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Abstract—Millimeter-wave (mmWave) backhauling is key to
ultra-dense deployments in beyond-5G networks because pro-
viding every base station with a dedicated fiber-optic backhaul
link to the core network is technically too complicated and
economically too costly. Self-backhauling allows the operators to
provide fiber connectivity only to a small subset of base stations
(Fiber-BSs), whereas the rest of the base stations reach the
core network via a (multi-hop) wireless link towards the Fiber-
BS. Although a very attractive architecture, self-backhauling is
proven to be an NP-hard route selection and resource allocation
problem. The existing self-backhauling solutions lack practicality
because: (i) they require solving a fairly complex combina-
torial problem every time there is a change in the network
(e.g., channel fluctuations), or (ii) they ignore the impact of
network dynamics which are inherent to mobile networks. In
this article, we propose SCAROS which is a semi-distributed
learning algorithm that aims at minimizing the end-to-end latency
as well as enhancing the robustness against network dynamics
including load imbalance, channel variations, and link failures.
We benchmark SCAROS against state-of-the-art approaches
under a real-world deployment scenario in Manhattan and using
realistic beam patterns obtained from off-the-shelf mmWave
devices. The evaluation demonstrates that SCAROS achieves the
lowest latency, at least 1.8× higher throughput, and the highest
flexibility against variability or link failures in the system.

I. INTRODUCTION

The mmWave bands (30-300 GHz) are mainly characterized

by short communication range (due to high pathloss) and very

high susceptibility to blockages such as the human body and

buildings (due to high penetration loss). Ultra-dense deploy-

ment will be essential for millimeter-wave (mmWave) cellular

networks in order to cope with the short communication

range and excessive blockage possibilities [1], [2]. However,

the traditional architecture where each base station has a

dedicated fiber-optic link to the core network is unscalable

and economically unjustifiable for mobile operators.

Recently, there has been a growing interest in self-

backhauling solutions to cope with the required deployment

density of mmWave networks [3]–[5]. In a self-backhauled

network, fiber-optic connectivity to the core network is only

provided to a portion of base stations (i.e., Fiber-BSs) whereas

the rest of the base stations reach the core network through

a (multi-hop) wireless connection which ends at the Fiber-

BS, see Figure 1a. Although an appealing solution, self-

backhauled mmWave networks face major challenges to meet

the practical requirements of today’s cellular networks in terms

of computational complexity, QoS, and robustness.

A. Challenges

In essence, self-backhauling is a joint route selection and

scheduling problem which requires careful consideration on

the selection of path towards the core network, the allocation

of frequency resources among base stations, the interference

to/from other base stations, and the scheduling between back-

haul traffic (data from other base stations) as opposed to the

fronthaul traffic (data from the users associated to each base

station). The multitude of the parameters under consideration

coupled with highly dynamic nature of mobile networks as

well as the susceptibility of mmWave signals to blockages [6]–

[8] have made self-backhauling a real challenge for ultra-dense

deployment in beyond-5G networks.

We elaborate on some of these challenges using an illus-

trative example in Figure 1. As shown in Figure 1a, several

different paths (denoted by different colors) are available

between the Fiber-BS and its associated self-backhauled base

stations. Although the multitude of available routes potentially

improves robustness, it also increases the complexity of the

route selection. Furthermore, many links along these routes

interfere with each other, due to the use of shared spectrum,

and cannot be activated simultaneously. Thus adding an sche-

duling dimension to the routing problems. Figure 1b illustrates

more practical constraints in terms of interference and resource

allocation. Recent works in [2], [9], [10] indicate the inap-

plicability of the interference-free assumption for mmWave

link (a.k.a. pencil beamforming or noise limited regime) in

realistic scenarios due to imperfect beamforming and strong

reflections in urban scenarios. For instance, base stations A1

and A2 (in Figure 1b) interfere with each other although their

beams are theoretically pointed at different directions. Due

to the first-order reflection, the interference caused by A2 is

not negligible at the Fiber-BS. Furthermore, we also observe

that the scheduling problem is not limited to the end-to-end

route towards the Fiber-BS since each base station should also

decide between carrying fronthaul and backhaul traffic (see

base station B1 in Figure 1b). This decision impacts the overall
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Fig. 1: An illustrative example of practical challenges faced by self-backhauled mmWave cellular networks.

latency experienced within the network. Figure 1c emphasizes

the short life-time of every decision in the presence of network

dynamics. For example, choosing the shortest path (Path A)

is not always the best decision. In fact, many factors can turn

Path A (initially the best decision) into a bottleneck causing

a buffer overflow and packet drops. These factors include (i)
load imbalance and bursty user arrivals (e.g., a bus/tram enters

the cell), (ii) temporary blockage due to moving obstacles

(e.g., large vehicles), and (iii) interference from a neighboring

cell. Although the impact of these factors may be temporary,

their occurrence is frequent. Thus, mmWave self-backhauled

networks are exposed to frequent and significant changes,

which can turn a good decision in the current time slot to

a poor choice for the next. The multitude of parameters in

play and their inter-dependencies do not allow for tractable

modeling and often results in NP-Hard formulations.

B. Related work

The state of the art has approached the mmWave self-

backhauling from an optimization point of view [1]–[4], [11]–

[13], which has been proven to be NP-hard in its simplest form

(e.g., in absence of interference and network dynamics) [1],

[4]. Consequently, these works either rely on simplifying

assumptions to obtain non-NP-hard formulations [2]–[4], [11],

[13]; or leverage heuristics [12] and relaxation of problem con-

straints to find an approximate solution to the NP-hard prob-

lem [1]. Specifically, a noise-limited system (i.e., interference-

free) is assumed in [1], [4], [11] to derive a mathematically

tractable objective function. However, mmWave networks are

exposed to interference due to imperfect beamforming in

practice [10], [14] and first-/second-order reflections in urban

scenarios [2], [9]. The fully-backlogged-queue assumption

in [1]–[3], [11]–[13] does not account for the traffic variation

and load imbalance across the network, which can lead to

the creation of bottlenecks or sub-optimal performance due to

resource overbooking as shown in Figure 1c. Furthermore, the

majority of the proposed solutions are tailored for throughput

maximization [1], [2], [4], [11], [12], despite the importance

of latency in backhaul links. Due to the importance of adapt-

ability in mmWave systems, many works have been dedicated

to mitigate link outages due to beam misalignment problem

caused by user mobility, blocked links in mobile scenarios,

or both [7], [15]–[19]. Specifically, the authors in [7], [15]

and [16], [17] design beam alignment algorithms to select the

best beams with low overhead and delay. These algorithms

operate on the basis of predicting the blockages [7], [15] and

profiling the users’ mobility [16], [17], respectively. Similarly,

highlighting the need for fast beamforming in directional

mmWave communications, the authors in [19] design a new

beam alignment protocol (namely Agile-Link) which reduces

the beam alignment delay in mmWave devices operating under

802.11ad to 2.5 ms. Aiming to improve steering accuracy for

mobile users, the author in [18] experimentally show that light

sensors aid in achieving the steering accuracy of more than

97%. The work of Yuan et al. in [1] is the closest to this

article, in which the authors formulate the route selection and

scheduling problem (under interference-free assumption) as a

linear program which is then solved for throughput optimally

using matching theory.

