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Abstract—Many opportunistic routing protocols for wireless
multi-hop networks rely on a fixed channel rate and a fixed
priority order to manage the access to the channel by the
involved nodes. Thereby, the actual channel capacities in the
network are not considered and the diversity of links is not
fully exploited. Furthermore, the data buffer of the nodes is not
taken into account. In this work, we consider a wireless multi-
hop scenario consisting of multiple cooperative nodes within
each hop that share channel resources and adapt their channel
rates based on local channel knowledge. A Markov Decision
Process (MDP) model is used to derive an optimal resource
allocation policy that minimizes the number of required time
slots to forward all data packets to the next hop. Furthermore, we
propose a state approximation technique that limits the required
number of states, but captures the most important features of
the problem. Simulation results demonstrate that the proposed
policy achieves throughput gains of up to 25% compared to a
fixed order transmission policy and up to 49% compared to a
unipath approach.

Index Terms—Opportunistic routing, wireless multi-hop net-
works, Markov decision process

I. INTRODUCTION

Traditional multi-hop routing techniques like Dynamic

Source Routing (DSR) [1] or Ad-hoc On Distance Vector

(AODV) Routing [2] forward data along a fixed unipath. In

wireless networks, these techniques struggle with the dynamic

nature of channels due to the lack of alternative options

in the path. Opportunistic routing protocols, such as ExOR

[3], exploit the broadcast nature of wireless transmissions to

overcome the limitations of a single unreliable channel. Instead

of selecting a fixed next forwarding node, a set of candidates

is considered as possible forwarders which leads to higher

reliability and a lower amount of retransmissions. However, to

avoid channel estimation, most of the proposed opportunistic

routing protocols are based on a fixed single channel rate

and do not adapt the channel rate to the actual channel

conditions [4]. In [5], it is shown that opportunistic routing

operating with multiple rates can achieve higher throughput

than a single rate approach. Moreover, channel resources are

usually assigned to the nodes according to a prioritization

order of the forwarders. Each node waits for its turn to transmit

based on, for instance, the expected transmission cost [3] or

its distance to the destination [6]. Again, the actual channel

conditions of the potential transmitters are not taken into
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account and therefore, the available diversity of channels is

not fully exploited. Furthermore, the data buffer of the nodes

is usually not taken into account. Buffer-aware opportunistic

routing [7] combines the location and data buffer level of

forwarding nodes to prioritize the selection of forwarders.

Thereby, negative effects on the network throughput caused

by accumulation of data packets at certain forwarding nodes

are reduced.

In [8], short term channel fading statistics are incorporated to

optimize the long term slot assignment, routing and scheduling

in meshed networks. In [9] and [10], corridor-based routing is

proposed which is an opportunistic strategy based on local

channel knowledge and cooperation among the forwarding

nodes. Channel resources are assigned according to current

channel conditions and channel rates are adapted accordingly

to fully exploit actual channel capacities. However, for the

resource allocation, only suboptimal or heuristic approaches

are used.

In this work, we consider a wireless multi-hop scenario with

multiple cooperative forwarders in each hop that share the

available channel resources and adapt their transmission rates

according to the current channel states. We propose a resource

allocation policy based on a Markov Decision Process (MDP)

model. An MDP is also used in [11] to model a whole end-to-

end forwarding process and the selection of forwarding nodes

in opportunistic routing. However, the proposed strategy is

limited to the transmission of a single packet and it struggles

with increased number of nodes in the network. In this work,

we use an MDP model that incorporates local channel statistics

as well as the data buffers of the nodes to find a local optimal

policy for resource allocation that minimizes the expected

number of required time slots to forward data packets to

the next hop. Furthermore, an approximation technique is

proposed that limits the required number of states in the model

and makes the problem feasible even in case of a large number

of data packets or potential forwarding nodes.

The rest of the paper is organized as follows. The system

model is explained in Section II. In Section III, the MDP

model, the derivation of the optimal policy and the approxi-

mation technique are presented. In Section IV, the performance

is evaluated and Section V concludes the paper.

