
Tobias Mahn, Hussein Al-Shatri and Anja Klein, ”Distributed Algorithm for Energy Efficient

Joint Cloud and Edge Computing with Splittable Tasks,” in Proc. of the IEEE Wireless

Communications and Networking Conference (WCNC), April 2019.

c©2019 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this works must be obtained from the IEEE.

Distributed Algorithm for Energy Efficient Joint

Cloud and Edge Computing with Splittable Tasks

Tobias Mahn, Hussein Al-Shatri, Anja Klein

Communications Engineering Lab, TU Darmstadt, Germany, {t.mahn, h.shatri, a.klein}@nt.tu-darmstadt.de

Abstract—The considered hierarchical multi-level offloading
scenario consists of multiple mobiles units (MUs), an access point
(AP) with attached cloudlet for mobile edge computing (MEC)
and a cloud server. Each user has an arbitrarily splittable task
and three possible options for the computation of fractions of this
task, which are local computation, offloading to the cloudlet and
offloading to the cloud server. We decompose a non-linear central
energy minimization problem into subproblems and propose a
distributed algorithm that separates the allocation of shared
communication and computation resources by the AP from the
offloading decisions by the MUs. The AP assigns fractions of
the shared bandwidth of the radio access channel, the shared
backhaul transmission link to the cloud server and the shared
computation frequency at the cloudlet according to offloading
decisions of the MUs by solving closed-form expressions which
are derived in this paper. Given the available resources, each MU
solves a linear optimization problem to calculate the optimal
fractions of its task to be computed locally or offloaded. In
numerical simulations, the algorithm is proven to be stable and
reaching results close to the optimal policy.

I. INTRODUCTION

Mobile devices like smartphones or laptops play an increas-

ingly important role in the daily life, but their battery capacity

limits the execution of computation intensive tasks. A study

revealed that most users are very concerned about keeping the

battery level as high as possible [1]. Computation offloading

has been proposed as a solution to the battery capacity

bottleneck. A user transmits the task to be computed to a cloud

server, receives the result of the computation back and thus

he consumes less energy for wireless transmission of the task

as compared to computing locally [2]. Besides offloading to a

cloud server with high latency, mobile edge computing (MEC)

is an alternative approach to computation offloading [3], [4].

In MEC a small-scale server called cloudlet is attached to a

base station or access point (AP). The cloudlet can be used for

time-critical applications with high computational complexity

like augmented reality or speech processing [5].

As shown in a survey on computation offloading [6], it

is a broad field of research that includes considerations on

multi-layer computing architectures [7], placement of required

services for computation [8] or the interaction between users,

providers of computation servers and service operators [9].

This paper focuses on the influence of shared computation

and communication resources on the offloading decision of a

mobile unit (MU).

Most papers considering a similar aspect of computation

offloading treat smaller scenarios with a single offloading

location in the network, e.g. a cloudlet for MEC [5], [10].

As offloading of a task requires transmission of the task to the

cloudlet and the result back to the user as well as computation

at the cloudlet, the authors of [5] and [10] propose a joint

optimization of communication and computation resources.

The authors of [10] formulate an energy minimization prob-

lem. MUs with a stream of non-splittable tasks offload a task

only if the resources allocated to a MU are sufficient. The

proposed algorithm is efficiently modelled by queueing theory.

The authors of [5] consider a time minimization problem. The

maximum computation time of the MUs or the cloudlet shall

be minimized under the assumption that each MU has a single

splittable task. MUs can decide to process one fraction of

the task locally, while the rest is offloaded to the cloudlet.

An algorithm based on bisection search is proposed to find

the minimum total computation time in the network. The

algorithms formulated in [5], [10] are calculated by a central

entity, e.g. the AP, which is assumed to have knowledge about

all parameters in the network.