To the best of our knowledge, the prior works, in contrast

to our paper, do not account for latency, interference, and

traffic load. The other key missing feature is the lack of

adaptability and robustness to network dynamics including link

failures, traffic variation and channel fluctuations, that is, any

changes in the system requires recomputing the solution. This

feature is crucial in mobile networks where performance (e.g.,

throughput, latency) is highly affected by network dynamics

such as noise and interference, mobility, blockage, user arrival

rate, which are mostly uncontrollable and unavoidable, making

adaptation the best remedy.

C. Our approach

The key issue in self-backhauling is the size of the problem

(a.k.a. the curse of dimensionality). We tackle this problem

first by focusing on solution-oriented modeling [20]. This

approach is better understood when compared with causal

modeling. In causal modeling, we often construct a complex

system in which all major variables are included. For example,

in a cellular network, we can build a model based on the most

impacting variables, e.g., transmission power, pathloss, block-

ages, number of users, and interference. Solution-oriented

modeling is, however, focused on reducing these variables

to abstractions derived from our observations. For instance,

a link with low throughput may suffer from high interference,

high pathloss, or temporary blockage. In a solution-oriented



modeling, we focus on our observation of throughput rather

than the underlying cause.

The causal modeling, which is often used for system behav-

ior analysis, results in a much more complicated formulation

since all independent variables should be individually included

and studied. We follow a so-called symptom-based modeling

methodology in which we formulate the problem based on

the symptoms (e.g., throughput/latency variation) as opposed

to the what caused them (e.g., interference, load imbalance,

blockage). We choose this approach because a causal design,

as elaborated before, results again in NP-Hard formulations,

while the majority of the underlying causes remain outside

our control, e.g., traffic load, blockage. The next step towards

tackling the curse of dimensionality consists in devising a

semi-distributed design which breaks the problem into sub-

problems that can be solved in parallel. The feasibility of the

solutions is then evaluated by a central entity (i.e., the Fiber-

BS) which breaks ties in case of conflicting decisions, e.g., two

base stations choose to transmit to the same next-hop node.

In this article, we propose the SCAROS algorithm, a

latency-aware machine-learning-based approach which is not

only highly scalable (due to the above-mentioned modeling

strategy) but also robust against network dynamics by means

of its quick adaption to new scenarios. The latter is facilitated

through our proposed semi-distributed learning approach. The

following summarizes our contributions and results:

• We model the route selection and scheduling in self-

backhauled mmWave networks as a Markov Decision

Process (MDP) that takes into account the sequential

decision making nature of the problem. Moreover, it

considers the stochasticity inherent to the calculation of

the end-to-end latency.

• We provide the first reinforcement learning approach

for mmWave self-backhauling. Our approach gives a

solution to the MDP model and aims at minimizing

the end-to-end latency as well as maintaining robustness

against network dynamics. In contrast to state-of-the-

art solutions, our proposed learning approach does not

require prior information regarding the topology nor the

network dynamics.

• We conduct an extensive measurement campaign in an

anechoic chamber to identify the 3D beam patterns ra-

diated from off-the-shelf mmWave antenna arrays. We

integrate these patterns into our simulator to emulate

realistic beamforming under real-world conditions.

• To provide intuition on the performance gains compared

to other approaches, we benchmark our algorithm against

both, a fully centralized reinforcement learning (RL) [21]

and a recent self-backhauling solution based on linear

optimization [1]. The results show that SCAROS achieves

the lowest latency, at least 1.8× higher throughput. The

semi-distributed nature of SCAROS makes it more ro-

bust to network dynamics compared to the benchmark

schemes.

II. SYSTEM MODEL

Our scenario consists of a multi-tier cellular network

with two types of base stations, namely, Fiber-BS and self-

backhauled base stations (S-BSs). The Fiber-BS is connected

to the core network with a dedicated fiber backhaul link,

whereas the S-BSs reach the core network via a multi-hop

wireless link (except the S-BSs from the tier-1) towards

a Fiber-BS (as shown in Figure 1a). Each base station is

equipped with a single RF chain. We follow the integrated

backhaul architecture (currently a 3GPP study item [22]) in

which an S-BS can either communicate over backhaul or

fronthaul link at each time instance. As specified by [22], all

the communication is done over the same frequency bands

(i.e., inband).

We consider a time-slotted system in which all the time

slots have equal duration, and we denote each time slot with

its index i, i = 1, ..., I , where I ∈ N is a finite time horizon.

We denote NBS ∈ N as the number of S-BSs associated to

the Fiber-BS. Each S-BS n ∈ {1, ..., NBS} keeps track of the

average queueing time of the packets in its buffer. This average

queueing time is denoted by t
queue
n,i ∈ R

+. Additionally, the

transmission time from S-BS n to S-BS m in time slot i is

denoted by ttx
n−m,i ∈ R

+.

Let us define a route selection and scheduling solution for

time slot i as Xi ∈ X , where X is the set of all feasible

route selection and scheduling solutions. Specifically, Xi is a

NBS ×NBS matrix calculated as:

Xi =













x
(i)
1,1 x

(i)
1,2 · · · x

(i)
1,NBS

x
(i)
2,1 x

(i)
2,2 · · · x

(i)
2,NBS

...
...

. . .
...

x
(i)
NBS,1

x
(i)
NBS,2

· · · x
(i)
NBS,NBS













. (1)

x
(i)
n,m ∈ {−1, 0, 1} firstly determines whether the link (n,m)

between S-BS n and m, n 6= m, is activated in time slot i.

