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Abstract— The allocation of K orthogonal resources aiming at
maximizing the throughput in an energy harvesting (EH) multiple
access scenario is considered. In this setting, the optimal resource
allocation (RA) depends on the transmitters’ EH and channel fad-
ing processes. However, in realistic scenarios, only causal knowl-
edge of these processes is available. We first formulate the offline
optimization problem and identify two main challenges, namely,
how to exploit causal knowledge to maximize the throughput and
how to handle the high dimensionality of the problem. To address
these challenges, we propose a novel reinforcement learning (RL)
algorithm, termed combinatorial RL (cRL). The name stands for
its ability to handle the combinatorial nature of the RA solutions.
Exploiting the available causal knowledge, we learn the RA policy
aiming at maximizing the throughput. Furthermore, we overcome
the curse of dimensionality, typical of combinatorial problems,
by splitting the learning task, solving K+1 smaller RL problems
and using linear function approximation. Through numerical
simulations, we show that cRL outperforms known strategies
like random and greedy as well as other RL approaches.

I. INTRODUCTION

Energy harvesting (EH) enables wireless communication

nodes to collect energy from the environment to recharge their

batteries. As a result, the operation of the nodes is not limited

by their batteries, but by the hardware’s lifetime [1]. However,

to efficiently use the harvested energy, two aspects should be

considered: a suitable power allocation policy at the EH nodes

and a suitable resource allocation (RA) policy in the network.

Previous work on EH communications, specially in multiple

access (MAC) scenarios, has mainly focused on power alloca-

tion policies for the EH transmitters. This problem has been

tackled following three approaches, i.e., an offline approach

in which perfect non-causal knowledge regarding the EH and

the channel fading processes is assumed [2], [3], an online

approach in which only statistical knowledge of the processes

is assumed [4], [5], and a learning approach in which only

causal knowledge is assumed [6]–[10]. In the following, we

summarize the state of the art of power allocation in EH

MAC. Using an offline approach, an EH two-user MAC

channel is considered in [2] where a generalized iterative

backward water-filling algorithm is proposed to minimize

the time required for data transmission. In [3], an iterative

water-filling based algorithm is proposed to find the optimal

power allocation policy in the EH multi-user MAC channel.

This work was supported by the German Research Foundation (DFG) within
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The authors of [4] follow an online approach to study a

continuous-time power policy for EH MAC. In [5], an EH

MAC channel using time division multiple access (TDMA)

is considered and the authors investigate the optimal power

allocation policy assuming only statistical knowledge. Fur-

thermore, learning approaches have been used to address the

power allocation problem in EH point-to-point [6]–[8], two-

hop [9] and broadcast scenarios [10], but not yet in MAC.

Only few works consider RA in EH MAC. In [11], an online

approach is considered to schedule the transmissions according

to the transmitters’ battery and channel states. Additionally,

in [12], the authors model the EH processes using independent

two-state Markov chains and formulate the RA problem as a

restless multi-armed bandit (MAB) problem.

In this paper, we focus on the allocation of K orthogonal

resources in a MAC scenario. In contrast to [11], we consider

only causal knowledge, i.e., in a given time interval, only the

current amounts of harvested energy and the current channel

coefficients are assumed to be known. Moreover, we extend

the model in [12], where the nodes are assumed to harvest

one energy unit or none, to consider that the harvested energy

can take any positive value. We first formulate the offline

optimization problem for the MAC scenario and identify two

main challenges, namely, finding a RA solution aiming at

maximizing the throughput having only causal knowledge of

the EH and channel fading processes, and handling the high

dimensionality of the problem. The former comes from the

consideration of a realistic scenario in which no knowledge

about the future is assumed, while the latter comes from

the combinatorial nature of the RA solutions and the infinite

number of battery and channel states the EH transmitters can

experience. To address these challenges, we formulate the RA

problem as a reinforcement learning (RL) problem. Specifi-

cally, we propose a novel RL algorithm termed combinatorial

RL (cRL). The name of our algorithm stands for its ability to

handle the combinatorial nature of the RA solutions. cRL is

inspired by the so called naive strategy proposed in [13] for

MAB. Here, we extend it to a RL setting and combine it with

linear function approximation to manage the infinite number of

states. The strength of cRL is its ability to split the original RL

problem into K +1 smaller problems, thus tackling the curse

of dimensionality of combinatorial problems. This increases

the learning rate and, consequently, the throughput, compared



Fig. 1. MAC scenario with EH transmitters.

to traditional RL approaches.