Recent papers like [11] and [12] propose hierarchical net-

work models with three levels, one for the MUs, one for the

AP and one for the cloud server. MUs and the cloud server

have no direct connection to each other. Therefore, offloading

to the cloud server requires two hops and all offloaded data is

handled by the AP. In [11], a flow management optimization

for queues of offloaded tasks is introduced. MUs have taken

the offloading decision already when their tasks are added to a

queue. The authors of [12] propose a multi-level network con-

sisting of one AP with attached cloudlet and one cloud server.

Their model combines energy minimization and minimization

of the maximum computation time in one objective function.

Energy and time are connected through a weighting variable

whose choice has a strong influence on the optimization

results. Although the algorithm is based on game theory and

could be executed distributed by all MUs, the convergence

to a Nash equilibrium is achieved when computing with full

knowledge centrally at the AP or at one of the MUs.

In this paper, a multi-level offloading scenario is investigated

which combines a low latency MEC system with a cloud

server. Multiple MUs have to share the available communi-

cation and computation resources. Each MU has an arbitrarily

splittable computation task whose fractions can be computed

locally, at the cloudlet and at the cloud server. Every MU

has to decide on the splits of its task considering its available

resources. An energy minimization problem limited by a max-

imum computation time constraint is formulated. The energy

minimization problem is decomposed into subproblems and

Fig. 1. Multi-level computation offloading scenario with K MUs, a single
AP with attached cloudlet and a cloud server connected over a backhaul link

approximately solved by an iterative algorithm. Our proposed

algorithm is executed distributedly by the AP and all MUs.

In an iterative way, the MUs decide autonomously on the

fractions to be computed locally and to be offloaded based

on the available communication and computation resources,

while the AP allocates the shared resources according to the

offloading decisions. The proposed algorithm requires only a

limited set of parameters at each entity in the network and

thereby, reduces signaling of the parameters by the MUs to

the AP or among the MUs.

The paper is structured as follows: Section II introduces

the scenario. We formulate the optimization problem to our

model in Section III and show how it can be transformed

into a distributed algorithm in Section IV. In Section V, the

theoretical results are tested numerically.

II. SYSTEM MODEL

A. Scenario

A multi-tier computation offloading scenario consisting of

K MUs, a single AP with an attached cloudlet and a cloud

server is considered. This scenario is shown in Figure 1

and can be part of a larger network with multiple APs. The

MUs are connected to the AP through a shared radio access

channel. The AP has a connection over a backhaul link with

limited capacity to the cloud server. AP and cloud server have

unlimted access to energy as they are connected to the power

grid. Therefore, only the energy consumed by the MUs is

considered in our model.

Each MU k with k ∈ {1, . . . ,K} has a splittable task of

length lk, measured in bits. The task of MU k is assumed to

be arbitarily splittable, so that one fraction xMU,k is computed

locally, one fraction xAP,k is computed at the AP, and another

fraction xcloud,k is offloaded to the cloud server with xMU,k +
xAP,k + xcloud,k = 1. Since the computation of diverse types

of tasks can require a different number of CPU cycles [13], a

complexity factor βk for the task of MU k is introduced. This

complexity factor βk determines the number of CPU cycles

required to compute one bit of the task of MU k.

B. Local Computation

Each MU k has a processing frequency fMU,k, measured in

cycles per second. If MU k decides to compute the whole task

locally, the total local computation time can be defined as

TMU,total,k =
βklk
fMU,k

. (1)

The local computation time scales linearly with the number

of bits to be computed and therefore, the computation of a

fraction of the task takes an equivalent fraction of computation

time, i.e.

TMU,k =
xMU,kβklk
fMU,k

. (2)

By introducing a calculation power pcalc,k the hardware of MU

k requires during computation, the local computation energy

EMU,k can be written as the product of calculation power and

local computation time as

EMU,k = pcalc,k ·
xMU,kβklk
fMU,k

(3)

and the energy for total local computation can be denoted by

EMU,total,k.