Secondly, it indicates the direction of the communication, i.e,

x
(i)
n,m = 1 when n transmits backhaul data to m, x

(i)
n,m = −1

when n receives backhaul data from m and x
(i)
n,m = 0 when

the link is not activated. Furthermore, x
(i)
n,n = 1 means S-BS n

is receiving data from the fronthaul. Our goal is to find a route

selection and scheduling solution that minimizes the average

end-to-end latency T computed as:

T̄ =
1

NBS

NBS
∑

n=1

Tn(X), (2)

where the function Tn(X) is defined as the resulting end-

to-end latency observed in S-BS n when the composite route

selection and scheduling solution X, with X = [X1, ...,XI ], is

used. The function Tn(X) is a stochastic function that depends

on the location of the S-BS, user mobility, interference and

queue dynamics.

III. PROBLEM FORMULATION

Since the achievable performance is non-deterministic due

to the stochastic nature of Tn(X), we formulate the average



end-to-end latency minimization problem as a Markov deci-

sion process (MDP). An MDP is a suitable tool for decision-

making situations in which the outcome is partly random

[21]. Moreover, as the route selection and scheduling does not

depend on the previous loads but the current one, the system

under consideration fulfills the Markov property.

An MDP is defined by the tuple 〈S,X ,P, T 〉, where S is

a set of states, X is a set of actions, P is a transition model

and T is a set of rewards [21]. In our model, the state si ∈ S

is an NBS-dimensional vector containing the queuing time of

each base station in time slot i, i.e., si = t
queue
1,i , ..., t

queue
NBS,i

.

The size |S| of the state space can be calculated as

|S| =

NBS
∏

n=1

T queue
n , (3)

where T queue
n is the maximum queueing time units in S-BS n.

However, in the general case, the queuing time t
queue
n,i of each

S-BS scan take any value in a continuous range. As a result,

the set S has infinite size. The action set X is composed by

all the possible route selection and scheduling solutions Xi

defined in Section II. Note that the size |X | of the action set,

although finite, increases exponentially with the number of

S-BS and can be calculated as

|X | =

NBS
∏

n=1

|Xn|, (4)

where Xn ⊆ X is the set of possible actions S-BS n

can take. Furthermore, note that due to technical limitations,

not all of these actions are feasible. For example, an S-BS

cannot simultaneously transmit to a neighboring S-BS and

receive data from the fronthaul using the available RF chain.

Moreover, the feasibility of the possible route selection and

scheduling solutions depends on the dynamics of the network,

e.g., a neighboring S-BS can be temporarily not available.

The transition model P defines the transition probabilities

P(si+1|si,Xi) of reaching state si+1 after taking action Xi

when in state si, i.e., the probability of obtaining a given set

of queueing times tqueuen in the S-BS as the result of selecting

a particular route selection and scheduling solution. Finally,

the reward Ti ∈ T ⊂ R
+ indicates how beneficial it is to take

action Xi in state si, and it corresponds to the end-to-end

latency in time slot i.

The solution of an MDP is a policy π which is a mapping

from a given state si to the action Xi that should be selected,

i.e., Xi = π(si) [23]. In our case, the policy determines the

route selection and scheduling that should be adopted given

the queuing time in each S-BS.

IV. SCAROS ALGORITHM

Traditionally, dynamic programming techniques are used

to solve problems formulated as MDP [21]. However, in the

self-backhauling scenario the use of such techniques is not

possible due to the lack of an accurate model for the transition

probabilities among states that considers all the aspects of

a real implementation, e.g., mobility, interference, and queue
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Fig. 2: Structure of the proposed semi-distributed learning
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dynamics. Moreover, the dimensionality of the problem, i.e.,

the number of S-BSs to be considered, renders such techniques

computationally intractable. To overcome these challenges,

we propose SCAROS, a reinforcement learning algorithm

that aims at minimizing the average end-to-end latency. By

analyzing the characteristics of the problem and leveraging

a semi-distributed approach, the proposed algorithm is able

to overcome the curse of dimensionality while maintaining

robustness against network dynamics. In the following, we

describe different components of SCAROS in detail.

A. Semi-distributed approach

SCAROS benefits from a semi-distributed design that tack-

les the main issues of the MDP problem described in Sec.

III, i.e., the infinite number of states and the exponential

increase of the action space defined in (4). The structure of

our proposed approach is depicted in Figure 2. The diagram

illustrates the semi-distributed nature of SCAROS in which

a learning agent is associated to every base station (S-BS).

Each agent is responsible for learning the estimated time

required to reach the Fiber-BS via the available neighboring

base stations and consequently identifying the path which

leads to minimum end-to-end latency. The intuition behind this

approach is that by minimizing the average end-to-end latency

of each base station, the overall average end-to-end latency in

the network is also minimized. Furthermore, as the decisions

of the different learning agents can lead to conflicting and

non-feasible route selection and scheduling solutions, a central

entity (i.e., Fiber-BS) is in charge of controlling the feasibility

of the solutions and of breaking the possible ties. Note that the

Fiber-BS operates on minimal information, i.e., the selected

action of each S-BS. Looking at these actions, the Fiber-BS

identifies whether the local decisions are infeasible. A detailed

description of the feasibility control function is presented in

Section IV-B.

In order to learn the average end-to-end latency of each

S-BS, a multi-armed bandit (MAB) problem is formulated in

every learning agent. The action set Xn of learning agent n

is composed of the communication modes of the correspond-

ing S-BS, i.e., transmission to the neighboring base stations

and reception from fronthaul and backhaul. As a result, the

action space increases only linearly with the number of S-

BS. Formally, we define the action x
(i)
n ∈ Xn selected by

learning agent n in time slot i as the NBS-dimensional vector



x
(i)
n = xi

n,1, ..., x
i
n,NBS

, with x
(i)
n,m ∈ {−1, 0, 1}. Furthermore,

considering that S-BS n can only transmit or receive backhaul

data from its neighboring S-BS, the equalities:

NBS
∑

m=1
m∈Bn

|x(i)
n,m| = 1, (5)

and
NBS
∑

m=1
m/∈Bn

|x(i)
n,m| = 0, (6)

must hold for every x
(i)
n ∈ Xn to ensure the feasibility of the

actions. Note that Bn ⊂ N represents the set containing the

indices of the neighboring base stations of S-BS n, including

its own index n.

For the selection of the actions, the state sn,i = t
queue
n,i of

S-BS n is used as the context information that determines

which actions are available, e.g., when there is no packet in

the queues, i.e., t
queue
n,i = 0, only the reception modes are

available. By considering the state as context information, the

infinite number of states of the original formulation is no

longer a limiting factor. Furthermore, to judge the suitability

of the different possible actions, each learning agent learns the

end-to-end latency associated with them.