II. SYSTEM MODEL

In this work, we consider a multi-hop transmission from one

source S to one destination D based on a support structure



Fig. 1. Multi-hop network with Nf = 3 forwarding nodes.

as shown in Figure 1. The support structure consists of Nh

hops and Nf potential forwarding nodes from the second hop

on. For simplicity reasons, we assume the number Nf to be

constant within the network but the proposed algorithms can

also handle varying numbers of forwarding nodes in the hops.

It is assumed that the nodes are fully connected within each

hop as shown in Figure 1. Nodes that are further away are

assumed to be out of each other’s transmission range. Rayleigh

fading is assumed between the nodes. The channel between

transmitter i and receiver j is described by the channel transfer

factor hi,j and is modeled as a complex Gaussian distributed

random process. The channels are considered to be constant

within one time slot. All transmitters use the same fixed

transmit power and all receivers have the same noise power.

The transmit power and noise power are included in the

channel transfer factor such that the Signal-to-Noise Ratio

(SNR) of the channel is given by

γi,j = |hi,j |
2, (1)

Local channel knowledge is assumed to be available, i.e.,

the SNR of the strongest channel of each transmitter of a

certain hop needs to be available at all transmitters of the

corresponding hop. Each transmitter i needs to determine the

SNR to receiver j that provides the currently highest SNR

γi,max = max
j

γi,j and needs to share this value within the

group of transmitters. In addition, the nodes need to know

the average SNR γ̄i,j of the channels within their hop which

is the expected value of γi,j . To this end, hello messages

can be used on a regular basis to measure and share this

information in larger time intervals. In order to provide the

current maximum SNR knowledge, channel estimation as well

as one hop feedback is required at the beginning of each time

slot as long as data is transmitted in the corresponding hop. We

assume perfect channel estimation and do not consider channel

estimation errors. In some cases, such estimation errors do not

cause any consequences. In other cases, a channel estimation

error could either be compensated by an error correcting

channel coding or it could lead to a packet error such that

a retransmission of the corresponding data packet is required.

However, it would equally affect all considered transmission

strategies and therefore, it is not crucial for the investigations.

In our setting, the source wants to transmit Np,total packets

to the destination. The nodes can adapt their transmission rate

stepwise according to the current channel state which results in

a certain number Np of transmitted packets. To model this rate

TABLE I
RATE ADAPTATION

SNR capacity Np / time slot

< 4.8 dB < 2 bit/s/Hz 0

4.8 - 11.8 dB 2 bits/s/Hz 1

11.8 - 18 dB 4 bits/s/Hz 2

> 18 dB 6 bits/s/Hz 3

adaptation, a mapping as shown in Table I is used. According

to Shannon capacity C = log2(1 + SNR), an SNR of 4.8 dB

leads to a channel capacity of C = 2 bits/s/Hz. Without loss of

generality we do not take assumptions on the available band-

width, channel coding, packet size or time slot duration and

take 2 bits/s/Hz as the minimum required capacity to transmit

one data packet in one time slot. Therefore, to transmit two

packets within a time slot, a channel capacity of 4 bits/s/Hz

and an SNR of 11.8 dB is required and so on. This model

captures the general functioning of an adaptive modulation and

coding mechanism used in most communication protocols. It

could be easily extended to a more detailed mapping.

The data packets are transmitted hop-by-hop using a decode-

and-forward protocol, where nodes of a certain hop start to

forward data packets only after the nodes of the previous hop

have finished forwarding all Np,total data packets. There is

always only one node transmitting at a time, so there is no

interference.

III. RESOURCE ALLOCATION PROBLEM

In the first hop of the network, the source node transmits

data packets to the next hop forwarders. In each time slot,

data packets are transmitted to only one receiver that provides

the highest channel capacity in this time slot. The number

of transmitted data packets is adapted to the corresponding

channel capacity. In case that multiple receivers have the same

channel capacity in a time slot, the source node transmits to the

receiver with less data packets in its data buffer. The proposed

policy could be easily extended to handle and to benefit from

an availability of data packets at multiple forwarders, but for

simplicity reasons, we do not consider duplicates of packets

that are available at multiple forwarders.