C. Computation at the AP

The first possible location for offloading the task or a

fraction of it is the cloudlet attached to the AP, which will be

called offloading to the AP in the following. The cloudlet is a

small server with a processing frequency fAP that is assumed

to be higher than the computation frequencies of the MUs,

i.e. fMU,k ≤ fAP. If only one MU is offloading to the AP,

it receives the full processing frequency for its computation.

Otherwise, the computation frequency at the AP is shared and

the fraction allocated to MU k is denoted as fAP,k. The total

allocated computation frequency cannot exceed the maximum

available processing frequency, i.e.
∑K

k=1 fAP,k ≤ fAP. A

possible approach for the allocation of this shared resource

will be discussed in Sections III and IV.

Each MU is connected to the AP through a wireless radio

channel which uses an orthogonal frequency-division multiple

access (OFDMA) transmission scheme. If MU k offloads a

fraction of its task, it receives a fraction bk of the total available

bandwidth B. In total, the bandwidth allocated to offloading

MUs cannot exceed the total bandwidth B, i.e.
∑K

k=1 bk ≤ B.

The transmission rate of MU k to the AP with bandwidth bk,

transmission power ptrans,k, the uplink channel gain |hk|
2 and

white Gaussian noise power σ2 is expressed by the Shannon

channel capacity as

rAP,k = bk log2

(

1 +
ptrans,k|hk|

2

σ2

)

. (4)

Channel gains |hk|
2 and noise power σ2 are assumed to be

known at the AP.

The offloading time for a fraction of the task of MU k to the

AP can be written as the sum of three actions: transmission of

the task to the AP, computation at the AP and transmission of

the result back to MU k. In our model, the result is assumed

to be much smaller than the original task and transmission of

the result to the MU is omitted, similar to [5], [14]. The time

for transmission and computation at the AP can be written as

TAP,k =
xAP,klk
rAP,k

+
xAP,kβklk
fAP,k

. (5)

To model the energy consumed by MU k for offloading

a fraction of its task to the AP, two powers are required.

Transmission power ptrans,k models the power of the modem

required in the transmission phase and static power pstatic,k

describes the idle power of the remaining hardware compo-

nents of the MU. The static power has to be considered during

transmission and while the MU is waiting for the results of

the computation at the AP. Then, the energy for offloading a

fraction of the the task to the AP is

EAP,k = (ptrans,k + pstatic,k) ·
xAP,klk
rAP,k

+ pstatic,k ·
xAP,kβklk
fAP,k

.

(6)

D. Computation at the Cloud

The cloud server is the second possible offloading location.

It is assumed to have plenty of computation resources available

and offer a fixed processing frequency fcloud to each MU

offloading a fraction there. The frequency is higher than the

local processing frequency of a MU, i.e. fMU,k ≤ fcloud.

Access to the cloud server is possible over a backhaul link

from the AP with a total backhaul transmission rate Rcloud. A

MU has to send the fraction of its task to be computed at the

cloud over the shared access channel to the AP which then

forwards it over the backhaul link to the cloud. Offloading by

multiple MUs requires sharing of the backhaul link and the

assigned backhaul transmission rate for MU k is denoted by

rcloud,k. The sum of all assigned rates has to be less than the

total backhaul transmission rate, i.e.
∑K

k=1 rcloud,k ≤ Rcloud.

Due to the backhaul transmission an additional latency has

to be considered when offloading a fraction of a task to

the cloud. During this interval, MU k stays idle and only

requires the static power pstatic,k. The time for transmission

and offloading is formulated as

Tcloud,k =
xcloud,klk
rAP,k

+
xcloud,klk
rcloud,k

+
xcloud,kβklk

fcloud

, (7)

and the corresponding energy is

Ecloud,k =(ptrans,k + pstatic,k) ·
xcloud,klk
rAP,k

+ (8)

pstatic,k ·

(

xcloud,klk
rcloud,k

+
xcloud,kβklk

fcloud

)

.