We denote this end-to-end latency as t̄(x
(i)
n ) and it corre-

sponds to the expected time in which the packets from S-BS

n will take to reach the Fiber-BS after selecting action x
(i)
n in

time slot i. t̄(x
(i)
n ) is updated in each time slot (when action

xn has been selected) as

t̄i+1(x
(i)
n ) = t̄i(x

(i)
n ) + αn

(

Tn(x
(i)
n )− t̄i(x

(i)
n )

)

, (7)

where 0 ≤ αn ≤ 1 is a fraction that affects the learning rate

and Tn(x
(i)
n ) is the reward obtained in the S-BS when action

x
(i)
n is selected. Note that we have added the index i to t̄(x

(i)
n )

to emphasize the fact that it is updated over time.

From (7), it is clear that immediate feedback of the effect

of the selected action is needed to estimate the end-to-end

latency. However, as the link between S-BS n and the Fiber-BS

can be composed of multiple hops, this immediate feedback

cannot be obtained because, in addition to the selected action

x
(i)
n , the end-to-end latency depends on the actions selected

by the other S-BS. Therefore, to overcome this challenge, we

define the reward Tn(x
(i)
n ) based on the state of the target

neighboring S-BS m ∈ Bn, the transmission time ttxn−m,i

and its own estimates of the end-to-end latency. Formally, the

reward Tn(x
(i)
n ) is defined as

Tn(x
(i)
n ) =







t
queue
n,i + min

m∈Bn

(t̄(xm)), if RX

ttx
n−m,i + t

queue
m,i + min

l∈Bm

(t̄(xm)), if TX.
(8)

At the beginning of the transmission, i.e., at the beginning

of time slot i = 1, the queues of all S-BS are assumed to

be empty. As a result, t
queue
n,1 = 0, ∀n. Furthermore, as no

transmission has yet occurred, ttxn−m,1 = 0, ∀n,m and the

initial values of t̄(xn) depend only on the time-slot duration

and the minimum number of hops, which S-BS n requires to

reach the Fiber-BS.

B. Feasibility control

The decisions taken by every learning agent can lead to

conflicting and non-feasible solutions for the network, e.g.,

two or more S-BSs might want to transmit to the same S-BS

simultaneously. In order to prevent such cases, we incorporated

a feasibility control function in SCAROS that, as the name

suggests, controls the feasibility of the overall route selection

and scheduling solutions. Additionally, this function is tasked

with identifying and preventing the use of interfering links,

i.e., links that when simultaneously activated lead to high

interference, low throughput, and consequently larger latency.

The identification of such links is performed locally when an

S-BS detects interference from other S-BSs. The interference

is then reported to the Fiber-BS to update the table for

the interfering links. As a result, the Fiber-BS considers the

selection of two interfering link as an infeasible action. The

S-BSs can measure the interference from the neighboring S-

BSs using the reference signals (see 3GPP 38.211, Section

7.4.1.5). Given the uniqueness of the reference signals, each

S-BS is able to identify the interfering S-BSs as well as

the severity of the interference caused by them. The result

of these measurements is then reported to the Fiber-BS to

update the table of interference. Based on the severity of the

interference, the Fiber-BS decides whether the interfering links

can be activated simultaneously. In this paper, we assume two

interfering links can transmit simultaneously as long as the

transmissions can be successfully decoded with the lowest

MCS (i.e., the SINR is above the required level for the lowest

MCS). If the aforementioned condition is not met, the links

are added to the table of interference, which renders their

simultaneous selection as an infeasible action.

To ensure the feasibility of the solutions, ties have to be

broken when the different learning agents select conflicting

actions. For this purpose, the feasibility control function takes

into account the state si of the network. This means, in case

two or more S-BSs are aiming for the same link, the resources

are given to the S-BS that is experiencing higher latency at

the moment. Algorithm 1 shows how ties are broken in every

time slot. First, the current state si, as well as the actions xn

selected by every learning agent, are observed (line 1). Then,

the corresponding route selection and scheduling solution Xi

is calculated by concatenating the actions selected by the

learning agents (line 2). This concatenation is written as

Xi =

[

x
(i)
1

T

, ...,x
(i)
NBS

T

]T

. (9)

To avoid the simultaneous activation of interfering links, let

us define In−m as the set of identified interfering links when

n transmits to m. For every S-BS n, we evaluate whether

interfering links in In−m are simultaneously activated (line 4).

In case there are, the state of the S-BS is considered and only

the link associated to the S-BS that has the highest queueing



Algorithm 1 Feasibility control function

1: observe si and xn for n = 1, ..., NBS

2: compute Xi ⊲ Eq. (9)

3: for n = 1, ..., NBS do

4: if In−m 6= ∅ then

5: Find all the transmitting S-BS l ∈ In,m such that

{sl,i = max(sk,i)|(k = 1, ..., NBS) ∩ (k ∈ In,m)}.

6: Deactivate all the other Tx S-BS k 6= l, k, l ∈ In,m

7: end if

8: end for

9: for m = 1, ..., NBS do

10: if
∑NBS

n=1 xn,m > 1 then

11: Find all the transmitting S-BS l such that

{sl,i = max(sk,i)|(k=1,...,NBS)∩(xk,m=1)}.

12: Deactivate all the other transmitting S-BS k 6= l
13: end if

14: end for

15: for n = 1, ..., NBS do

16: if xn−m 6= xm,n then

17: if sn,i ≥ sm,i then

18: Switch S-BS m to receiving mode

19: else

20: Switch S-BS n to receiving mode

21: end if

22: end if

23: end for

time t
queue
n,i is kept active (line 5). The remaining interfering

links are deactivated, i.e., the interfering S-BS are not allowed

to transmit in time slot i and switch to receiving mode (line 6).

In the following step, the feasibility control function checks

if two or more S-BS want to transmit to the same S-BS

(line 10). Similar to the previous case, we break the ties by

keeping active the link associated to the S-BS with the highest

queueing time and switching the remaining conflicting S-BS

to receiving mode (lines 11 and 12). In a similar fashion, we

ensure that for every transmitting S-BS, the target neighboring

S-BS is in receiving mode, i.e., xn,m = −xm,n. If this is not

the case, then ties are broken according to the state of the

S-BS (lines 18 and 20).