The remainder of the paper is organized as follows. In

Sec. II, the system model is presented. The RA problem is

formulated in Sec. III and the proposed cRL is explained in

Sec. IV. Performance results are presented in Sec. V and Sec.

VI concludes the paper.

II. SYSTEM MODEL

A MAC scenario consisting of a single access point (AP)

and N EH transmitters, as depicted in Fig. 1, is considered.

The AP is assumed to be connected to the electrical grid while

the EH transmitters, termed Nn with n = 1, ..., N , harvest

energy and use it to transmit data to the AP. We assume the

EH transmitters always have data available for transmission.

As a result, the achievable throughput is only limited by the

harvested energy and the RA policy.

Time is divided into time slots (TSs) of constant duration

τ , and each TS is identified by its index i = 1, ..., I , where

I is the total number of TSs. Furthermore, within each TS,

K orthogonal and distinguishable resources are available for

the transmission of data, e.g., a fraction of a TS if TDMA is

considered or one sub-carrier in the case of frequency-division

multiple access (FDMA). The AP has the task of allocating

the K resources aiming at maximizing the throughput.

At the beginning of TS i, an amount of energy En,i ∈

R
+, obtained through the EH process, is assumed to be

available at Nn. The maximum amount of harvested energy,

termed Emax,n, depends on the energy source being used.

The harvested energy is stored in a rechargeable battery with

maximum capacity Bmax,n. Moreover, in order to transmit

the signaling from each Nn to the AP, i.e., battery level

and channel coefficient, a constant amount of energy Esig
n is

assumed to be spent in each TS. Furthermore, the battery level

Bn,i ∈ R
+ is updated at the beginning of each TS as

Bn,i+1 = min

(

Bmax,n, Bn,i + En,i − τ

K
∑

k=1

pn,i,k − Esig
n

)

,

(1)

where pn,i,k is the transmit power used by Nn in TS i over

the kth resource. Our goal is to find a resource allocation

policy at the AP considering the available causal knowledge.

The transmitters are assumed to be low-power devices with

limited processing capabilities. Therefore, a low-complexity

greedy power allocation policy is considered, i.e., Nn uses all

the energy in its battery for the transmission of data every time

that a resource has been allocated to it. In case more than one

resource is allocated to Nn in TS i, equal power allocation

is considered. Let δn,i,k ∈ {0, 1} be a variable that indicates

if the kth resource has been allocated to Nn in TS i. The

transmit power used by Nn in TS i is calculated as

pn,i,k =











Bn,i

τ
K∑

k=1

δn,i,k

if
K
∑

k=1

δn,i,k ≥ 1

0 else.

(2)

The fading channel from each Nn to the AP over the kth

resource is described by the channel coefficient hn,i,k ∈ C

which is assumed to remain constant for one TS. The noise

at the AP is independent and identically distributed (i.i.d.)

zero mean additive white Gaussian noise with variance σ2.

Furthermore, the throughput

Ri =

N
∑

n=1

K
∑

k=1

log2

(

1 +
|hn,i,k|

2pn,i,k
σ2

)

(3)

in bits is the amount of data received by the AP in TS i. As

only causal knowledge is available, the AP only knows the

current battery levels Bn,i and the channel coefficients hn,i,k

in TS i. Note however that the battery level Bn,i comprises

the previous amounts of harvested energy, battery levels and

amounts of energy used for signaling and data transmission.

III. PROBLEM FORMULATION

In this section, we formulate the offline optimization prob-

lem for the EH MAC scenario. Feasible RA solutions depend

on the transmitters EH and channel fading processes. Natu-

rally, only the energy in the batteries can be used for data

transmission. Consequently, the energy causality constraint

M
∑

i=1

K
∑

k=1

τpn,i,k +
M
∑

i=1

Esig
n ≤

M−1
∑

i=1

En,i, M = 1, ..., I, (4)

has to be fulfilled. Moreover, to avoid overflow situations in

which part of the harvested energy is wasted because the

battery is full, the constraint

M
∑

i=1

En,i −

M
∑

i=1

K
∑

k=1

τpn,i,k −

M
∑

i=1

Esig
n ≤ Bmax,n, ∀n,M, (5)

is also taken into account. Exclusive allocation is considered,

i.e., each resource can be allocated to only one user but

multiple resources can be allocated to a single node. As a

result, the constraints

N
∑

n=1

δn,i,k = 1, (6)

K
∑

k=1

N
∑

n=1

δn,i,k = K, (7)

must be fullfiled by any feasible RA solution. The offline

optimization problem for RA in EH MAC is given by

(

δoptn,i,k

)

n,i,k
= argmax

δn,i,k∈{0,1}

I
∑

i=1

Ri (8a)

subject to (2), (4), (5), (6), (7). (8b)



We identify the problem in (8) as a non-linear knapsack

problem which is NP-hard. Furthermore, the constraints in (4)

and (5) impose a dependency of the RA solution over time.