III. OPTIMIZATION PROBLEM

The total energy for the computation of the task of MU k
is expressed by

Ek = EMU,k + EAP,k + Ecloud,k. (9)

A decision vector xk = [xMU,k, xAP,k, xcloud,k] and a resource

vector rk = [bk, rcloud,k, fAP,k] is assigned to each MU k.

To simplify the notation of the optimization arguments, the

vectors of all K MUs are summarized in a decision matrix

X = [x1 . . .xK] and a resource matrix R = [r1 . . . rK],
respectively.

To minimize the energy consumed by all MUs in the system,

the following optimization problem can be formulated:

argmin
X,R

K
∑

k=1

Ek, (9)

s.t. xAP,kTAP,k ≤ TMU,total,k, ∀k, (10a)

xcloud,kTcloud,k ≤ TMU,total,k, ∀k, (10b)

K
∑

k=1

bk ≤ B, (10c)

K
∑

k=1

rcloud,k ≤ Rcloud, (10d)

K
∑

k=1

fAP,k ≤ fAP, (10e)

bk, rcloud,k, fAP,k ≥ 0, ∀k, (10f)

0 ≤ xMU,k, xAP,k, xcloud,k ≤ 1, ∀k, (10g)

xMU,k + xAP,k + xcloud,k = 1, ∀k. (10h)

Constraints (10a) and (10b) represent the maximum allowed

computation time. To ensure that offloading is always benefi-

cial in terms of time, offloading of fractions or the whole task

of MU k shall not take longer than the local computation of

the whole task would take. The sums of the shared resources of

the access channel, the backhaul link from the AP to the cloud

server and the computation frequency at the AP are limited to

their respective upper bounds in constraints (10c)-(10e). Each

resource assigned to every MU has to be non-negative, which

is expressed by (10f). The fraction of the task of MU k to be

computed at each possible location has to be also non-negative

and has an upper bound of 1, for the case the whole task is

computed at one location. This is formulated by constraint

(10g). The last constraint (10h) ensures that the whole task of

each MU is computed.

IV. DISTRIBUTED ALGORITHM

Although the proposed offloading problem can be formu-

lated as shown in Section III, this formulation has disadvan-

tages. First, the optimization problem is non-linear and non-

convex and thus, not efficiently solvable. Another disadvantage

is the centrality of the optimization problem. The solution

has to be calculated at one location in the network, e.g. at

the AP. Every MU has to share all parameters required for

the calculation and will receive an offloading decision back.

Therefore, a MU has no active part in the decision process.

In this section, a distributed algorithm is proposed that

separates resource allocation at the AP and the offloading

decisions by the MUs into two subproblems. Before starting

the algorithm, task length lk, complexity factor βk and initial

offloading decisions of the MUs are transmitted to the AP.

Initial offloading decisions of the MUs can, e.g. be modeled

by full local computation of the tasks or by the corresponding

fractions when assuming an equal distribution of the shared

resources among all K MUs. Afterwards, the MUs are sorted

in descending order according to their respective possible

energy saving.

Now, an iterative process begins and the shared resources

are assigned based on these offloading decisions at the AP.

After a MU receives feedback about the allocated fraction of

the shared resources, the MU can autonomously reconsider and

possibly, update the offloading decision. One after another, all

MUs receive information about their available resources and

can redecide on the fractions of their tasks to be computed

locally or offloaded.

The proposed algorithm is summarized in Figure 2. In the

following subsections, the sorting, the resource allocation and

the offloading decisions are explained in more details.

A. Sorting

Until now, the assignment of the numbers 1, . . . ,K to the

K MUs is random. Since the total computation energy of

all K MUs should be minimized, the MU with the highest

possible reduction of its energy consumption by offloading

shall decide first. The optimal ranking would be calculated

by argmaxk∈K |EMU,total,k − Ek| with K being the set of all

K MUs. This metric is not applicable, because it requires the

offloading decisions and shared resources to be known. There-

fore, more simple metrics for ordering have to be evaluated.