C. Summary of SCAROS Algorithm

So far, we have described the system model, the overall

design, and different components of SCAROS. In this section,

we provide a detailed step-by-step algorithmic overview of

SCAROS, as summarized in Algorithm 2. First, the learning

parameters are initialized at each learning agent (line 1). Then,

for every time slot, the state of the network is observed, i.e.,

the queueing time t
queue
n,i of each S-BS is collected in the state

vector si (line 3). For each learning agent, the state of the

corresponding S-BS is given as an input and it is used as a

context information to determine the set of available actions

(line 5). From this set, each learning agent decides the action

xn to be used in time slot i using the ǫ-greedy policy (line 6).

In the ǫ-greedy policy each learning agent selects a random

action xn ∈ Xn with probability ǫ, and with probability 1− ǫ

it acts greedily with respect to what it considers to be the

best action so far, i.e., the one that provides the minimum

estimated end-to-end latency t̄n−m,i. The ǫ-greedy approach

provides a trade-off between the exploration of new and

potentially better transmission paths and the exploitation of

the known ones [21]. The actions selected by the learning

agents and the state si are used as the input of the feasibility

Algorithm 2 SCAROS algorithm

1: initialize αn, ǫn at every learning agent

2: for every i = 1, ..., I do

3: observe state si

4: for each learning agent n = 1, ..., NBS do

5: observe sn,i and determine available actions

6: select xn ∈ Xn using ǫ-greedy

7: end for

8: call the feasibility control function ⊲ Alg. 1

9: apply Xi and observe obtained rewards ⊲ Eq. 8

10: update t̄i(x
(i)
n ) for n = 1, ..., NBS ⊲ Eq. 7

11: end for

control function. This function, described in Section IV-B,

breaks ties in the actions selected by the learning agents and

avoids the simultaneous activation of interfering links (line 8).

The resulting route selection and scheduling solution is then

applied in the network and the rewards associated with it are

distributed (line 9). These rewards are calculated using (8) and

are used to update the estimated end-to-end latency of each

S-BS using (7) (line 10). The same procedure is repeated for

all the time slots i = 1, ..., I .

D. Computational complexity

In this section, we evaluate the computational complexity of

one iteration of the proposed SCAROS algorithm with respect

to the network size, i.e., the number of S-BSs (denoted by

NBS) in the network, and show that the resulting complexity

is much smaller than that of traditional RL algorithms such

as Q-learning and SARSA. To this aim, we first evaluate the

complexity of the feasibility control function and then use this

result to calculate the worst-case computational complexity of

SCAROS. From Algorithm 1, it is clear that the most com-

putationally demanding operations in the feasibility control

function are the ones inside the for loops in lines 3-8, 9-14

and 15-23. For each of these loops, the worst-case complexity

is O(N2
BS). This value is obtained from the calculation of

the index of the S-BS that has the maximum queueing time.

This operation requires finding the maximum value in the

state vector si, which has a complexity of O(NBS). As this

operation is repeated, in the worst case, NBS times, the

resulting complexity of each of the loops is O(N2
BS). However,

as the three for loops are independent of each other, the worst-

case complexity of the feasibility control function remains

O(N2
BS).

Following a similar procedure, we evaluate the computa-

tional complexity of one iteration of the SCAROS algorithm.

In Algorithm 2, the most computationally demanding opera-

tions are the for loop in lines 4-7 and the feasibility control

function. In the first case, the use of the ǫ-greedy policy

requires, in the worst-case, finding the action that leads to the

minimum estimated latency. Assuming the worst-case scenario

for network complexity, i.e., full connectivity among the S-BS,

this requires finding the minimum out of NBS values. This

operation has a complexity that grows as O(NBS). However,

note that this operation is performed in each learning agent

separately. Consequently, the complexity remains O(NBS).
In the second case, the complexity grows as O(N2

BS), as

mentioned in the previous paragraph. Thus, the computational
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Fig. 3: The control and data exchange of SCAROS with

reference to 3GPP TR 38.874.

complexity of SCAROS is also O(N2
BS). By a similar analysis,

it can be shown that the computational complexity of the Q-

learning and SARSA algorithms depends on the size of the

action space |X | as defined in (4). This is because these two

approaches solve a centralized learning problem in which all

the possible route selection and scheduling solutions should

be jointly considered. Therefore, as
∏NBS

n=1 |Xn| ≫ N2
BS,

SCAROS achieves a much lower computational complexity

than reference learning schemes.

V. CONTROL PLANE ASPECTS

Although mmWave backhauling has not yet been standard-

ized, the 3GPP feasibility studies provide a roadmap towards

the most plausible architecture. Given that technical feasibility

has been the centerpiece of SCAROS’s design, we based our

design on 3GPP TR 38.874 self-backhauling study item [22].

The first generation of cellular mmWave deployments are

expected to operate in non-standalone (NSA) mode in which

mmWave base stations partially rely on 4G infrastructure.

However, standalone (SA) deployments are expected to start

from 2020 [5] in which 4G infrastructure is not required.

Nevertheless, some level of separation between the control

plane and the data plane is envisioned in both deployment

modes [24], [25]. This separation allows for using sub-6GHz

frequencies to carry part of control-plane messages since these

frequencies provide higher communication range. The user

data, on the other hand, is carried over mmWave frequencies.

We follow the same architecture in this article. This is advan-

tageous because the achievable throughput and latency (1 ms

in 5G NR) in sub-6GHz is sufficient for exchanging control

messages among S-SBs and F-BSs.

1km

1
k
m

Fig. 4: The beam pattern and the evaluation scenario based on

the base station deployment in Manhattan.

Figure 3 demonstrates how the required information for

SCAROS (e.g., channel feedback, latency report) are commu-

nicated over the control plane (red arrows in the figure). The

semi-distributed nature of SCAROS requires two types of mes-

sages: (i) Network-wide: the information exchanged between

the Fiber-BS and its associated self-backhauled mmWave

base stations. These messages carry scheduling information

in downlink (similar to DCI in LTE), and SINR and local link

activation preference in uplink; and (ii) Local: the control

messages exchanged between a self-backhauled base station

and its direct neighbors. The local control messages carry

information regarding the estimated latency to the Fiber-BS

and the queue status (similar to BSR in LTE). Note that the

aforementioned information, with a pessimistic approximation,

would be around 32 bits per active link per scheduling interval

in uplink and 40 bits per scheduling interval in downlink.

Assuming a network with 60 S-BS and scheduling interval

of 5 ms, the total overhead would be 200 kbps. Such level

of signaling overhead can be easily accommodated by 4G/5G

NR in sub-6GHz bands.