In the following hops, the data packets are distributed among

the multiple forwarding nodes and therefore, channel resources

need to be assigned to the nodes until all packets are forwarded

to the next group of nodes. The forwarding nodes have a

different amount of data packets in their data buffer and the

aim is to find an allocation policy that minimizes the required

number of time slots needed to forward all data packets to the

next hop. The solution to this problem is not straightforward. A

greedy policy that always assigns the channel to the transmitter

with the highest capacity would maximize the achievable

throughput, but only until the data buffer of one transmitter

is empty. After that, the channels from this transmitter could

not be used anymore and the diversity of available links to

choose from is reduced. In order to minimize the required



number of time slots for transmission, an allocation policy is

required that takes the data buffer levels as well as the channel

conditions into account. To solve this problem, we take the

following steps. Firstly, we model this local resource allocation

problem as an MDP. Secondly, we derive an optimal policy

using a policy iteration algorithm and thirdly, we present a

state approximation technique to keep the required number of

states in the model manageable.

A. Markov Decision Process Model

To find an optimal policy for the resource allocation problem

within a certain hop, a dynamic programming algorithm can

be used. These algorithms require a perfect model of the

environment as an MDP. This means that all relevant deter-

ministic variables need to be known as well as the probability

distributions of the relevant stochastic processes. The MDP

consists of a finite state set S and an action set A. Each

state s ∈ S is a function of the data buffer level Bt
i of each

forwarding node i in the current time slot t. In addition, it

is a function of the maximum SNR γi,max = max
j

γi,j of

each transmitter i considering all available receivers j. The

action corresponds to the assignment of the channel to a certain

transmitter. The dynamics of the process are described by the

transition probabilities Pa
ss′ = Pr{st+1 = s′|st = s, at = a}

where st denotes the state in time slot t and at denotes

the action taken in time slot t. The immediate reward Ra
ss′

incurred by the action a chosen in state s and leading to

state s′ is given by the number of transmitted packets in the

corresponding time slot.

To complete the MDP model, the transition probabilities

between the states are required. The current data buffer levels

Bt
i in time slot t are known and by choosing an action a,

i.e., allocating the channel in the current time slot to a certain

transmitter, the data buffer levels of the nodes in time slot

t+ 1 are also known. Therefore, the state st+1 only depends

on the channel states which are known to follow a Rayleigh

distribution. This means that the envelope of a channel hi,j

follows the probability density function (pdf)

P (|hi,j | = x) =
2x

γ̄i,j
e
− x2

γ̄i,j , for x ≥ 0. (2)

The cumulative distribution function (cdf) describes the prob-

ability that the channel envelope is below a certain value and

is given by

P (|hi,j | ≤ x) = 1− e
− x2

γ̄i,j , for x ≥ 0. (3)

Since the state only depends on the strongest outgoing channel

of each potential forwarding node, we need to consider the pdf
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Fig. 2. a) The pdf of three Rayleigh channels with 10/12.5/15 dB average
SNR. b) The pdf of the strongest channel out of the three channels. c)
Resulting pmf for the number of transmittable packets

of |hmax
i | = max

j
|hi,j | which is given by

P (|hmax
i | = x) =

Nf
∑

j1=1

P (|hi,j1 | = x)

Nf
∏

j2=1,
j2 6=j1

P (|hi,j2 | ≤ x)

=

Nf
∑

j1=1

2x

γ̄i,j1
e
− x2

γ̄i,j1

Nf
∏

j2=1,
j2 6=j1

(

1− e
− x2

γ̄i,j2

)

.

(4)

In Figure 2 a), the pdfs of the envelope of three Rayleigh

fading channels hi,1, hi,2 and hi,3 are shown with average

SNR of γ̄i,1 = 10 dB, γ̄i,2 = 12.5 dB and γ̄i,3 = 15 dB,

respectively. The resulting pdf of |hmax
i | = max

j
|hi,j | is shown

in Figure 2 b). In Figure 2 c) the resulting probability mass

function (pmf) of the number Np of transmittable packets

based on these three channels is shown. The pmf of each

forwarding node is used to determine the state transition

probabilities Pa
ss′ in the MDP model.

B. Optimal Resource Allocation Policy

A policy π associates an action a to each state s. To find

an optimal resource allocation policy π∗ that minimizes the

number of required time slots to forward all data packets to

the next hop, policy iteration [12] can be used according to

Algorithm 1. The process can be started with an arbitrary

policy π′. In our case, we start with a greedy policy, i.e.,

in each state the action which provides the highest reward is

selected. As a first step, we need to evaluate the current policy.