Under the assumption that each MU will offload its whole task

and will receive all communication and computation resources,

possible metrics are: the task length lk, the number of required

CPU cycles βklk, or the required energy for offloading to the

AP EAP,k. Each metric sorts the MUs in descending order.

B. Resource Allocation

Assuming that offloading decisions of all MUs are avail-

able at the AP, the shared resources have to be optimized

accordingly. Optimization problem (9) can be rewritten only

in dependence of the shared resource matrix R as

argmin
R

K
∑

k=1

Ek, (11)

s.t. (10c), (10d), (10e), (10f).

This formulation is still non-convex, but can be reformulated

by a Lagrange function L as

L =

K
∑

k=1

Ek + µ1

(

K
∑

k=1

bk −B

)

+ (12)

µ2

(

K
∑

k=1

rcloud,k −Rcloud

)

+ µ3

(

K
∑

k=1

fAP,k − fAP

)

.

Since the shared wireless bandwidth, backhaul link transmis-

sion rate and computation frequency at the AP are independent

of each other, the derivation of this Lagrangian function

leads to one separate equation for the optimal allocation of

each resource. The corresponding KKT-conditions and the

derivation can be found in the Appendix.

initial offloading

decisions xk, ∀k

sorting of the MUs return xk & r
∗
k, ∀k

AP allocates

resources r
∗
k

k ≤ K

MU k redecides x
′
k

|x′
k − xk|
≥ ǫ

k = 1

yes,

then xk = x
′
k

& set k = 1

no,

set k = k + 1

yes

no

Fig. 2. Flow diagram of the iterative algorithm

The optimal fraction of the total bandwidth that MU k
requires to offload the desired fraction of its task is

b∗k = B ·

√

(xAP,k+xcloud,k)(ptrans,k+pstatic,k)lk

log
2

(

1+
ptrans,k|hk|2

σ2

)

∑K

k=1

√

(xAP,k+xcloud,k)(ptrans,k+pstatic,k)lk

log
2

(

1+
ptrans,k|hk|2

σ2

)

, (13)

the optimal fraction of the backhaul transmission rate is

r∗cloud,k = Rcloud ·

√

xcloud,kpstatic,klk
∑K

k=1

√

xcloud,kpstatic,klk
(14)

and the optimal fraction of the total available processing

frequency at the AP can be calculated by

f∗
AP,k = fAP ·

√

xAP,kpstatic,kβklk
∑K

k=1

√

xAP,kpstatic,kβklk
. (15)

These results show that a MU k offloading a fraction of its task

to one or both of the remote locations, will receive a fraction of

the shared communication and computation resources relative

to the overall amount of offloaded data by all MUs.

C. Offloading Decisions

After the separation of offloading decisions and resource

allocation, the remaining optimization problem for the off-

loading decisions becomes

argmin
X

K
∑

k=1

Ek, (16)

s.t. (10a), (10b), (10g), (10h).

50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

Complexity Factor βk in cycles/bit

A
v
er

ag
e

E
n
er

g
y

C
o
n
su

m
p
ti

o
n

in
J

Distributed Algorithm
Central Optimization
Local Computation

Fig. 3. Total energy consumption of the MUs for different task complexities

The energy of each MU k is independent of all other MUs,

as the shared resources are assigned before the update of the

offloading decision. Therefore, optimization problem (16) can

be simplified to

argmin
X

Ek, (17)

s.t. (10a), (10b), (10g), (10h).

This formulation is a standard linear optimization problem that

can be solved efficiently and fast by available solvers and can

also be computed on a MU.