This means, causal knowledge is not sufficient to obtain the

optimum solution. Moreover, the dimension of the problem in

(8) grows exponentially with K and N . Specifically, in TS

i, the number |A| of feasible RA solutions is bounded by

|A| = NK . To overcome these challenges, we propose cRL,

a combinatorial RL algorithm which uses past experience to

learn the optimal RA policy and handles the large dimension-

ality of the problem by separating it into K +1 smaller ones.

IV. CRL: COMBINATORIAL REINFORCEMENT LEARNING

Our algorithm is motivated by the availability of only causal

knowledge regarding the EH and channel fading processes. In

the following, we first model the problem in (8) as a Markov

decision process (MDP). Next, we present the naive strategy

proposed in [13] for MAB and extend it to RL problems.

We then continue with the application of linear function

approximation and explain the action selection strategies.

A. Markov decision process

In our scenario, the TS duration τ is fixed and known.

Moreover, the transmitters adopt a greedy power allocation.

Consequently, in TS i the RA depends solely on the values

of Bn,i, and hn,i. As the previous battery and channel states

do not need to be taken into account, the system under

consideration fulfils the Markov property and can be modeled

as an MDP. This formulation is helpful for the definition of the

RL algorithm as will become clear in the following. An MDP

is defined by a set S of states, a set A of actions, a transition

model P and a set R of rewards [14]. The proposed cRL

provides a solution of the MDP presented here. In TS i, the

state Si ∈ S corresponds to the battery and channel states of all

the transmitters. However, to reduce the number of variables to

be considered, we define a pseudo-SNR ρn,i = |hn,i|
2Bn,i/τ .

The higher ρn,i, the more suitable is Nn for the transmission of

data in TS i. This is because Nn experiences a good channel,

has a large amount of energy stored in its battery, or both. We

remark that ρn,i can take any value in a continuous range. As

a result, the set S contains infinitely many possible states. The

set A contains the RA solutions and in our model, A is finite

but grows exponentially. The transition model P defines the

probability of going from state Si to Si+1 after selecting ai.
Finally, the rewards Ri ∈ R indicate how beneficial it is to

select ai in Si and it is given by the throughput in (3).

A policy π, which maps states to actions as ai = π(Si),
provides the solution of an MDP. Furthermore, the policy is

evaluated using the so-called action value function Qπ(Si, ai)
which is the expected reward starting in Si, selecting ai and

following π thereafter [14]. The optimal policy π∗ has an

action value function Q∗ which is greater than or equal to

the action value function of any other policy for all Si ∈ S

and ai ∈ A. Knowing Q∗ is important because it leads to

the determination of π∗. For each Si, any ai that maximizes

Q(Si, ai) is an optimal action.

Fig. 2. Schematic of the application of the naive strategy to RL problems.

Moreover, we consider a discount factor 0 ≤ γ ≤ 1 in order

to take into account the preference between achieving a higher

throughput in the current TS or achieving it the following TS.

Our aim is now to maximize the discount throughput given by

R = limI→∞ E

[

∑I

i=1 γ
iRi

]

.

B. Naive Strategy for RL

To tackle the high dimensionality of the problem, we

propose the use of the so called naive strategy for MAB [13].

This strategy is based on the idea that the reward distribution

can be approximated by the sum of a set of reward functions

that depend on only one variable. Here, we extend this idea

to the more complex case of RL problems.

In our setting, we can rewrite the reward function in (3) as

the sum of the throughput obtained in each of the resources,

this means Ri =
∑K

k=1 R
k
i where

Rk
i =

N
∑

n=1

log2

(

1 +
|hn,i,k|

2pn,i,k
σ2

)

. (9)

This decomposition allows us to separate the problem into

K +1 smaller ones as shown in Fig. 2. K of these problems

are termed local RL problems (RLP) while the remaining one

is termed global RLP. As shown in Fig. 2, the dotted line

represents that in TS i the action ai can be selected using the

local RLPs or the global RLP. Intuitively, the task of the local

RLPs is to efficiently explore the RA solutions while the task

of the global RLP is to select, for a given state, the action

which is considered the best up to TS i. The action space of

the global RLP is initially empty, and it is updated every time

that a new RA solution is tried via the local RLPs.