To this end, the state value function V (s) is used. Initially,



V (s) = 0, ∀s. In each iteration of the algorithm, the state

value function is determined by

V (s) =
∑

s′

Pa
ss′(R

a
ss′ + γV (s′)), (5)

where the action a is given by the current policy π′. This

function gives the expected reward under the current policy.

While the reward indicates the immediate value of an action,

the value function evaluates the usefulness of an action in the

long run. The value of a state gives the expected accumulated

reward starting from this state. The so-called discount factor

γ can be used to weight the importance of future rewards

compared to the present reward. We want to maximize the

expected reward until a final state is reached in which all

data buffers are empty. Therefore, γ = 1 since the present

reward has the same importance as future rewards. Next, policy

improvement takes place, using the action-value function

Q(s, a) = Ra + γ
∑

s′

Pa
ss′ · V (s′). (6)

This function is used to update the policy and to make it

greedy with respect to the value function. This means that the

updated policy is not focused on the immediate reward, but

on the expected reward over the entire procedure. The policy

evaluation and policy improvement steps are repeated until the

optimal policy π∗ that provides the optimal action a for each

possible state s has been found.

Algorithm 1 Policy iteration algorithm

Require: inital value function V (V (s) = 0, ∀s ∈ S , initial

policy π′, ∆ = 0)

while ∆ > ǫ = 0.0001 do

for each s ∈ S do

v ← V (s)
V (s) =

∑

s′ P
a
ss′(R

a
ss′ + γV (s′))

∆ = max(∆, v − V (s))
end for

end while

for each a ∈ A(s) do

for each s ∈ S do

Q(s, a) = Ra + γ
∑

s′ P
a
ss′ · V (s′)

end for

end for

set π = π′

π′ := argmax
a

(Q(s, a)) (policy improvement)

Repeat until π = π′

C. State Approximation

The computation of the optimal policy can be done offline

beforehand. Then, the policy can be used as a look-up table

consisting of the optimal action for each state. Since the

required information is available at all forwarding nodes, there

is no need to determine the optimal action in a centralized

instance, but the optimal policy can be determined by each

node in a distributed manner. However, large state spaces

can be problematic for computation and storage reasons. The

number of required states to model one hop of the network is

given by |S| = (Nrates · (Bmax + 1))Nf , where Nrates is the

number of possible channel rates (including 0) and Bmax is the

data buffer size, i.e., the maximum number of data packets in a

data buffer. For instance, considering 4 possible channel rates,

a maximum of 10 data packets in a data buffer and a network

with Nf = 3 forwarding nodes, already leads to |S| = 85184
states.

In order to allow for a larger number of packets and nodes

and still capture the relevant information of the problem,

we propose the following approximation method. We found

that the actual number of data packets is not critical for the

optimal assignment of the channel resource. Instead, it is the

ratio between the numbers of data packets in the data buffers

of the nodes that is important. To capture this information

with a fixed amount of states in the model, we proceed as

follows. Let the maximum buffer size covered by the MDP

model be Bmax and let the actual maximum buffer level

of the forwarding nodes be Bactual,t
max = max

i
Bt

i > Bmax.

Then, we can break down the actual buffer levels of each

node i to approximated values B
approx.
i = round

(

Bt
i ·Bmax

B
actual,t
max

)

that are used in the MDP model, where round(x) rounds x

to the closest integer. Thereby, the maximum approximated

buffer level equals the maximum buffer captured by the MDP

model. The real buffer levels are not considered in the model

anymore, but the ratio between the approximated buffer levels

B
approx.
i is approaching the real ratio. This ratio is the relevant

information within the model. Using this approximation, the

number of states in the MDP model can be fixed to any desired

number and each actual buffer state can be mapped to an

existing state within the MDP model and used to find the

corresponding action.