V. NUMERICAL RESULTS

The scenario consists of K = 5 MUs, each with a task of

length lk = 10 MB and a computation frequency of fMU,k =
1 GHz. The cloudlet has a shared computation frequency of

fAP = 4 GHz and the cloud server provides fcloud = 8 GHz

to each MU. Every MU has a local calculation power of

pcalc,k = 500 mW, a transmission power of ptrans,k = 200 mW

and a static power of pstatic,k = 20 mW. The radio access

channel is modeled with a total bandwidth of B = 100 MHz,

a white Gaussian noise power of σ2 = 10−13 W and a channel

gain of |hk|
2 = 1/d−3 with d being a randomly chosen

distance of the MU from the AP in a range from 10 m to

50 m. The shared backhaul transmission link to the cloud

server has a total transmission rate of Rcloud = 100 Mbit/s. For

initialization, the shared resources are allocated equally among

all MUs and their initial offloading decisions are calculated

accordingly.

For the first result shown in Figure 3, the average energy

required of a MU is calculated for different complexity factor

β values in a range of from 1 to 200. Performing 50 Monte

Carlo runs per data point, the proposed algorithm is tested

against the central optimization problem (9) calculated by the

BARON non-convex solver and against a full local computa-

tion of the tasks. While local computation linearly increases,

the two policies with offloading consume much less energy

20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Complexity Factor βk in cycles/bit

A
v
er

ag
e

P
er

ce
n
ta

g
e

O
ffl

o
ad

ed

Distributed Algorithm
Central Optimization

(a) AP and cloud server combined

20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Complexity Factor βk in cycles/bit

A
v
er

ag
e

P
er

ce
n

ta
g

e
O

ffl
o

ad
ed

Distributed Algorithm (AP)
Distributed Algorithm (cloud)
Central Optimization (AP)
Central Optimization (cloud)

(b) AP and cloud server separated

Fig. 4. Percentage of offloaded data for different task complexities

and the curves increase only slightly. The distributed algorithm

shows an energy consumption close to the central solution.

Only for complexity factors βk between 30 and 100 a larger

deviation is visible. In this range, not all MUs are able to

offload with their allocated resources and the calculation of

a solution requires more iterations for settlement. For higher

values of βk, all MUs offload fully their tasks to either the

AP or the cloud server and the distributed algorithm nearly

reaches the central optimization result.

When investigating the average percentage of offloaded

computations per MU in Figure 4, more differences between

the central optimization problem and the proposed distributed

algorithm become apparent. In Figure 4a, the sum of off-

loaded data to the AP and to the cloud server is shown.

The curves of the central optimization and the distributed

algorithm are comparable in steepness and saturation point.

The central optimization results in more offloaded data for

a complexity factor of 10, while the distributed algorithm

is offloading slightly more data at a complexity factor of

2 4 6 8 10
2

3

4

5

6

7

8

Number K of Mobile Units

A
v
er

ag
e

N
u
m

b
er

o
f

It
er

at
io

n
s

Without Sorting
Sorting by lk
Sorting by EAP,k

Fig. 5. Average number of iterations for different numbers of MUs

40. A closer inspection of the location to which the MUs

offload the tasks reveals different offloading decisions of the

MUs in the central optimization compared to the distributed

algorithm. This is shown in Figure 4b. For complexity factors

between 1 and 50, both methods are behaving in a similar

way. First, one MU starts to offload its task to the AP. When

the increasing complexity factor leads to a higher maximum

local computation time, a second MU starts to offload to the

cloud server with higher latency. At complexity factors higher

than 50, all MUs decide for full offloading of the tasks. A

MU calculating its offloading decision based on the distributed

algorithm is missing global knowledge about the decisions of

the other MUs. Therefore, it is visible that a MU prefers the

cloud server with fixed computation frequency over the shared

computation capabilities at the AP, despite the higher latency

for the transmission.