Each local RLP is associated with one resource and its task

is to learn how to select one transmitter to which said resource

will be allocated. This is motivated by the idea that by learning

to maximize each Rk
i , the total Ri is also maximized. Note

that the decision for each resource is done simultaneously and

independently in each local RLP. As a result, the action set

Ak of the kth local RLP is composed solely by the set of EH

transmitters, thus tackling the curse of dimensionality in the

original formulation, i.e., |Ak| = N . The collection of the aki
selected by each local RLP forms the RA solution ai.

As mentioned above, when a new RA solution is encoun-

tered by the local RLPs, it is stored in the global RLP. This

means that when ai is selected via the global RLP, the action



considered to be the best up to TS i is selected. Therefore,

the global RLP does not solve a combinatorial problem, but

learns the suitability of the RA solutions that have been tried.

C. Linear Function Approximation

By means of the naive strategy, we are able to deal with the

high dimensionality of the action space. However, nothing has

yet been done to handle the infinite number of states. For this

purpose, we use linear function approximation. The infinite

number of states comes from the fact that Bn,i and hn,i,k can

take any positive value. Furthermore, when |S| is infinite, the

action value function Qπ has also an infinite number of values.

In such cases, linear function approximation can be used to

represent Qπ as a weighted sum of feature functions [14]. Each

feature function maps Si and ai onto a feature value. Let f

be a vector formed by all the feature values and let w be a

vector of weights containing the contribution of each feature.

Qπ is then approximated as Qπ(Si, ai) ≈ fT(Si)w [14]. In

this paper, we use tile coding as approximation technique due

to its flexibility, computational efficiency and suitaibility for

multi-dimensional continuous spaces [14].

D. Action Selection

In every state Si the action ai can be selected using the local

RLPs or the global RLP. For this purpose, the ǫ-greedy policy

is considered. This means, with probability ǫ the local RLPs

are used to select the RA solution and with a probability 1− ǫ
we make use of the global RLP. The local RLPs learn how

to allocate the corresponding resources. As a consequence,

in each RLP we face the well known exploration-exploitation

dilemma, i.e., whether the corresponding resource is allocated

to a transmitter that has not yet used it and can potentially

achieve a high throughput or to allocate it to the transmitter

that has achieved the highest throughput so far. To handle

this tradeoff, we also consider the ǫ-greedy policy at the local

RLPs. However, to differentiate it from the previous case, we

termed it ǫl-greedy policy. In contrast to the local RLPs, no

exploration is performed at the global RLP. This is because

its task is to learn the suitability of the RA solutions that

have been already discovered by the local RLPs. Consequently,

a greedy policy is considered. This means, every time ai is

selected via the global RLP, the RA that has achieved the

highest throughput, i.e., highest Q̂(Si, ai), is selected. The

use of the greedy policy enforces the exploitation of the RA

solution which is considered the best up to TS i.

E. Combinatorial RL algorithm

Our proposed cRL is composed of K+1 RLPs. For each of

them, the state-action-reward-state-action (SARSA) algorithm

is considered. When linear function approximation is used, the

weights w are adjusted in the direction that reduces the error

between Qπ and Q̂π following the gradient descent approach.

The updating rule for the local RLPs is given by [14]

∆wk = αi

[

Rk
i + γQ̂π(Si+1, a

k
i+1,wk)− Q̂π(Si, a

k
i ,wk)

]

f,
(10)

where αi is the learning rate. Similarly, the weights in the

global RLP are updated as

∆w = αi

[

Ri + γQ̂π(Si+1, ai+1,w)− Q̂π(Si, ai,w)
]

f. (11)

The proposed cRL is summarized in Algorithm 1.