IV. PERFORMANCE EVALUATION

In this section, numerical results based on MATLAB simula-

tions are presented to evaluate the performance of the proposed

policy. The simulations are restricted to three-hop networks

since a higher number of hops would not provide any more

insights in the performance of the proposed scheme. The

proposed algorithms work only on local buffer and channel

information and additional hops would provide the same

problem as in the second hop, i.e., multiple transmitters with

different data buffer levels forward to multiple receivers. Only

the last hop provides a different situation because there is

only one receiver available. Therefore, the proposed policy is

evaluated in the second and third hop separately. We consider

2000 independent end-to-end transmissions of a data batch,

each consisting of Npackets for each result. The average SNR

of each channel is chosen randomly between 10 dB and

15 dB to model different distances between the nodes. In

the following, the proposed policy is compared to a fixed

order policy which emulates the operation of most other

opportunistic forwarding strategies [4]. This means that one

node is selected to first transmit until its data buffer is empty.



Then the next node is selected and so on until all packets

are forwarded. The nodes adapt their transmission rate to

the strongest receiver as in the proposed policy. Furthermore,

unipath forwarding is considered for comparison where in each

hop only one randomly chosen node is selected to forward all

data packets. Again, rate adaptation is applied.

Figure 3 shows the average required number of time slots

in hop 2 and hop 3 for a network with Nf = 2 forwarding

nodes per hop. In this case, the source transmits Npackets = 15
packets per simulation run which is completely captured by

the MDP model without any approximation. This means that

Bmax = 15 and the proposed policy is optimal in this case. As

can be seen, the proposed policy outperforms the fixed order

policy and the unipath forwarding in both hops. In the third

hop, the average number of required time slots is higher than in

the second hop for both the proposed and the fixed order policy

since there is only one available receiver and therefore, there is

less channel diversity for the proposed policy and no channel

diversity for the fixed order policy. Of course, the performance

of unipath routing remains the same in both hops, since there

is always only one transmitter and one receiver considered in

each hop. In the second hop, the proposed policy requires on

average 23% less time slots compared to the unipath approach

which corresponds to a throughput gain of 30%. In the third

hop, the proposed policy saves 11% compared to the fixed

order policy. The fixed order policy performs slightly worse

compared to the unipath approach in the third hop. This is

caused by the case when the channel capacity exceeds the

number of remaining data packets in the data buffer of a

node which can happen only once per hop using the unipath

approach but multiple times per hop using the fixed order

policy.
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Fig. 3. Average required number of time slots to forward Npackets = 15

packets with Nf = 2 forwarders per hop.

In Figure 4, again Nf = 2 forwarding nodes per hop are con-

sidered, but this time Npackets = 100 packets are transmitted

in each simulation run utilizing the approximation technique

proposed in Section III C. It can be seen that the number

of required time slots increases due to the higher number

of packets to be transmitted compared to Figure 3. However,

the achievable gain of the proposed scheme remains despite

the use of the approximation technique. In fact, the gain is

increased compared to the case with Npackets = 15, due to a

lower impact of an edge effect, when for residual packets that

are left at only one node the policies perform the same. Of

course, this effect has lower impact in case of a higher amount

of packets. However, the state approximation does not seem

to have a significant negative impact on the performance of

the proposed policy.
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Fig. 4. Average required number of time slots to forward Npackets = 100

packets with Nf = 2 forwarders per hop using state approximation.

In Figure 5, a network with Nf = 3 forwarding nodes is

considered and Npackets = 100 packets are transmitted in each

simulation run. Again, the proposed approximation is used. It

can be seen that with more forwarding nodes in each hop,

the achievable gain increases. In the second hop, the proposed

policy requires on average 33% less time slots compared to

the unipath approach. This equals a throughput gain of 49%.

In the third hop, the proposed policy on average saves 20%
of time compared to the fixed order policy which equals a

throughput gain of 25%.
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V. CONCLUSION

In this work, we considered opportunistic forwarding in

multi-hop networks based on multiple cooperating nodes in

each hop. An optimal resource allocation policy is proposed

that minimizes the expected number of required time slots

to forward data packets to the next hop under use of local

channel knowledge. The resource allocation is modeled by an

MDP taking into account the data buffer levels of the nodes

and multiple possible channel rates for transmission. To handle

large state spaces, we propose a state approximation technique

that limits the required number of states while it captures the

most important state information. Numerical results show that

the proposed policy outperforms a fixed order transmission

policy by up to 25% and unipath transmissions by up to 49%
in terms of average throughput.
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