For the results in Figure 5, each MU is modeled to have a

random task size between 5 MB and 25 MB and βk is fixed to

50. For different numbers K of MUs, the average number of

iterations is computed with 100 Monte Carlo runs per data

point. For K = 4 and βk = 50, a steep increase of the

required iterations is visible in Figure 5. Like in the result

described in Figure 3, at this point not all MUs are able to

offload. With a further increasing number of MUs, the initially

available resources per MU decrease and more MUs decide

for local computation. Therefore, the remaining MUs reach

their final offloading decisions in a few iterations. Both curves

representing an initial sorting of the MUs according to the task

length lk or to the energy EAP,k for computing at the AP are

nearly identical. Even the simple sorting by a decreasing task

size can reduce the average number of required iterations.

VI. CONCLUSION

A hierarchical multi-level scenario with two locations for

computation offloading is investigated and a central energy

minimization problem with a maximum computation time

constraint is formulated. The problem is remodeled into a

distributed, iterative algorithm that requires only a limited set

of parameters at the MUs and the AP. Thereby, signaling

is reduced and each MU is able to take an autonomous

offloading decision. In numerical simulations, the proposed

algorithm achieves results close to the original non-convex

energy minimization problem, while having a significantly

lower computation time.

ACKNOWLEDGEMENT

This work has been performed in the context of the DFG

Collaborative Research Center (CRC) 1053 MAKI - subpro-

jects B3 and C7.

supported by DAAD with

funds from the Federal

Ministry of Education

and Research (BMBF)

REFERENCES

[1] D. Ferreira, A. K. Dey, and V. Kostakos, “Understanding human-
smartphone concerns: a study of battery life,” in Proc. of the Interna-

tional Conference on Pervasive Computing. Springer, 2011, pp. 19–33.

[2] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can off-
loading computation save energy?” IEEE Computer Magazine, vol. 43,
no. 4, pp. 51–56, 2010.

[3] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Communicating while
computing: Distributed mobile cloud computing over 5G heterogeneous
networks,” IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 45–55,
2014.

[4] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing - a key technology towards 5G,” ETSI White Paper,
vol. 11, 2015.

[5] H. Q. Le, H. Al-Shatri, and A. Klein, “Efficient resource allocation in
mobile-edge computation offloading: Completion time minimization,”
in Proc. of the IEEE International Symposium on Information Theory

(ISIT), 2017, pp. 2513–2517.

[6] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE

Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[7] R. Vilalta, V. Lopez, A. Giorgetti, S. Peng, V. Orsini, L. Velasco,
R. Serral-Gracia, D. Morris, S. De Fina, F. Cugini et al., “Telcofog: A
unified flexible fog and cloud computing architecture for 5g networks,”
IEEE Communications Magazine, vol. 55, no. 8, pp. 36–43, 2017.

[8] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser, “Service entity
placement for social virtual reality applications in edge computing,”
in Proc. of the IEEE INFOCOM 2018 - Conference on Computer

Communications, 2018.

[9] H. Zhang, Y. Zhang, Y. Gu, D. Niyato, and Z. Han, “A hierarchical
game framework for resource management in fog computing,” IEEE

Communications Magazine, vol. 55, no. 8, pp. 52–57, 2017.

[10] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Joint allocation of
computation and communication resources in multiuser mobile cloud
computing,” in Proc. of the IEEE 14th Workshop on Signal Processing

Advances in Wireless Communications (SPAWC), 2013, pp. 26–30.

[11] K. Kaur, S. Garg, G. S. Aujla, N. Kumar, J. J. Rodrigues, and
M. Guizani, “Edge computing in the industrial internet of things envi-
ronment: Software-defined-networks-based edge-cloud interplay,” IEEE

Communications Magazine, vol. 56, no. 2, pp. 44–51, 2018.

[12] M.-H. Chen, M. Dong, and B. Liang, “Multi-user mobile cloud off-
loading game with computing access point,” in Proc. of 5th IEEE

International Conference on Cloud Networking (Cloudnet), 2016, pp.
64–69.