Algorithm 1 Combinatorial RL algorithm

1: initialize parameters, observe Si and select a random action ai

2: for every i = 1, ..., I do

3: if in state Si a new ai is encountered then

4: add it to the global RLP

5: end if

6: calculate the achieved throughput ⊲ Eq. (9)

7: observe next state Si+1 and generate random number z

8: if z ≥ ǫ(i) then ⊲ Exploit from global RLP

9: select next action ai+1 with highest Q(Si+1, ai+1)
10: else ⊲ Explore from local RLPs

11: for each local RLP do

12: select action ak
i using ǫl-greedy

13: end for

14: end if

15: update the weights in the local RLPs ⊲ Eq. (10)

16: update the weights in the global RLP ⊲ Eq. (11)

17: set Si = Si+1 and ai = ai+1

18: end for

V. SIMULATION RESULTS

In this section, numerical results for the evaluation of the

proposed cRL are presented. The results are obtained by

generating T = 100 independent random EH and channel

realizations. Each realization is an episode where the trans-

mitters harvest energy I = 104 times. We consider TDMA,

i.e., each resource is a fraction of the TS and all the fractions

have the same length. For each Nn, the amounts of harvested

energy are taken from a uniform distribution with maximum

value Emax, where Emax/(2τσ
2) = 5dB. The time interval τ

between two consecutive EH time instants is set to one time

unit and the channel coefficients hn,i,k are taken from an i.i.d.

Rayleigh fading process with zero mean, unit variance and a

path loss exponent of three. Additionally, the noise variance is

set to σ2 = 1. To perform linear function approximation, each

of the N dimensions forming the state space is divided into

two tiles and G = 16 grids are considered. The learning rate

is set to α = (10G)−1 for the local and global RLPs, the ǫ
and ǫl parameters are decreased in each TS and γ = 0.9.

For comparison, we consider three approaches: traditional

RL in which a single RL problem using SARSA and linear

function approximation is considered, a random strategy where

K transmitters are randomly selected and one resource is

allocated to each of them, and the greedy strategy where the K
transmitters with the stronger channel conditions are selected

and one resource is allocated to each of them.

Fig. 3 shows the throughput for different numbers of EH

transmitters when K = 3 resources are considered. For all

the approaches, the throughput increases with the number of

transmitters due to the increased diversity, i.e., when more

transmitters are considered, there are more possible RA solu-

tions. For N = 2, cRL performs similar to the traditional RL

and outperforms the random and greedy approaches. However,

as the network size increases, the advantages of cRL are better

exhibited. By breaking the original RL into K + 1 smaller
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RL problems, cRL is able to handle the larger action spaces

and consequently, achieve a higher throughput compared to

traditional RL. For N = 10, cRL achieves a throughput 23%
higher than traditional RL and 12% and 80% higher than the

greedy and random strategies, respectively.

The effect of the number of resources on the throughput

for N = 10 is shown in Fig. 4. cRL achieves on average

the same throughput for the different number of resources

because it considers the EH and channel fading process of

the transmitters, which are the source of the randomness in the

system, in the selection of the RA solutions. As the traditional

RL approach suffers from the curse of dimensionality, its

performance degrades when more resources are considered.

Moreover, when the number of resources is larger than three,

the action space of the traditional RL approach is so large that

a solution cannot be obtained. The greedy strategy performs

slightly better than the learning approaches when K = 1,

because in this case acting greedy is optimal while the learning

approaches need to perform exploration in order to learn the

RA policy. During exploration, suboptimal RA solutions may

be selected which affects the average throughput. However, as

the number of available resources increases the performance

of the low-complexity approaches decreases. cRL achieves

24% and 71% higher throughput than the greedy and random

strategies, respectively, when N = 10 and K = 5.

The convergence speed of cRL is evaluated in Fig. 5 when

N = 10 and K = 3. From the beginning, cRL achieves a

higher throughput compared to the traditional RL. The reason

for this is that it explores more efficiently the action space. Ad-

ditionally, it is designed to cope with the high dimensionality

of the problem in both, the state and action space, while the

traditional RL only considers the high dimensionality of the

state space through the use of linear function approximation.

VI. CONCLUSIONS

A MAC scenario with a single AP and multiple EH trans-

mitters was considered. In addition, K orthogonal resources

were assumed to be available for the transmission of data and

the RA problem was investigated. Our goal was to find a RA

policy when only causal knowledge regarding the EH and the

channel fading processes is available. To this aim, we for-

mulated the offline throughput maximization problem for this

scenario to identify the main challenges to be addressed. As

a result, we proposed cRL which exploits the available causal

knowledge and tackles the curse of dimensionality by solving

K + 1 smaller RL problems and leveraging the use of linear

function approximation. Through numerical simulations, we

showed that cRL outperforms low-complexity strategies like

random and greedy as well as traditional learning approaches.
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