bandwidth and confidence weights on the dynamics of MAS.
URLLC is employed in which short packets are exchanged



among the agents with high reliability and low latency. The
results show that our proposed scheme converges significantly
faster than other conventional schemes.
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