VI. EVALUATION

To date, there are no experimental platforms available for

mmWave self-backhauling. The only available commercial

platforms are the 802.11ad WiFi routers equipped with a

32-element phased antenna array1,2. However, the built-in

energy detector in the firmware and CSMA-CA mechanism

of 802.11ad does not allow for simultaneous transmissions to

model the interference caused by different base stations. The

other alternative is using a wide-band SDR platform [26] with

commercial phased antenna arrays3, whose price tag exceeds

a few million euros even for a small setup with eight base

stations. Nevertheless, we take the followings step to approach

a realistic evaluation as much as possible:

• Realistic beam patterns. Instead of assuming perfect

narrow pencil beams, we use the actual beam patterns

obtained from our measurement campaign using TALON

AD7200 mmWave routers equipped with a 32-element

1https://www.tp-link.com/en/home-networking/wifi-router/
2https://www.netgear.com/landings/ad7200/default.aspx
3https://www.anokiwave.com/products/index.html



phased antenna array. The measurements were performed

in an anechoic chamber to ensure the beam patterns are

not distorted by reflections and interference from other

sources. We further elaborate on our 3D beam pattern

measurement in Section VI-A.

• Realistic deployment model. Instead of using theoretical

base station placement such as uniform and Poisson,

we leverage the actual deployment in very dense urban

areas. In particular, we parsed the location of the base

stations in a 1 km2 area in Manhattan through cellmapper

website4. This area includes 60 base stations. Considering

the expected effective range of mmWave base stations

(∼ 100 m), we divided this area into 5 tiers. Figure 4

shows the location of the base stations on the map and

their separation into 5 tiers in our simulation.

• Interference. We refrain from the street canyon deploy-

ment model, which assumes that the majority of base

stations are in NLOS and do not interfere with each

other due to blockage. Looking at actual deployment in

dense cities (e.g., New York, London), we observe that

the rooftops are the most common deployment location

for base stations in dense urban areas. Our evaluation con-

siders the impact of interference between base stations,

according to their location and selected beam pattern.

Essentially, we compute the received signal power at

each scheduled receiver by deducting the actual received

power with the total interference power from all the other

scheduled transmitters.

• Latency measurement. We timestamp every packet

transmitted from the UE to the S-BS. These packets are

then buffered at every base station and transmitted to the

next hop on a FIFO manner. If the base station buffer is

full, the newly arrived packet is dropped (i.e., tail drop).

We measure the end-to-end latency when the packet is

received at the Fiber-BS.

• Periods. For the simulations, we define a period as a

set of consecutive time slots in which the number of S-

BS and their respective average load remains constant.

We use this separation to evaluate the adaptability of

SCAROS to variations in the network size and load

balance by having a known point of change, as described

in Sections VI-C and VI-D. Note that this does not mean

that the scenario remains static for the duration of the

period. The variations due to noise, interference, mobility,

blockage, and user arrival are still considered and impact

the delays and throughputs achieved within the period.

We design three distinct scenarios (SC1 to SC3) in which we

evaluate the performance of SCAROS against two benchmark

schemes [1], [21], using the parameters listed in Table I. The

first scenario focuses on benchmarking SCAROS in terms of

throughput, latency, and packet drop as well as demonstrating

the scalability of SCAROS with the network size. The second

and third scenarios are designed to analyze the self-backhaul

configurations and system performance under load imbal-

4www.cellmapper.net/

TABLE I: Parameters used in the evaluation
Parameter Value

Radio parameters

Maximum number of S-BS 60

Maximum number of Fiber-BS 1

Maximum number of tiers 5

TX power 14.9 dBm

Carrier frequency 28GHz

Bandwidth 1GHz

Thermal noise power -174 dBm/Hz

Noise figure S-BSs 4

Noise figure UEs 7

Learning parameters

Number of realizations 10

Exploration probability ǫ 1000/(1000 + i)
Learning rate αn 0.1

!"#$%&'#()%((#'#**#+
,-)"'./'%0%1%()$'

Fig. 5: The measurement setup in the anechoic chamber (top)

and the close-up view of the routers and the antenna array

(bottom).

ance and base station failure, respectively. Each simulation

is repeated 10 times, and the simulation parameters for the

mmWave path loss model are chosen according to 3GPP

guidelines [27]. Note that the simulations are based on the 2D

beam patterns. To provide intuition into the performance of

centralized learning approaches as well as optimization-based

solutions, SCAROS is benchmarked against the following

schemes:

• Reinforcement learning (RL). RL provides a solution

of the MDP presented in Section III by means of the

well known RL algorithm state-action-reward-state-action

(SARSA) [21]. To handle the infinite number of states,

we combine SARSA with linear function approximation.

Specifically, we consider tile coding as an approximator

of the state space. Additionally, to ensure the feasibility

of the route selection and scheduling solutions, we break

any possible ties randomly.

• MTFS. As described in Section I-B, MTFS is a linear

programming-based approach proposed by Yuan et al.

in [1]. By making decision centrally, MTFS provides the

routes and their associated activation schedule that max-

imize the overall network throughput. However, MTFS

does not account for interference, and it assumes fully

backlogged queues. We chose MTFS to shed light on

the performance of throughput-optimal approaches in the

presence of changes in the networks. Otherwise, MTFS

is an innovative solution which achieves an optimal result
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Fig. 6: Measured beam patterns of TALON AD7200.

in a short time within static networks.

A. Beam pattern measurement

The measurement setup used for measuring the radiation

patterns consists of two Talon AD7200 devices in an anechoic

chamber. As shown in Figure 5, we mount one device on a

pan-tilt unit that uses two precise step-motors to orient it in

different directions. In particular, we use a FLIR PTU-E46-70

that achieves an accuracy of up to 0.003◦. The Talon AD7200

is mounted with a custom adapter plate directly above the

center of the rotation axis. The second device is placed three

meters away on a tripod facing the first one. The walls, floor,

and ceiling of the room are covered with radio-wave absorbing

foam to omit disturbing reflections and multi-path effects.

For each measurement, we establish a connection between

both devices and perform frequent sector level sweeps. During

this, both devices record the Signal-to-Noise Ratio (SNR) for

received frames in all sectors. Using this setup, we measure

the beam patterns both in 2D and 3D. To map the antenna

radiation patterns in 3D space, we repeat our measurements

and additionally tilt the rotation head from −30◦ to 30◦. We

use the same setup as before, take measurements at different

pan angles from −159◦ to 159◦, but decrease the accuracy to

2.25◦.