[13] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing.” Proc. of the 2nd USENIX Conf. Hot Topics on

Cloud Computing, pp. 1–4, 2010.
[14] C. You and K. Huang, “Multiuser resource allocation for mobile-edge

computation offloading,” in Proc. of the IEEE Global Communications

Conference (GLOBECOM), 2016, pp. 1–6.

APPENDIX

The gradient of (12) with respect to the shared resources of

MU k is

∇rk
L(rk,µk) =

−(xAP,k + xcloud,k)
(ptrans,k + pstatic,k)lk

b2k log2

(

1 +
ptrans,k|hk|2

σ2

) + µ1

−xcloud,k

pstatic,klk
r2cloud,k

+ µ2

−xAP,k

pstatic,kβklk
f2

AP,k

+ µ3

(18)

and the remaining KKT-conditions are

K
∑

k=1

b∗k −B ≤ 0, (19)

K
∑

k=1

r∗cloud,k −Rcloud ≤ 0, (20)

K
∑

k=1

f∗
AP,k − fAP ≤ 0, (21)

µ∗
1, µ

∗
2, µ

∗
3 ≥ 0, (22)

µ∗
1

(

K
∑

k=1

b∗k −B

)

= 0, (23)

µ∗
2

(

K
∑

k=1

r∗cloud,k −Rcloud

)

= 0, (24)

µ∗
3

(

K
∑

k=1

f∗
AP,k − fAP

)

= 0. (25)

As the three shared resources are independent of each other,

which is shown in (18), only one µi is active per resource.

In the following, only the proofs of (25) for the shared

computation frequency f∗
AP,k will be discussed, since the

proofs for b∗k and r∗cloud,k can be formulated similarly. From

(18), the shared computation frequency fAP,k can be calculated

as

fAP,k =

√

xAP,kpstatic,kβklk
µ3

(26)

The derivative of (12) with respect to µ3 leads to

K
∑

k=1

fAP,k − fAP = 0 (27)

and the optimal value of the Lagrangian multiplier µ∗
3 can be

calculated as

µ∗
3 =

(

1

fAP

K
∑

k=1

√

xAP,kpstatic,kβklk

)2

. (28)

The optimal fraction of the shared computation frequency k
f∗

AP,k at the AP for MU can be found by inserting (28) in (26).

With the results for f∗
AP,k and µ∗

3, the validity of the KKT-

conditions can be discussed. The variables pstatic,k, βk, lk and

fAP are positive. The offloading decision xAP,k is only zero if

MU k is not offloading a fraction of its task to the AP. For

µ∗
3 this results in

µ∗
3

{

= 0, if xAP,k = 0, ∀k

> 0, else.
(29)

The upper bound for (21) can be calculated by

K
∑

k=1

fAP ·

√

xAP,kpstatic,kβklk
∑K

k=1

√

xAP,kpstatic,kβklk
− fAP = 0 (30)

K
∑

k=1

fAP

√

xAP,kpstatic,kβklk − fAP

K
∑

k=1

√

xAP,kpstatic,kβklk = 0.

(31)

This result shows that if at least one MU offloads a fraction of

its task to the AP, the resources will be allocated completely.

If no MU offloads a fraction to the AP, the inequality in (22)

reaches its minumum value, i.e.

K
∑

k=1

f∗
AP,k − fAP =

{

−fAP, if xAP,k = 0, ∀k

0, else.
(32)

Therefore, inequalities (21) and (22) are always fulfilled.

The orthogonality in (25) between the optimal Lagrangian

multiplier µ∗
3 and the constraint for the shared computation

resources (21) has to be investigated. For the left multiplicand

µ∗
3, result (29) can be used, and for the right multiplicand,

result (32). Either µ∗
3 is inactive when no MU offloads a

fraction to the AP or the available computation frequency is

fully allocated and constraint (21) becomes zero. Therefore,

(25) is always zero and the orthogonality is fulfilled.