Figure 6 shows the measured beam patterns. Due to space

constraint, we did not show all the 36 beam patterns. However,

we intend to make these results publicly available in a Matlab

file format so that other researcher can use our measurements

for more realistic evaluations. Note that this is different from

the beam patterns in [10] as we, through joint work with the

leading authors in [10], include an algorithm that optimizes

for the SNR at the direction of interest. As seen, although

we have optimized the beamforming codebook to achieve the

highest level directionality using commercial hardware, we can

observe that the beam patterns are far from the theoretical

narrow pencil beams.

B. SC1: Learning speed and scalability

We start the evaluation by analyzing the learning speed of

SCAROS in Figure 7a. The figure shows the average end-to-

end latency observed over time in a 5-tier network with 60 base

stations. We observe that SCAROS outperforms all benchmark

schemes both in average latency (up to 210 ms less than

MTFS) and the convergence speed. Specifically, SCAROS

achieves a latency of 67 ms only after 501 scheduling slots

(∼ 2.5s assuming 5 ms frame length). Figure 7b corroborate

the superiority of SCAROS in terms of throughput. Figures 7c

and 7d show latency and throughput performance of SCAROS

in a 3-, 4-, and 5-tier network. SCAROS’s ability to maintain

low latency while increasing the throughput as the network

size increases is an indication of its scalability.

Concerning the benchmarks, RL demonstrates comparable

performance in terms of latency, but it achieves very low

throughput. Theoretically, given infinite time, RL eventually

matches the SCAROS’s performance, but we did not observe

this within our simulations due to the enormity of RL’s state

space. For example, in our implementation of RL with tile

coding, we consider a precision of 0.1 in the approximation.

This translates into approximately 1040 possible different

states.

The poor latency performance of MTFS is due to the

greedy approach toward maximizing throughput and ignoring

the impact of interference and queue dynamics. The latter has

a significant impact on MTFS’s throughput since it activates

as many links as possible simultaneously without accounting

for interference. The reason behind the high performance of

SCAROS is better illustrated in Figure 8. In this figure, we

visualize the utilization of each link (i.e., the thickness of each

link is proportional to traffic passing through it) and eventually

the most selected routes. We can clearly observe that SCAROS

selects shorter routes towards the Fiber-BS in comparison to

the benchmark schemes and on average activates fewer links

simultaneously, thus minimizing the impact of interference. In

terms of throughput loss due to overhead, since the overhead

is 200 kbps, this essentially means that the throughput loss is

only 0.0027% of the average throughput.
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Fig. 7: The learning rate over time for 5 tier networks and the average throughput and latency for different network sizes

(3, 4, 5 tiers). SCAROS demonstrates very fast learning rate while achieving the lowest end-to-end latency and the highest

throughput.
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Fig. 8: Selected route and link activation. The thickness of

each link is proportional to traffic passing through it.
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Fig. 9: The throughput and end-to-end latency of all schemes.

SCAROS shows the highest robustness against load imbalance.

The key insights from this scenario are: (i) Machine learn-

ing is not a default solution for self-backhauling problems.

Our observation showed that RL significantly reduces the

throughput and requires a long time to converge to a steady-

state; (ii) Throughput optimality under static and interference-

free scenarios may not hold in realistic evaluations. MTFS

is throughput optimal in the absence of interference and

queue dynamics. However, it achieves lower throughput than

SCAROS and leads to high end-to-end latency; (iii) SCAROS

outperforms the benchmark schemes due to a tailored model

designed to reduce the action space while accounting for

network dynamics which hampered the performance of bench-

mark schemes.

C. SC2: Robustness against load imbalance

Here, we study the impact of load-awareness in self-

backhauled networks. We divide this scenario into five periods,
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Fig. 10: The impact load imbalance on the selected routes

under different algorithms. The overlaid heat map shows the

traffic load, i.e., the intensity of gray shade increases with the

load at the base station.

as shown in Figure 9. The load across the network is balanced

in the first, third, and fifth period (1000 packet/s per base

station), while we enforce load imbalance within the second

and fourth periods. The heat map overlaid on the network

topology in Figure 10 shows the load distribution during these

periods.

The impact of load imbalance on throughput is shown in

Figure 9a. Comparing this figure with the selected routes

in Figure 10, we observe that SCAROS adapts to the new

load imbalance quickly by selecting suitable paths, whereas

RL fails to adapt to the changes, resulting in high packet

drop. SCAROS not only achieves 5.35 Gbps higher throughput

than MTFS but also it maintains steady latency performance

against load variation, see Figure 9b. More specifically, we
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Fig. 11: The throughput and end-to-end latency of all schemes.

SCAROS shows the highest robustness against base station

failure.

can observe sharp latency increment (up to 35 ms) under

MTFS, whereas such behavior is not seen in the learning-

based approaches. The stability of SCAROS is due to the

fact that when a change in the network occurs, SCAROS

reacts by triggering more exploration of route selection and

scheduling solutions. However, if the network topology does

not change, the probability of exploration is decreased over

time in order to exploit the gained knowledge. Besides, the

algorithm’s overhead only caused a throughput loss 0.0025%
of the average throughput.

D. SC3: Robustness against base station failure

In Section I-A, we elaborate on how the complexity of self-

backhauling problem is tied to the multitude of available routes

toward Fiber-BS. However, if harnessed, this can be used as an

opportunity to improve the robustness of the network against

link/base station failures. In this scenario, we evaluate the

impact of base station failure on the performance and the

robustness of SCAROS and the benchmark schemes under

such conditions, see Figure 11. Similar to the previous cases,

this scenario is divided into five periods. In the first, third, and

fifth periods, the network is in normal working conditions, and

we enforce several base stations failures within the second and

fourth periods. In Figure 12, the failed base stations are shown

in red triangles.

In Figure 11, we observe the throughput and latency per-

formance of all schemes in different periods. To be fair to

MTFS (non-learning benchmark), we recompute the selected

route before each failure period. Otherwise, MTFS would have

experienced steep throughput drops due to routing data toward

inactive base stations and allocating transmission times to links

which cannot be activated. Nevertheless, we can still observe

the impact of changes in routing and scheduling policy of

MTFS on end-to-end latency, which results in sudden latency

surge up to 96 ms. Nonetheless, SCAROS outperforms all the

benchmark schemes in terms of throughput and latency. It can

be observed, in Figure 12, that SCAROS quickly adapts to

new scenarios by choosing alternative routes. We also see that

SCAROS chooses to activate fewer links and schedule them

longer, which contrasts the strategy of MTFS and RL. This
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Fig. 12: The impact base station failure on the selected routes

under different algorithms. The base station in red color and

larger size are the failed base stations.

tendency towards activating fewer links reduces the overall

interference in the network, thus enhancing the throughput.

Noteworthily, SCAROS manages to keep the throughput loss

at only 0.0034% of the average throughput even in the

worst-case scenario (i.e., in the period with the minimum

throughput).

VII. DISCUSSION

In this section, we shed light on our choices when designing

SCAROS and elaborate on its limitations. Furthermore, we

provide insights into feasible solutions that can be potentially

used in future work.

A. Learning speed

SCAROS was designed with a strong emphasis on achieving

a high learning speed as well as robustness to network dynam-

ics. Indeed, we observed in Section VI that SCAROS achieved

our goals. However, we believe that the convergence speed

and adaptability can be even further improved by training the

algorithm before deployment. Considering the fact that the

deployment topology is a priori known to the operators, it is

not unreasonable to assume that the operators can simulate

an expected set of link rates, traffic patterns and even link

failures to collect training information for the algorithm prior

to deployment. Furthermore, data collected from locations

with similar characteristics (e.g., building density, height) can

be used as training data. Note that we neither claim that

the real network dynamics can be completely simulated nor

propose to duplicate learning matrices from similar areas.

Clearly, none of these approaches eliminates the need for
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online learning. Our suggestion merely enables the algorithm

to make more informed decisions from day zero.

When reinforcement learning techniques are used, the learn-

ing agent learns how to act by interacting with the environment

and receiving feedback about the selected action. This means

that trying different route selection and scheduling solutions

and evaluating the end-to-end latency. Even if some of these

solutions lead to poor performance, it should be noted that

only by allowing SCAROS to try all the different options,

i.e., explore the action space, we can learn what solutions

lead to the optimum performance. Nevertheless, taking into

account that in a real implementation some of these sub-

optimal solutions might not be allowed due to regulations

about minimum performance, the prior training of SCAROS

will reduce the requirement of in-situ exploration of the

route selection and scheduling solutions. As a consequence,

a minimum performance could be ensured from the beginning

of the operation. Note that as the time evolves, the different

solutions will still be evaluated according to local observations.

B. Scalability issues due to intermediary bottlenecks

Within the course of our evaluation, we observed that

computational complexity is not exactly the only bottleneck

for scalability of self-backhauling networks. Indeed, while

SCAROS quickly learns the best strategy for large network

sizes (up to 160 S-BSs in eight tiers), the performance

appeared to be capped by a different factor, that is, the

architecture itself. The self-backhauling architecture leads to a

tributary effect, which automatically increases the probability

of having bottlenecks in the inner tiers. This effect is better

illustrated in Figure 13, where we show the average number

of packet drops in a 5, 6, 7, and 8-tier network with 60, 97,

134, and 160 base stations, respectively. Note that the x-axis

shows the number of packets dropped at every tier for different

network sizes. We see in the figure that as the network size

increases the number of packet drops increases dramatically.

This result demonstrates that assuming Fiber-BS as the only

bottleneck in the system, which is a common assumption in

the literate [4], is in fact inaccurate. The majority of the base

station in inner tiers will eventually become a bottleneck.

Although addressing this problem was out of the scope

of this article, there are solutions which can alleviate this

problem. A potential solution is increasing the number of RF

chains at the base stations. More RF chains coupled with

frequency duplexing will allow simultaneous transmission

and reception, which can significantly improve the network

capacity. From an economic aspect, this increases the end cost

of each base station. A feasible solution to this problem is

a non-uniform distribution for the number of RF chains per

BS in which the number of RF chains is higher for the base

stations closer to the Fiber-BS. The suitable distribution (e.g.,

Gaussian) is still an open problem, but we expect the number

of tiers and distance to the Fiber-BS to be good candidates as

characterization metrics.

C. Beamforming accuracy

In our evaluation, we intentionally refrained from using

idealized beam pattern to emphasize the impact of interference.

However, we expect the accuracy of beamforming techniques

to improve, which brings us closer to idealized beam patters.

We shed light on the impact of beamforming accuracy in

Figure 14. In particular, the figure shows how fast the number

of interfering link in our Manhattan scenario (5 tiers) drops

as we reduce the beamwidth. Narrower beams mitigate the

impact of interference and enhance the spatial reuse, which

in turn increases the overall network capacity and reduces the

queueing waiting times.

D. Multiple RF chains

In this paper, we have addressed the route selection and

scheduling problem when only one RF chain is considered.

Nevertheless, the semi-distributed design of SCAROS allows

its seamless extension to the case when multiple RF chains are

available at the S-BS and the Fiber-BS. In such a case, every

S-BS learns the estimated set of times required to reach the

Fiber-BS via the different available paths. As a consequence,

the action set of each S-BS is no longer a vector but turns

into a matrix whose dimensions depend on the number of

available RF chains. Furthermore, the constraints given by (5)

and (6) should be considered for each of the available RF

chains independently.

VIII. CONCLUSIONS

In this paper, we present SCAROS, a machine learning

approach to solve route selection and scheduling in self-

backhauled mmWave networks under realistic network dynam-

ics (e.g., channel variation, interference, mobility). SCAROS

tackles the computational complexity of self-backhauling

through a so-called symptom-based modeling coupled with

a semi-distributed algorithm design. We benchmark SCAROS

not only against a widely used learning approach but also a

state-of-the-art linear optimization method. Furthermore, for

a thorough evaluation, we set up a scenario based on the

actual deployments in the Manhattan area and use the actual

beam patterns obtained from our measurement of off-the-shelf

mmWave devices. The evaluation demonstrated that SCAROS
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improves the throughput by at least 1.8× while achieving the

lowest latency and providing the highest robustness against

load imbalance and base station failures.

This is the first attempt towards using an online learning

approach for solving self-backhauling problem. This work can

be extended in several directions. For instance, we assume

that the self-backhauled base stations (i.e., S-BSs) are a priori

associated to a Fiber-BS, which is the conventional approach in

today’s networks. However, solving this problem in a network

with arbitrary S-BS–Fiber-BS association is an interesting

research avenue. Service guarantee is also an interesting future

work in which the operators can ensure a certain level of

quality of service in all tiers of their networks.
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